2023 20th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA) | 979-8-3503-1943-9/23/$31.00 ©2023 IEEE | DOI: 10.1109/AICCSA59173.2023.10479252

TiVEx: Optimized Processing for Time Series
Visual Exploration

Heba Helal*T, Mohamed A. Sharaf*, Mohammad M. Masud*, Panos K. Chrysanthisi
*College of Information Technology, United Arab Emirates University, UAE
Email: {202090034, msharaf, m.masud} @uaeu.ac.ae
tSchool of Computing and Information, University of Pittsburgh, United States of America
Email: {panos}@cs.pitt.edu

Abstract—To facilitate fast-visual data analysis, there is a
need for recommending top-%£ views with “interesting” insights
automatically. However, working with high-dimensional time
series data makes the process of view recommendations difficult.
The primary obstacle lies in finding an automatic way to generate
views with less processing time (efficiency) while still closely
aligning with the ground truth (effectiveness). In this paper, we
propose TiVEx (Time Series Visual Exploration), a technique to
address this challenge. TiVEx aims to achieve a balance between
efficiency and effectiveness in generating view recommendations.
Through extensive experiments, we demonstrate significant cost
savings achieved by TiVEx, indicating its efficiency. Furthermore,
our analysis delves into the exploration of striking the right
balance between efficiency and effectiveness.

Index Terms—Visualization, Recommendation, Time series
data, Optimization

I. INTRODUCTION

Time series data provides valuable information about var-
ious phenomena, ranging from economic indicators to envi-
ronmental measurements [2], [3], [6], [8], [15], [18], [20].
However, visualizing and analysing multiple time series pose
significant challenges due to the inherent complexities of high-
dimensional data [8], [9], [15], [18].

To gain valuable insights from time series data, it is common
for analysts to go through a visual data exploration step, in
which the aim is to discover interesting patterns. However, that
task is typically performed manually, where analysts generate
and examine numerous visualizations looking for interesting
insights. Particularly, analysts must manually construct pro-
hibitively number of queries, selecting various combinations
of data subsequences from different time series. Further, they
need to visually explore the results of those queries looking
for insights, which is clearly an ad-hoc and labor-intensive
process.

While multiple research efforts have focused on automated
visual data exploration systems (e.g., [5], [7], [11], [14], [17]),
they fall short in handling the high-dimensionality nature of
data. Particularly, the main idea underlying those systems is to
automatically generate all possible exploratory queries of the
data, generate their corresponding visualizations, and recom-
mend the top-k interesting ones. Meanwhile, the interesting-

TDept. of Computer Engineering and Systems, College of Engineering,
Mansoura University, Egypt

ness of a query is quantified using a utility metric applied to its
result. Hence, at each point during a data exploration session,
automated visualization recommender systems need to search
and process a large space of possible exploratory queries
in order to recommend those visualizations with insightful
patterns. That space of possible queries is further escalated
when dealing with a large number of high-dimensional, long
times series, where each timestamp in the series represents a
dimension in a high-dimensional data space. Hence, there is a
need for novel optimized query processing techniques that are
specially tailored for exploring high-dimensional time series
data. These techniques should quickly process and recommend
interesting visualizations, which is the focus of this work.

In particular, the primary focus of our paper is to address
the challenges of automatically generating and recommending
top-k visualizations with interesting insights from time series
data. To achieve this, we propose an efficient and effective
method, called TiVEx (Time Series Visual Exploration). In
TiVEXx, similar to prior work (e.g., [7], [14], [17]), we adopt
a deviation-based formulation to quantify the interestigness
of an insight. As such, TiVEx is particularly designed for
the data exploration tasks, in which the analyst wants to
discover pairs of time series subsequences that exhibit a high
level of dissimilarity. Hence, under TiVEx, each recommended
visualization (i.e., view) is a pair of time series subsequence
with a high Euclidean distance. The larger distances are often
deemed more interesting as they highlight distinctive patterns
or unusual occurrences that can lead to valuable insights [7],
[14], [17].

To expedite the view recommendation process in our pro-
posed method, we employ the pane window technique based
on the notion of sharing of computation [13]. This technique
takes advantage of the overlapping computations that occur
when evaluating pairwise subsequences. Instead of comput-
ing each view individually and from scratch, we optimize
the process by reusing calculations that have already been
performed. This approach significantly reduces the processing
time required to generate and evaluate the views. Our method
achieves a substantial improvement in efficiency (i.e., less
processing time) without compromising the quality of the
recommended views (i.e., effectiveness).

The remaining sections of this paper are structured as

979'8‘3S%h%ﬁe%%éﬁé@gs@%%%m&%niversity of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from |IEEE Xplore. Restrictions apply.

follows: Section II describes the view recommendation process
for time series data. Section III analyzes the challenges of
recommending visualizations for time series data. Section IV
presents TiVEX, an optimization technique designed to speed
up the extraction of views with interesting insights. Section
V describes extensive experiments and evaluation using the
Google mobility dataset, and the paper is concluded with
directions to future works in Section VI.

II. PRELIMINARIES
A. Time Series Data

In the following, we present a formal definition of a time
series, which is then extended to define multiple time series
(31, [15], [18].

Definition 1: Time series T;: A time series T is defined
as an ordered set of observations x; ; and the corresponding
timestamps ?; ; at which each observation is recorded. For-
mally, Tj = {(a:l’j, tl,j)’ (.’L‘Q)]‘, t27j), .y (l‘LJ‘, tL)j)}, where L
is the length of time series.

Definition 2: Multiple time series T": A multiple time series
T is the set of n individual time series: T = {11, Ts, .., T, }.

For a given time series 7, the segment between any two
data points zp ; and x. ; is called subsequence and is denoted
as s; .. The subsequence s; , starts at position b and ends at
positfon e relative to the entire time series [18].

Example. To illustrate the basic concepts discussed above,
we present an example based on the Google mobility dataset
[1]. Since we also utilize that dataset for our experimental
evaluation (see Section V), in the following we provide a brief
overview of the Google mobility data. Particularly, Google’s
data records changes in mobility, quantified as mobility change
ratio, across six different categories of places (i.e., Residential,
Workplace, etc.). For each category, this mobility change ratio
is calculated by tracking the visitor counts across different
regions on a daily basis. These visitor counts are subsequently
compared to a baseline day, where this baseline day corre-
sponds to the median value of the 5 weeks spanning from
January 3% to February 6", 2020.

Table I shows a sample of the Google mobility dataset
for the UAE. There are two time series (i.e., 77: Workplace
and Ty: Residential), each one with four observations corre-
sponding to four dates. For example, the four observations
(x1,1,%2,1,%31,%4,1) for Workplace series Ty are -46, -47, -
44, and -37 corresponding to the timestamps April 1%¢, 2",
374, and 4" (¢, 4, to.1,t3,1,t4,1), respectively. In addition, the
negative values in Workplace indicate how the number of
visitors is lower than its baseline on that day. In contrast,
the positive values in Residential correspondingly indicate the
increase compared to the baseline of that day.

B. View Recommendation

Our model for visual data exploration relies on a database
denoted as Dp, which stores multiple time series, each of
length L. Each of these time series consists of an ordered list
of real values representing observations [18]. The process of
visual data exploration is initiated when the analyst submits

TABLE I: Sample of Google mobility dataset for UAE.

Date Workplace (T7) | Residential (T%)
01/04/2020 -46 25
02/04/2020 -47 28
03/04/2020 -44 22
04/04/2020 -37 21

query @ on Dp [7], [14]. Hence, the formal query @ is
constructed as follows:

Q: SELECT % FROM Dp;

The result from query @ is a set of all the time series available
in the database Dp, such as Workplace (77) and Residential
(T3) shown in Table I. The primary objective is to find
interesting insights from the result of query (). Specifically,
we focus on pairs of time series, each with length L.

In order to extract insightful patterns from these pairs of
time series, all possible pairs of aligned subsequences are
extracted. In our scheme, each of these pairwise subsequences
represents a particular visualization, denoted as a “view”.
Thus, the generation of all potential views, denoted as wv,
involves traversing through the pairs of lengthy and equal-
length time series to obtain each possible pairwise subse-
quences. These generated pairwise subsequences are with
arbitrary length, leading to a vast number of generated paired
subsequences (i.e., views).

The manual process of generating views and identifying the
views with interesting insights is considered a time consum-
ing and labour-intensive task [5], [11], [17]. Therefore, our
visual time series data exploration addresses this challenge by
automatically generating and recommending top-k views with
interesting insights.

In the context of time series data exploration, evaluating
the interestingness of the generated views is a crucial step
in the automatic process of view recommendation. Thus,
to assess the generated views, we utilize the concept of
distance between data points in two subsequences [5], [7],
[11], [17]. Specifically, we employ the widely-used Euclidean
distance metric, which quantifies the similarity or dissimilarity
between subsequences of equal length. The Euclidean distance
calculates the geometric distance between corresponding data
points in the pairwise subsequences, providing a quantitative
measure of (dis)similarity.

Considering the substantial number of pairwise subse-
quences produced from pairs of time series, our approach
assumes a specific subsequence length R, which is user-
defined parameter. By defining the subsequence length using
the start and end positions of the subsequence (e.g., Si,e) as
R = e—b+1, we are able to control the length of subsequences
and, in turn, the number of views generated. In this context, the
start b and end points e for each view, represented by aligned
paired subsequence (i.e., 5{),@ and Slzf,e), determine the position
of the pairwise subsequences relative to the entire time series.
Thus, a particular view v ; . € v over Dp is represented

e’”b,e

by the tuple < Tj,Tk,b,g >. By determining the start and

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

end points for forming the subsequence, a particular view is
generated from the user-specified pair of time series (i.e., T}
and 7).

To ensure that all views are scaled consistently, we apply
min-max normalization to the data points of each subsequence
individually (e.g., sb . or sb .) [10]. For instance, after nor-
malization, the data point x; ; in the subsequence sb . will be
X, j, such that X; ; = 42 max = max{_,(z;;), and
min = min{_(z; ;). In this case, the values of data points
in each subsequence (e.g., s{),e andl s’g’e) range from O to 1.
Hence, for the two subsequences s7 _ and si , extracted from
the two series T); and T}, the Euclidean distance for a certain
view v . is calculated using Eq. (1).

b,e’"b,e

e

> (Xij — Xik)? (1)

i=b

where X ; and X; k are the data point after normalization
for two subsequences s; b, and sb .» Tespectively. The positions
b and e identify the start and end of a specific view, respec-
tively.

By computing the Euclidean distance for each view, we
obtain a numerical value that represents the deviation of the
paired subsequences. Based on the assumptions that views
with larger distances may reveal more intriguing insights [17],
we focus on identifying the top-k views with the largest devi-
ations. These top-k views are expected to highlight patterns,
or interesting insights within the time series data [7], [17].

Despite our previous restriction on subsequence length, the
search space for the extracted views remains substantial. The
number of possible views is given by V' = L — R + 1, which
becomes inefficient for long time series, especially when the
subsequence starts at any timestamp. Therefore, an optimized
view recommendation technique is crucial for efficiently ob-
taining interesting insights with minimum processing time.
Further details on the optimization technique will be discussed
in Section IV-B.

III. PROBLEM DEFINITION

In a nutshell, our primary goal is to recommend the top-
k most interesting visualizations based on the user’s input
query () over a time series database Dp. Particularly, the
process of extracting and recommending such views aims to
uncover insightful patterns within the data using a specific
scoring function. In this work, we focus on insightful patterns
that are based on the (dis)similarity between pairs of aligned
subsequences. However, the large number of possible pairs
of subsequences results in a huge search space, which poses
a computational challenge. To limit that search space, we
assume a constraint on the subsequence length, such that we
only search for pairwise subsequences of length R, which is a
user-defined parameter. Despite that restriction on subsequence
length, the search space remains vast as a subsequence of
length R can start at any arbitrary position along the time
series. Consequently, to further tame the search space, we em-
ploy a “sliding window” approach for time series exploration.

To employ a sliding approach for data exploration, there
is a need for introducing a shift length parameter, which we
denote as S. Given the subsequence length R and shift length
S, a time series T is simply partitioned into overlapping
subsequences, where a new subsequence starts every S time
units and is of length R time units, as depicted in Fig. 1.
Hence, the total number of different subsequences obtained
from a time series of length L is V/, such that V' = s B,
Particularly, each of those subsequences obtained from a time
series T is expressed as séy_1)5+17(y_1)s+R. That is, it starts
at position (y — 1)S + 1 and ends at position (y — 1)S + R,
where 1 < y < V. In turn, the set of possible views v over a
pair of time series T); and T}, is basically the set of overlapping
pairwise subsequences of length R, such that each of which
begins every S shift length. For each possible view (e.g.,
Ugi gk), the Euclidean distance metric is calculated using Eq.
(1) Such metric quantifies the (dis)similarity between pairs
of subsequences and serves as a measure of interestingness.
Finally, we retrieve the top-k views with the largest distances,
which are expected to contain the most interesting insights
within the time series data.

Based on our previous discussion, the problem addressed in
this paper is defined as follows:

Definition 3: View Recommendation for Time Series
Data: Given two time series (7}, T}), a subsequence length
R, a shift length S and a positive integer k, the goal is to
find the top-k views with the highest utility score, where each
view is an aligned pair of subsequences of length R.

IV. THE TIVEX APPROACH FOR VIEW RECOMMENDATION

In this section, we first discuss a linear search scheme for
view recommendation, which serves as our baseline method.
Subsequently, we present our TiVEx scheme, which leverages
shared computation towards optimizing the process of view
recommendation.

A. Baseline Solution

In linear search, all possible views of paired subsequences
are generated. Consequently, the utility score (i.e., Euclidean
distance) is computed for each of those views, and the top-
k views with the highest scores will be recommended to the
user. Clearly, linear search is a rudimentary and brute-force
approach. As such, in this work, we use linear search as a
baseline to assess the performance of our proposed TiVEXx,
which is described in the next subsection.

To further understand the performance of linear search,
consider Fig. 1, which depicts two time series 7T and T}, of
length L = 20 each. In this example, we assume that users
are interested in subsequences of length R = 8, and that a
slide distance S = 6 is used to enable a sliding window
exploration of the two time series. Consequently, three possible
views can be generated (i.e., |V/| = 3). For instance, the two
subsequences s7 g and Slf,s are used to create the first view. In
this setting, linear search will have to calculate the Euclidean
distance for each of the three views before obtaining the views
with the top-k highest distances. The Euclidean distance is

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

calculated for each view as in Eq. (1), where the first pairwise
subsequence is located at arbitrarily position (b) relative to the
entire time series. For instance, in Fig. 1, the start (b) and end
(e) positions for both sjl’g and s’ig are 1 and 8, respectively.

o 3" view
2"view g=2 g=2 g=2 g=2
g=2g=29=2 — ‘—’sj‘—’ ;—"
j | 13,20 J
1 ‘T]'
\
\

1stview

Overlapping e
pane/s Overlapping
pane/s

k
S7.14

Shift Length
S$=6

Subsequence Length
R=

[—
123 Time series length

L=20
Fig. 1: The subsequences and views obtained from two time
series T and T}, with L =20, R=8and S = 6.

In order to assess the efficiency of the linear search method
presented above, it is necessary to compute its total cost in
terms of number of computations. Particularly, in this work,
the overall cost is computed as the sum of all the operations
needed to calculate the Euclidean distance for each paired
subsequence, which is presented in Eq. (2) below:

Total Cost=(2x R—1)xV (2)

Particularly, the cost (i.e., number of operations) for mea-
suring the Euclidean distance within a pairwise subsequence
can be calculated in terms of two components as follows:

1) Distance operations: The operations required to compute
each of the terms (X; ; — X; x)? in Eq. (1), which are
calculated R times for a subsequence of length R points.

2) Aggregate operations: The operations required to com-
pute the overall summation Zfif 71(Xw- - Xir)%
which is calculated (R — 1) times for a subsequence of
length R points, assuming that the subsequence starts at
an arbitrary point b.

Combining those two components results in incurring a total
cost of R + (R — 1) operations. Hence, for a total of |V
pairs of subsequences (i.e., views), the overall cost would be
(2x R—1) x V, as shown in Eq. (2). Notice, that in line
with previous research [4], [10], [15], we omit the square root
operation from our calculations since the Euclidean distance is
monotonic. Clearly, in linear search the distance computation
is performed individually for each view from scratch. In
order to increase the efficiency of the exploration process, an
optimization strategy is needed, which will be explained in the
following subsection.

B. The TiVEx Scheme

In this subsection, we will explain the TiVEx technique, a
scheme that operates on the concept of computation sharing
through the use of pane window. In addition, we will shed

light on how the exploitation of overlapping points plays a
crucial role in influencing the processing time.

Pane window approach, which is used for query aggregation
in streaming data, was first described in the paper [13]. The
aim is to reduce the query execution time and storage. It
entails separating the streaming data into multiple equal-sized,
non-overlapping panes. In addition, each pane is handled
independently before the outcomes are aggregated.

This research expands upon the concept of pane window
within the context of time series, introducing a technique
known as “TiVEx”. The concept of pane window plays a
crucial role in optimizing the process of view recommendation,
enhancing the efficiency of exploratory data. In this technique,
TiVEx, every subsequence of length R in the time series
is divided into slices of equal size referred to panes. The
determination of the pane size, denoted as g, is a key factor
and is based on the combination of the subsequence length
R and the shift length S. This is achieved by calculating
the greatest common divisor (ged) of R and S, yielding the
pane size ¢ = gcd(R,S). Using pane window in “TiVExX”
technique helps in minimizing the redundancies and enhancing
the overall efficiency of the view recommendation process of
time series data, as we will explore further in the following
discussions.

Applying TiVEXx to a time series is demonstrated in Fig. 1.
TiVEx technique divides each subsequence into panes with
equal size ¢ = gcd(8,6) = 2. Therefore, TiVEx utilizes
the overlapping pane/s existing between any two successive
subsequences (e.g., S ¢ and 5%14). The overlapping panes
are shown in the shaded area in the middle of Fig. 1 (e.g.,
points 7 and 8).

Similar to [12], TiVEx technique divides a subsequence
of length R into % panes of equal size (e.g., 4 panes in
1% view in Fig. 1). This indicates that each subsequence is
split into partial aggregates representing each pane of size
g. Consequently, the Euclidean distance calculation for a
certain pairwise subsequence, starting at arbitrary position
b, is performed as defined in Eq. (3). The calculation is
carried out for each pane/partial aggregate individually (i.e.,
S(g)), as shown in the inner summation of Eq. (3). These
individual pane distances are further assembled to form the
final aggregation (F'() = >_ S(g)), as depicted in the outer
summation of Eq. (3).

R/g b+cxg—1
Dy)= Y. Xy-Xw)? 0
c=14¢=b+gx(c—1)

In order to compute the overall cost for measuring the
Euclidean distance along all partial aggregates, the following
three items are calculated:

1) Distance operations: The operations required to compute
(X ;—X; x)? for all points inside the partial aggregate/-
pane, with g points for each pane.

2) Aggregate operations: The operations required to com-
pute the summation Y0197 (X, ; — X,)2 inside the
partial aggregate, which is calculated (g — 1) times for

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

a pane of length g points. The subsequence is assumed
to start at an arbitrary point b.

3) Final aggregate: The operations required to calculate
the final summation between the partial aggregates. It
is calculated (% — 1) times for a subsequence with %
number of panes.

The first two items are applied within a specific partial
aggregate/pane; however, the last one is applied along the
partial aggregates. In Fig. 1, the first pane in S{,s and st,
starting at point b = 1 and with size g = 2, is considered
the first partial aggregate which applies distance operation
Ge., (X;; — Xi,k)2) between the first two points in S{_8
and the corresponding two points in S{ig and then appliés
aggregate operation (i.e., Zle(Xi,j — X;x)?) to sum the
two previous distance operations. The previous calculation
of partial aggregate is applied to all available panes existing
in 57 ¢ and ng (i.e., four panes). In the final aggregation
step, the outcomes from the different partial aggregates are
combined to form the final result.

Moreover, there are partial aggregates (also called sliced
aggregates) representing the overlapping aggregates between
two successive subsequences, such as the pane with size g = 2
in Fig. 1 existing from point 7 to point 8. This overlap-
ping/sliced aggregate is buffered to be used directly in the
upcoming subsequences (i.e., S%,l 4 and S§714, respectively). In
this instance, the total cost of all obtained views is as follows:

Total Cost = (2x R—1)

+(2><S—1+RT_S)><(V—1) @

The cost calculation for the first view in TiVEx technique
takes into account all available partial aggregates, which have
a total length of R points. Therefore, the cost of the first
paired subsequence is determined by the sum of the length
of all partial aggregates, which is R points, plus the cost of
combining them, which is (R — 1). For example, the cost of
the first view in Fig. 1 would be 8 + 7 = 15.

In subsequent views (e.g., 2"% and 3" views in Fig. 1),
the overlapping aggregates are utilized to calculate the cost. It
is important to note that in each successive subsequence, the
remaining portion after excluding the overlapping aggregates
has a fixed length of S points. Hence, the total cost of all
partial aggregates in all views except the first one (denoted as
|V — 1|) can be determined by considering the following:

1) The cost required to compute distance operations for all
points inside the remaining partial aggregate/pane, with
S points (e.g., from point 9 to 14 in the 2"¢ view in
Fig. 1). In this case, the cost is 6.

2) The cost required to compute the summation inside the
partial aggregate, which is (¢ — 1) within each of the %
panes. In the second and third views in Fig. 1, there are
3 panes each with a size of g = 2. Thus, the cost (e.g.,
2" view) will be $(2 — 1) = 3.

3) The cost required to calculate the summation between
these partial aggregates, which is calculated as (% —

1) between % number of panes. In Fig. 1, 2 addition

operations are required to assemble the 3 panes in the
274 and 37 views.

4) The cost required to combine the previous partial aggre-
gates with each overlapping aggregates. There are %
overlapping partial aggregates (e.g., partial aggregate
from point 7 to 8 in Fig. 1). Thus, only one addition
operation is needed in the 2"¢ and 3"¢ views to combine
the partial aggregates in the remaining portion with the
one in the overlapping portion.

By considering these terms, the total cost is the same as in Eq.
(4). This cost calculation allows for an efficient evaluation of
the subsequent views in TiVEX, considering the overlapping
nature of the partial aggregates.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In the experiments that follow, we aim to assess both
the efficiency of TiVEx compared to linear search and the
effectiveness of TiVEx under various parameter settings.

When designing and evaluating visualization systems for
view recommendations, it is important to consider the trade-
off between effectiveness and efficiency. Achieving highly
effective recommendations often requires computationally ex-
pensive operations, which in turn can lead to longer processing
times. Conversely, prioritizing efficiency may sacrifice some
level of effectiveness by relying on simpler or less compu-
tationally intensive approaches. Therefore, the ultimate goal
is to strike a balance between efficiency and effectiveness to
ensure the optimal performance of visualization system.

To measure the effectiveness achieved by our proposed
TiVEx scheme, we compare two lists: 1) the list of top-k
recommended views when S = 1, which represents the ground
truth obtained by exhaustive search, and 2) the list of top-
k recommended views when S > 1, which represents an
approximate solution that aims to reduce the search space.
In general, a commonly used measure for evaluating the
similarity between any two lists of ranked items (e.g., Z1 and
Z5) is the Rank-biased Overlap (RBO) [19]. In the following,
we first discuss the traditional RBO measure and subsequently
elaborate on its adaptation to the context of our problem.

The RBO score ranges from O to 1, where O indicates
no overlap between the two lists (i.e., dissimilar); however,
1 indicates a perfect overlap (i.e., identical) [19]. The RBO
measure takes into account both the order (importance) of the
items on the lists (e.g., item 1 is more important than item 2)
and the overlap between the items in a certain order £ (i.e.,
ci). In addition, it considers two factors, depth (d) and p-
value (p). The depth (d) determines the depth of the list up to
which the similarity is measured, while p-value (p) controls the
contribution of top-k items to the final value of RBO similarity
measure, 0 < p < 1. Higher values of p indicate a stronger
preference for the top-k items. The RBO formula is as follows:

) 1-—
RBO(Zy, Z,p, k) = xp"+(f) x>t)
d

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

In this context, the items in the two lists represent the top-k
recommended views with interesting patterns, where each view
is defined by start and end positions relative to the entire time
series (e.g., v; .), as mentioned previously. Specifically,
the views generated by our TiVEX technique represent pair-
wise subsequences when the shift length is S > 1. These views
are compared with the corresponding pairwise subsequences
generated when S = 1. Both ranked lists, Z; and Zs, are of
equal length, corresponding to the top-k views. However, com-
paring these two ranked lists solely using RBO measure poses
a challenge. The RBO measure evaluates the similarity or
dissimilarity between two views at a specific depth d, denoted
as ¢g = 1 for similarity and ¢4 = 0 for dissimilarity. In our
case, where we compare pairwise subsequences (views) from
different shift lengths (e.g., Ugi s andvg o), we

bl,el? bl el b2,e2'°b2,e2
encounter various scenarios. These scénarios include complete
similarity (by = by and e; = e3), complete difference
(e1 < bg), or partial overlap between the subsequences.
To address these different scenarios, we enhance the RBO
metric by incorporating the Jaccard similarity measure. The
Jaccard similarity measure is commonly used to compare
the similarity or dissimilarity between sets and considers the
overlap between the two sets [16], making it convenient for our
case. Thus, to calculate the intersection/overlap (c;) between
two pairwise subsequences for two different shift lengths

(e.g., v s and vy o) at a certain depth d, the
bl,el’°bl, b2,e2'°b2,e2
following formula is used:
—b 1
-0t (©6)
€y — bl +1

Here, e; and es denote the end positions, while b; and by
represent the start position of the views, and by < by. The
case where e; < by, the intersection (cgq) is 0 (i.e., no
overlap). When b; = by and e; = e, the intersection (cg)
is 1 (i.e., similar). By comparing the positions of the pairwise
subsequences, we can quantify the overlap and determine the
contribution of the pairwise subsequences (views) at depth d.
This enhanced RBO measure provides an effective means of
evaluating the quality of the resulting view recommendations,
enabling assessment of the similarity between the generated
views at S > 1 and the views obtained at S =1 (i.e., ground
truth).

Prior to evaluating TiVEX’s efficiency and comparing it to
linear search, we demonstrate how the view recommendation
uses the Euclidean distance to help offer insightful information
from the investigated dataset. We took a portion of the Google
Mobility dataset for the UAE. The dataset covered the period
from February 15, 2020, to May 24, 2020, and had a length
of L = 100, as in Fig. 2. By applying a sliding approach
with a subsequence length R = 20 and a shift length S =
8, a total of 11 views are extracted from the dataset. Each
view corresponds to a pairwise subsequence, and a key feature
of this derivation is the overlapping nature of these pairwise
subsequences. This underlying characteristic notably enriches
the subsequent analytical process.

The process of automated view recommendation is exe-
cuted as follows: First, each pairwise subsequence undergoes
normalization, followed by the application of TiVEx. This
involves the computation of the Euclidean distance for each
view, incorporating considerations for the savings through
the utilization of overlapping panes between the consecutive
views. Upon analyzing the results, the top-2 views exhibiting
the highest distances are identified as view 4 and view 3, as
shown in Fig. 2 (a) and (b), respectively. These two views
are promptly and automatically recommended to the analyst.
The insights offered by these views unveil interesting patterns
related to the behavior of people during the COVID-19 pan-
demic and the subsequent lockdown. In the early stages of
the pandemic, the workplace indicator exceeds the residential
indicator. However, after the lockdown, there is a notable shift,
with people staying at home rather than going to work. This
observation highlights the impact of the lockdown on mobility
patterns.

60

£ a0

S

o 20

o P p—

g o =

= -20

g -40 —e—workplaces

Z 60 residential

T 80

% -100
wQ'v &Qw & oS '\,"9'\, oS 1,1'0'»
s\u\w\'b\'»\x\ra\%\'\\e\e\u\

NN \° PG b\° NN (.,\ B

o r
= N

-

~

2

NORMALIZED
CHANGE IN MOBILITY

ocooo

oiN Mo

NORMALIZED

3/28/2020

CHANGE IN MOBILITY
e o900 v
O N & O 00 =

03/10/2020
03/12/2020
3/14/2020
3/16/2020
3/18/2020
3/20/2020
3/22/2020
3/24/2020
3/26/2020
03/04/2020
/06/2020
3/14/2020
3/16/2020
3/18/2020
3/20/2020

o
N
o
«
=~
P
<]
<
P
=]

03/02/2020
03/10/2020
03/12/2020

O
g
7
AN
<
©
N

b) Top-2 view

Fig. 2: View recommendation for a dataset of length L = 100,
subsequence length R = 20 and shift length S = 8.

Fig. 3 (a) provides insightful observations into the effec-
tiveness of different shift lengths by showcasing the value of
updated RBO with a fixed value of k = 3. Across all shift
lengths, there is a consistent trend of decreasing RBO values.
This decrease can be attributed to the increasing deviation
between the extracted views and the corresponding views with
a shift length of S = 1. It is noteworthy that the shift length
(S =1) yields perfect results with RBO value of 1.

Furthermore, Fig. 3 (b) extends the analysis by examining
the updated RBO measure for varying subsequence lengths,
while keeping k fixed at 3. The results demonstrate that
increasing the subsequence length leads to higher RBO values,
as the deviation of the extracted views decreases in comparison
to the baseline case with S = 1. For example, a subsequence
length of R = 70 yields a higher RBO value, whereas a length
of R = 20 results in the lowest RBO value.

In Fig. 4, we investigate the effect of different k values.

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

ol
hd o k=3

2

o QQ) ™~

3 \

ol

=

T © —
N —e

3 —e

o

a3

oo

2

=

RN

R
Shift length (S)
(a) Subsequence length R = 20.

e
A T k=3 e

o
‘6

%

-

/

2, @

=)

Rank-biased overlap (RBO)
o
R k4

2

o
‘0

AR R P @A
Subsequence length (R)

(b) Shift length S = 5.

Fig. 3: Measuring effectiveness using updated RBO measure
for k =3, L =500, and p = 0.9.

Consistent with the previous findings, we also observe a
decreasing trend of RBO values across all shift lengths as &
increases. This decline reflects the growing deviation between
the extracted views and the corresponding views with S = 1.
Despite the increase in distance at higher k values, the
importance of the extracted views in the RBO calculation and
their substantial differences from the ground truth case justify
the decrease in RBO values for all shift lengths.

Rank-biased overlap (RBO)

o
[+ 4ae
nuunuununnuon
oo

o
'
=)
N
b4
S
6
>

Fig. 4: Measuring effectiveness using updated RBO for differ-
ent k, L =500, R = 20, p = 0.9, and different shift lengths.

In this experiment, we evaluate the efficiency of TiVEx
compared to linear search. Efficiency is assessed by measuring
the number of operations required and the resulting savings
for both techniques. The cost comparison for different shift

—e— Linear Search
6§§5 —— TIVEx Technique
PR
[=
S &
8
g
S
w
5 ¢
3
E o
ElE
S
&
,v
@
T @ D 3 L]
Shift Length (S}
(@)
£
=]
E @B == TIVEx Technique
@
8. o
- &
Ehe
m
ng e
st
53
D
ES
2g
37 8
]
E
@
£
2 L A @ B £ 5
Shift Length (5)

Fig. 5: Comparing the cost of linear search and TiVEx for a
dataset of length L. = 500, R = 20, and varying S.

lengths S is illustrated in Fig. 5, with a focus on shift
lengths that yield an integer number of views to ensure a fair
comparison. The results shown in Fig. 5(a) clearly indicate
that linear search requires significantly more operations com-
pared to TiVEx. As the shift length increases, the number of
operations decreases for both linear search and TiVEx. This
decrease can be attributed to two factors: 1) as the shift length
increases, the number of generated views decreases, leading
to a reduction in the number of operations; and 2) TiVEx
experiences a decrease in the number of overlapping points
between successive subsequences as the shift length increases,
further contributing to the decrease in operations (i.e., combine
partial aggregates in the remaining part with each overlapping
aggregate).

However, the combination of subsequence length (R) and
shift length (S) affects the pane size, which in turn impacts
the total number of operations required. When the R and
S combination results in a small pane size, the number of
operations required to assemble the panes increases, leading
to slight irregularities observed in the cost of TiVEx (e.g.,
at § = 3 and S = 6). Despite the irregularities, TiVEx
still demonstrates a significant advantage over linear search
in terms of cost. Although the difference in cost between the
two techniques decreases as the shift length becomes larger,
there is still a substantial disparity, with TiVEx showcasing a
17% advantage over linear search at S = 16.

Fig. 5(b) presents valuable insights on the normalized
savings achieved by TiVEx, as compared to the number
of operations required in linear search, considering different
shift length values S. The figure reveals that TiVEx provides
substantial savings for small S. However, as S increases, the

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

§® | === Linear Search
—=— TIVEx Technique

Number of operations
%

R

P oL A H e b S &

9

Subsequence Length (R)
(a)
w
5
g ,\q»?b == TIVEx Technique
a
S
¥5
T o
[H
54 ¢
= m
@
gE e
:J
-
TP
o
K]
E o
2 L R I T

Subsequence Length (R}

(b)

Fig. 6: Comparing the cost of linear search and TiVEx for a
dataset of length L = 500, S = 5, and varying R.

savings decrease, indicating a reduction in the number of
overlapping points between successive subsequences. These
findings from Fig. 5 align with the analysis presented in
Section IV, confirming the advantages of TiVEx.

Similarly, the experiments are conducted considering differ-
ent subsequence length values, and the results are shown in
Fig. 6. Fig. 6 (a) demonstrates that linear search outperforms
TiVEx in terms of the number of operations required. Both
linear search and TiVEx exhibit an increasing trend as the
subsequence length grows. When the subsequence length
increases, each pairwise comparison between subsequences
becomes more computationally intensive. As the subsequence
length grows, the number of data points to compare within
each subsequence also increases, resulting in a larger number
of operations required for comparisons.

Fig. 6 (b) provides insights into the normalized savings
achieved by TiVEx when compared to the operations required
in linear search. The figure demonstrates that the normalized
savings increase as the subsequence length R grows, indicating
a higher number of overlapping points. This finding highlights
the efficiency of TiVEX in terms of saved operations, particu-
larly in scenarios with longer subsequence lengths and a larger
degree of overlap.

A careful examination of Fig. 3, 5(b), and 6(b) reveals
an important trend: using smaller shift lengths and larger
subsequence lengths leads to higher savings in terms of
operations and higher RBO values. This observation leads us
to the conclusion that striking a balance between efficiency and
effectiveness in the view recommendation process is achieved
by employing a small shift length and a large subsequence
length. These parameter settings allow for efficient computa-

tion while still producing recommendations that closely align
with the ground truth.
VI. CONCLUSIONS

In the realm of data analysis and exploration, obtaining the
most interesting visualizations is a crucial objective, yet it
often involves a laborious and time-consuming process. To
address this challenge, we propose an optimized technique
named TiVEx, which leverages computation sharing to enable
efficient visual analysis. By reducing the computational time
required for view recommendations, TiVEx streamlines the
exploration process. We also conduct a thorough investigation
into achieving the optimal trade-off between efficiency and
effectiveness in generating insightful visualizations. As future
work, we plan to explore additional optimization techniques,
such as pruning, to further enhance processing time.

VII. ACKNOWLEDGMENTS

This research is supported partially by UAE University
Strategic Research Program Grant (12R147). Additionally, we
thank Nishi Kochunni for her valuable feedback on this work.

REFERENCES

[1] https://www.google.com/covid19/mobility, accessed: 2023-05-14.

[2] Aghabozorgi, S., Shirkhorshidi, A. S., and Wah, T. Y. "Time-series
clustering—a decade review.” Information systems 53 (2015): 16-38.

[3] Benkabou, S. E., et al. "Unsupervised outlier detection for time series
by entropy and dynamic time warping.” KAIS 54.2 (2018): 463-486.

[4] Buono, P, et al. "Interactive pattern search in time series.” Visualization
and Data Analysis 5669 (2005): 175-186.

[5] Ding, R., et al. ”Quickinsights: Quick and automatic discovery of
insights from multi-dimensional data.”” MOD (2019).

[6] Sharaf, M. A, et al. "CovidLens: Visually Understanding the Covid-19
Indicators through the Lens of Mobility Data.” MDM (2022): 302-305.

[7]1 Ehsan, H., Sharaf, M. A., and Chrysanthis, P. K. “Efficient recommen-
dation of aggregate data visualizations.” TKDE, 30.2 (2017): 263-277.

[8] Gogolou, A., et al. "Comparing similarity perception in time series vi-
sualizations.” IEEE transactions on visualization and computer graphics
25.1 (2018): 523-533.

[9] Keogh, E., et al. "Finding the most unusual time series subsequence:

algorithms and applications.” Knowledge and Information Systems 11

(KAIS) (2007): 1-27.

Keogh, E., and Kasetty, S. ”On the need for time series data mining

benchmarks: a survey and empirical demonstration.” ACM SIGKDD

(2002).

Key, A., et al. ”Vizdeck: self-organizing dashboards for visual analytics.”

ACM SIGMOD (2012).

Krishnamurthy, S., Wu, C., and Franklin, M. ”On-the-fly sharing for

streamed aggregation.” ACM SIGMOD (2006).

Li, J., et al. ”No pane, no gain: efficient evaluation of sliding-window

aggregates over data streams.” ACM SIGMOD 34.1 (2005): 39-44.

Sharaf, M. A., Mafrur, R., and Zuccon, G. "Efficient Diversification for

Recommending Aggregate Data Visualizations.” IEEE Access (2023).

Rakthanmanon, T., et al. "Addressing big data time series: Mining

trillions of time series subsequences under dynamic time warping.” ACM

TKDD 7.3 (2013): 1-31.

Schiitze, H., Manning, C. D., and Raghavan, P. "Introduction to infor-

mation retrieval.” Cambridge University Press (2008).

Vartak, M., et al. ”Seedb: Efficient data-driven visualization recommen-

dations to support visual analytics.” VLDB 8.13 (2015): 2182.

Wang, X., et al. "Experimental comparison of representation methods

and distance measures for time series data.” Data Mining and Knowledge

Discovery 26 (2013): 275-309.

Webber, W., Moffat, A., and Zobel, J. ”A similarity measure for

indefinite rankings.” ACM TOIS 28.4 (2010): 1-38.

Weber, M., Alexa, M., and Miiller, W. ”Visualizing time-series on

spirals.” Infovis 1 (2001).

[10]

[11]
[12]
[13]
[14]

[15]

[16]
(171

(18]

[19]

[20]

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 30,2024 at 20:02:05 UTC from IEEE Xplore. Restrictions apply.

