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Abstract—The escalating global energy crisis and the increas-
ing CO2 emissions have necessitated the optimization of energy
efficiency. The proliferation of Internet of Things (IoTs) devices,
expected to reach 100 billion by 2030, contributed to this energy
crisis and subsequently to the global CO2 emissions increase. Con-
comitantly, climate and energy targets have paved the way for an
escalating adoption of solar photovoltaic power generation in resi-
dences. The IoT integration into home energy management systems
holds the potential to yield energy and peak demand savings. Opti-
mizing device planning to mitigate CO2 emissions poses significant
challenges due to the complexity of user-defined preferences and
consumption patterns. In this article, we propose an innovative IoT
data platform, coined Sustainable Energy Management Framework
(SEMF), which aims to balance the trade-off between the imported
energy from the grid, users’ comfort, and CO2 emissions. SEMF
incorporates a Green Planning evolutionary algorithm, coined
GreenCap+, to facilitate load shifting of IoT-enabled devices, taking
into consideration the integration of renewable energy sources,
multiple constraints, peak-demand times, and dynamic pricing.
Based on our experimental evaluation utilizing real-world data, our
prototype system has outperformed the state-of-the-art approach
by up to ≈29% reduction in imported energy, ≈35% increase
in self-consumption of renewable energy, and ≈34% decrease in
CO2 emissions, while maintaining a high level of user comfort
≈94%-99%.

Index Terms—Green planning, internet-of-things, load shifting,
renewable self-consumption, rule automation.

I. INTRODUCTION

ACCORDING to the European Commission Green Deal,1

it was decided to reduce net greenhouse gas emissions by
at least 55% by 2030, compared to 1990 levels, and become
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Fig. 1. An illustration of daily energy demand, solar energy production, and
device usage. Red dashed lines represent grid-sourced consumption, while green
dashed lines depict self-generated renewable energy utilization.

neutral by 2050. In [1], the survey covers the area of renewable
planning highlighting various challenges that arise during the
integration with the IoT infrastructure. Considering various en-
ergy sources utilized for power generation, including fossil fuels,
renewable energy, and nuclear power, the environmental impact
is commonly quantified in terms of kilograms of CO2 emitted
per kilowatt-hour (kWh) of energy produced. Home Energy
Management Systems (HEMS) are instrumental in integrating
Renewable Energy Sources (RES) by enabling flexible energy
demand, crucial for reducing CO2 emissions, particularly in the
context of distributed and weather-dependent RES (see Fig. 1).
The global count of residential IoT connected devices used in
HEMS is anticipated to reach 30.9 billion units by the year
2025,2 and later to 100 billion by 2030 [2].

Green Planning: encompasses computational methodologies
that strive to enhance environmental quality by implementing
load shifting strategies. An essential factor for managing en-
ergy consumption and mitigating CO2 emissions lies in the
widespread adoption of the IoT infrastructure utilizing open
communication protocols [3]. Therefore, the convergence of
energy usage and CO2 emissions governed by IoT infrastructure
can be achieved, by aligning both aspects within a unified
framework. Further, the self-consumption of RES holds notable
advantages over energy storage batteries, where approximately
17% of the energy is lost due to AC/DC conversion losses and
heat dissipation [4]. It embodies a decentralized in-situ strategy
that necessitates minimal infrastructure and predominantly re-
lies on intelligent planning algorithms. Empirical evidence has

2Statista, URL: https://tinyurl.com/mw74ku2h

2377-3782 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 18:21:52 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0003-1382-9021
https://orcid.org/0000-0003-1471-2167
https://orcid.org/0000-0001-5370-8692
https://orcid.org/0000-0001-7189-9816
https://orcid.org/0000-0002-7239-2387
mailto:sconst01@ucy.ac.cy
mailto:dzeina@ucy.ac.cy
mailto:costa.c@rinnoco.com
mailto:com.ca@frederick.ac.cy
mailto:panos@cs.pitt.edu
https://tinyurl.com/3hbypfum
https://tinyurl.com/mw74ku2h


CONSTANTINOU et al.: SUSTAINABLE ENERGY MANAGEMENT FRAMEWORK FOR SMART HOMES 71

demonstrated that this method yields more than a 70% reduction
in energy consumption within domestic households [1], [5].

In our prior publications [6], [7], we have introduced Energy
Planner (EP) and Green Planner (GP), integrated in a system
called IMCF+. Both, EP and GP , effectively utilize off-the-
shelf AI algorithms, namely hill climbing and simulated anneal-
ing, for their operations. IMCF+ emphasis lies on “long-term”
planning, enabling to compute comprehensive yearly plans by
performing less intricate daily computations. Furthermore, a
distinct algorithm has been developed called GreenCap3 [5],
[8], which refers to “daily” planning as it attempts to find the
best combination for allocating appliances during the day by
minimizing the imported energy from the grid. In this study, a
new extended version of our developed algorithm is introduced,
called GreenCap+, incorporated with a new heuristic that con-
siders peak demand and energy production times. GreenCap+

is integrated into an IoT framework, coined Sustainable Energy
Management Framework (SEMF).

To exemplify the problem’s complexity, let us demonstrate
a practical example for clarity. Consider solar radiation for 10
hours on a given day, thus, 10 x 60 minutes = 600 time slots
on the x-axis. A solar system on a household is usually about
10kWp at most, therefore, let us make the assumption that
peak production occurs around noon, as illustrated in Fig. 1.
Observing the solar production curve, it can be approximated
by two triangles of the following size: height = 10kWp / 1 kW
= 10 and base = 5x60 = 300 minutes, which forms a rectangle
(height x base) of 3000 cells to plan each day. The primary
challenge lies in populating these cells with device operations,
while simultaneously adhering to their respective maximum
energy bounds. For instance, the operation of a washing ma-
chine (i.e., 2-hour duration ≈1 kW) could be rescheduled in
a high production period (i.e., reserving ≈120/3000 cells) by
also avoiding peak demand times. The second challenge is the
optimization of device planning, while considering user-defined
preference rules. The majority of existing solutions encounter
difficulties related to convergence, primarily stemming from
their limitations in effectively managing a huge number of IoT
devices and handling complex multi-objective problems [1].

The main objective of SEMF revolves around its core module,
called GreenCap+, which acts as an IoT data manager tasked
with formulating a sustainable plan, while utilizing several in-
put data as shown in Fig. 2. The specific problem entails an
adaptation of the NP-hard Bin Packing problem [9], known
as the 2D packing. This classification implies the absence of
a polynomial time algorithm capable of delivering a swift and
efficient solution. In contrast, a Brute Force approach, involving
back-tracking, has the capacity to compute the optimal solution,
however, it demands a substantial amount of time and proves
to be infeasible on low-end computing nodes (i.e., Raspberry
Pi - 1.5 GHz CPU). To tackle the user comfort objective,
SEMF incorporates a cloud-hosted AI appliance profiling mod-
ule. The AI module analyzes the household IoT appliances’ en-
ergy consumption patterns and operational preferences, thereby

3GreenCap, URL: https://greencap.cs.ucy.ac.cy/

Fig. 2. Overview of the Sustainable Energy Management Framework (SEMF)
demonstrating involved technologies and the related input data.

generating a pool of recommendation rules, tailored to optimize
device scheduling.

SEMF: addresses the earlier mentioned challenges, with a
primary focus on reducing CO2 emissions and the reliance on
grid-supplied energy. Given the complex nature of the decision
space in the aforementioned problem, a Genetic Algorithm (GA)
emerges as the most suitable approach for obtaining a sub-
optimal solution. Employing an evolutionary algorithm enables
to effectively harness bio-inspired operators, such as mutation,
crossover, and selection. The integration of a GA with domain-
specific local search heuristics culminates in the development
of a Memetic Algorithm (MA). This hybridization yields notable
enhancements to user fitness and substantially augments conver-
gence by mitigating the risk of becoming trapped in local optima.
The MA proposed in this study, coined GreenCap+, has been
incorporated into our in-house developed pioneering SEMF plat-
form, and further integrated with the openHAB framework. The
experimental evaluation showcases that the proposed system
achieves up to 54% self-consumption of RES and an impressive
≈94% user comfort level. Additionally, it successfully reduces
≈36% of the energy imported from the grid and curtails CO2

emissions by ≈39%. In summary, the paper’s key contributions
follow:
� We present an upgraded version of [5] (i.e., utilizing a

new heuristic), coined GreenCap+, a Memetic Algorithm
(MA) that can efficiently manage user comfort and reduce
the imported energy from the grid, by considering CO2

emissions, high production and peak demand periods.
� We propose a novel and comprehensive IoT plat-

form, called Sustainable Energy Management Framework
(SEMF), designed and incorporated in openHAB system.

� We conducted an extensive experimental evaluation using
real and synthetic IoT datasets, consisting of peak electric-
ity demand and solar panel production measurements.

� We have developed a prototype system, illustrating the
efficacy of the system in a real-world scenario.

The remainder of the article is organized as follows:
Section II presents the related work and Section III the system
model with the problem formulation. Section IV describes the
proposed algorithms, where Section V outlines our complete
system architecture and its internal components. Our experi-
mental methodology and findings are presented in Section VI,
and the article is concluded in Section VII.
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II. RELATED WORK

Home Energy Management Systems (HEMS) enable energy
demand reduction by efficiently coordinating the operation of
smart appliances, while also enhancing user comfort through
energy management practices [10]. Through their sophisticated
functionalities, HEMS actively contribute to the mitigation of
climate change by supporting the efficient management and
optimization of energy consumption within households [11].
The global market for HEMS has witnessed substantial growth,
expanding from USD 864.2 million in 2015 to USD 3.15 billion
by the year 2022.4

Energy savings of up to 40% can be achieved using HVAC
system incentives and home automation intelligent apps. A
method introduced in [11], called Integer Linear Programming
for Smart Scheduling (ILPSS), enhances the duty cycle of HVAC
equipment, optimizing energy utilization while simultaneously
adhering to users’ comfort zone with regard to temperature.
Moreover, the authors in [12] addressed the issue of chiller
sequencing for minimizing HVAC electricity consumption in
building operations. A data-driven methodology is proposed for
runtime estimation of the chiller’s coefficient of performance
(COP), a computationally efficient COP prediction model, and
an edge-based chiller sequencing framework. Chen L. et al. [13],
introduced a model-based offline Reinforcement Learning (RL)
algorithm tailored for personalized HVAC systems, adept at
efficiently adapting to diverse occupants’ thermal preferences
with minimal feedback. Riekstin et al. [2], emphasized in miti-
gating residential electricity consumption and greenhouse gases
by employing a time-series prediction model. VALOS [10],
is an online scheduling algorithm for HEMS without reliance
on predictive elements. It demonstrates a high probability of
optimal purchasing timing with minimal computational costs.

In study [14], a symbolic aggregate approximation method
and K-Means clustering were used on load data to characterize
and estimate users’ load patterns based on demographic and
socioeconomic information. Additionally, a deep neural network
is developed to better capture the correlation between users’
consumption habits. The authors in [15], introduce a Day-
Ahead Carbon Forecasting system (DACF) that utilizes machine
learning to predict the carbon intensity of supplied electricity.
DACF incorporates production forecasts for various electricity-
generating sources and combines them with the carbon-emission
rate of each source. An Economic Model Predictive Control
(EMPC) framework is designed in [16] to facilitate demand
response for enhancing power grid stability while ensuring occu-
pants’ thermal satisfaction in buildings. The controller addresses
conflicting objectives by simultaneously optimizing grid stabil-
ity, measured by grid costs tied to dynamic electricity prices,
and occupants’ thermal satisfaction, represented by a reference
indoor temperature.

The authors in [17] implemented a system for monitoring
individual photovoltaic (PV) modules using power line commu-
nication (PLC) compliant with HomePlug. The system enables
users to access detailed information about the performance

4MarketsandMarkets, URL: https://tinyurl.com/mmv28dzn

of their PV system, identifying abnormalities, and promoting
effective energy management. A smart HEMS can be designed
to optimize the use of home energy resources in environments
with a high penetration of PV systems by utilizing a Natural
Aggregation Algorithm (NAA) [18].

The aforementioned solutions face several computational
challenges, including the complexity of solving multi-objective
optimization problems, which demand significant computational
resources for real-time decision-making. Additionally, the need
for adaptability to accommodate users’ preferences and en-
vironmental changes, while also considering RES integration,
increases computational demands while necessitating advanced
prediction and scheduling algorithms. Further, ensuring the
scalability of computational models to suit diverse energy pro-
files across multiple residences is crucial.

III. SYSTEM MODEL & PROBLEM FORMULATION

In this section, the system model is defined, the problem
formulation is articulated, and the main terminology adopted
throughout this manuscript is introduced.

A. System Model

Let us assume a house with several residents equipped with
a net-metering PV system. The analysis revolves around the
household’s numerous shiftable smart appliances denoted as D,
including electric heaters, washing machine, air conditioners,
lights, heat pump, etc. Certain appliances (e.g., refrigerator)
are excluded from consideration in our analysis due to their
high importance, as they necessitate continuous operation and
should always remain turned on. Consequently, the occupants
can utilize the PV power generated within the household (i.e.,
Energy Production Table EPT), thus, only drawing power from
the grid when necessary, without storing any power surplus (i.e.,
this work does not consider energy storage technologies). We as-
sume the building is equipped with a Home Energy Management
System (HEMS), such as SEMF, to facilitate efficient energy
management and distribution within the household. The system
will efficiently process the relevant result-set obtained from the
database (i.e., Energy Consumption Table ECT of IoT opera-
tions). This data serves as input to a planning algorithm, such
as GreenCap+, enabling the platform to intelligently schedule
smart appliances at different times or distribute their operation
over an extended period. The primary objective of this study is to
optimize an objective function that strikes a balanced trade-off
among energy consumption, CO2 emissions, and user comfort.
To achieve this, intelligent planning techniques are employed
that strategically schedule the operation of appliances during
high production and off-peak periods (i.e., Grid Demand Table
GDT). The aim is to minimize energy usage and CO2 emissions
while ensuring user comfort remains paramount.

We consider a residence equipped with D smart devices that
require sub-optimal planning. Let C represent the hourly en-
ergy consumption planning vector, where the elements (Cd, d ∈
[1, D]) denote the energy consumption of various devices within
the household. Further, let Z denote the hourly CO2 emission,
the elements of which (Zd, d ∈ [1, D]) define the CO2 emissions
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of various devices in the residential building. Each smart device
in the system is characterized by its upper bound, denoted byUd,
and lower bound, denoted by Ld, which dictate the permissible
power consumption levels for the respective devices.

The solar energy production at a certain time is defined with
P t. We also assume that a user has identified a set of preference
rules PRd

i for each device d = 1, . . . , D, and N = |PR|. N
is recorded with a meta-service, like the SEMF platform we
propose in this work, and stored in a database table. GreenCap+

undertakes the periodic execution of these rules on IoT devices.
Each PR in the database is contingent upon a designated input
context, which encompasses critical factors such as location,
peak-demand hours, and user-configured operation hours. By
incorporating PR and considering factors such as energy costs,
Residential Consumption Record (RCR), and CO2 emissions,
SEMF ensures the generation of sustainable energy management
plans.

B. Problem Formulation

The efficacy of the proposed technique is gauged by evaluat-
ing two key metrics: (i) the Imported Energy, which quantifies
the amount of energy drawn from the grid; and (ii) the User Com-
fort, which assesses the level of satisfaction and convenience
experienced by the users in the context of energy consumption
and appliance scheduling.
� Imported Energy (IE): refers to the energy sourced from

the grid to enable appliances D to fulfill the predeter-
mined operational requirements set by the residents at a
specific time-slot t. The equation is designed to determine
a combination of IoT operations that require the minimum
IE supplied from the grid. It can be computed as the
difference between the energy consumption Ci and the
power generation P during time-slot t, given by:

IEt = min

D∑
i=1

(Ct
i − P t)/t = 1, . . .24 (1)

� User Comfort (UC): is determined by the summation of all
executed rules that have been configured by the user. The
equation is designed to determine the best allocation of
preferences that results in maximum UC. The complete set
of preference rules is denoted as N , and each individual
rule PRi takes the value of 1 if it is successfully adapted
and subsequently executed, otherwise, it is assigned a value
of 0:

UC = max

N∑
i=1

(PRi)

{
1, if PRi isexecuted
0, otherwise

(2)

The objective function is evaluated as a weighted sum func-
tion, where w1 is associated to the IE objective, and w2 to the
UC objective. Both objectives contribute equally, as we assign
equal distribution (50%/50%) to w1 and w2, reflecting their
equivalent significance in achieving the overall aim. The sum of
w1 andw2 equals 100%, indicating the trade-off between IE and
UC in the optimization approach. These weights determine the
relative importance of each objective in the overall optimization
process, allowing us to strike an appropriate balance between

reducing energy importation from the grid and maximizing user
comfort.

Total = w1 ∗ IE + w2 ∗ UC (3)

Additionally, the proposed approach is also discussed with re-
spect to the following:
� Self-consumed Energy (SE): pertains to the energy that

a household consumes from its own renewable energy
generation installations (e.g., PV panels or wind turbines).

� CO2 Emission (Zi(IEi, k)): represents the CO2 emission
attributed to the operation of device d, contingent upon the
imported energy consumption IEi and the CO2 emission
intensity k characteristic of a specific country.

� CPU Execution Time (Ft): denotes the processing duration
required by the system to execute the optimization fitness
function and compute the desired output.

C. Baseline Approaches

In this section, we present an overview of the baseline methods
employed for optimizing IE, UC, and Ft.
� Standard Method: consists of the execution phase, where

the operational boundaries of devices are identified and
recorded, laying the foundation for subsequent optimiza-
tion tuning. This approach disregards the IE metric and
instead prioritizes achieving maximum levels of UC.

� Brute Force Method: aims to discover an optimal solution
with the minimum IE and least CO2 emissions, hence,
exploit SE. This approach employs an exhaustive search
(i.e., Depth-First Search), to meticulously explore the best
timing for devices’ operation planning while adhering to
the maximum consumption bounds of each device. The
UC levels are relatively low, and the time consuming Ft

makes the computationally intensive method impractical
for real-time applications.

� Random Method: adopts a stochastic approach by ran-
domly shifting the operation of devices throughout the day.
The number of iterations performed in this random process
can be specified as an input parameter. In a similar fashion
to the previous case, both methods generate better results
with respect to IE than the Standard approach, by sacrific-
ing UC levels. However, Random Ft is considerably faster
than Brute Force.

� GreenCap: is the prior version of our proposed algorithm,
which represents a traditional GA algorithm.

IV. THE GREENCAP+ ALGORITHM

This section provides a comprehensive overview of our algo-
rithmic methodology, accompanied by the local search heuristics
(i.e., Algorithms 1 and 2) proposed in our research.

A. Overview

The research objective of this study is to devise an intelligent
technique that empowers users to discover a sustainable allo-
cation plan for operating a group of smart appliances, while
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considering a pool of preference rules and a tentative peak-
demand history. The core aim is to reduce CO2 emissions and
the dependence on imported energy from the grid.

The GreenCap+ algorithm is a novel combination of our
developed Memetic Algorithm (MA) along with various local
search heuristics.

The extended version of our work (i.e., GreenCap+) com-
pared to its prior iteration [5], introduces a new developed heuris-
tic named Energy Optimization, which collaboratively operates
with Comfort Optimization to efficiently schedule the operation
of appliances during off-peak hours and high production periods,
boosting this way the system’s performance.

The MA builds upon the principles of a traditional genetic al-
gorithm and incorporates a search technique aimed at enhancing
user fitness while maintaining a diverse population to mitigate
premature convergence. Several distinct approaches have been
employed in prior research to address scheduling and planning
challenges, such as Linear Programming, Machine Learning,
and Dynamic Programming [19], [20], [21], [22]. However,
these techniques encounter convergence difficulties and often
struggle to handle a large number of devices while concurrently
optimizing energy consumption, user comfort, costs, and CO2

emissions. In contrast, MA typically outperforms traditional GA
due to its hybridization with local search heuristics for additional
optimization.

B. GreenCap+ Memetic Algorithm (MA)

The GreenCap+ MA adopts an optimization approach in-
spired by the natural genetic process observed in living organ-
isms. At the beginning, a chromosome represents a residential
energy consumption pattern including the status of the smart
appliances (ON/OFF), each time-slot’s energy consumption, and
the length of chromosomes showing the total number of IoT ap-
pliances. Thereafter, a population is generated, which expresses
a pool of possible solutions presenting each appliance’s energy
consumption state in a particular time-slot. For every possible
solution, the fitness function is evaluated based on the problem’s
objective metrics, aiming to reduce IE and increase UC levels,
while considering the Energy Consumption Table (ECT), the
Energy Production Table (EPT), and the Grid Demand Table
(GDT). Consequently, this contributes to environmental sustain-
ability by reducing CO2 emissions and increasing the utilization
of renewable energy.

During each iteration, the algorithm generates a new popu-
lation by applying the genetic operators, crossover and muta-
tion. Crossover involves combining two parent solutions (chro-
mosomes) to create a new offspring O solution, based on a
configured probability. By exchanging segments of information
between the parents, the crossover operation generates diverse
and potentially better solutions that inherit desirable traits from
both parents. Mutation occurs to introduce randomness into the
offspring population, which helps avoid repetition and promote
diversity within the population. Next, the operations of the two
inspired local search functions follow, coined Comfort Optimiza-
tion and Energy Optimization heuristics, which support the al-
gorithm’s precision and efficiency. Upon the completion of both

Algorithm 1: ComfortOptimization: Preserves Con-
sumption to its Original State.

Input: ECT : Energy Consumption Table (O1 & O2);
RCR: Residential Consumption History Record; Pmax:
Max power load (max bound) per appliance

Output: An energy plan solution ECT∗
1: COH(ECTO1, ECTO2, RCR) � Comfort

Optimization Heuristic
2: For each (day in ECT ) � day: iterates daily

through year
3: While (h = 0;h < 24) do � h: iterates hourly

through a day
4: �cd[h]← �cd[h] + consumptionPerDevice(h)
5: sp[h]← sortHourlyProduction(h) � sorts

production
6: EndWhile
7: If (cd < dayRCR) then � compares consumption

plans
8: a← allocate(sp, cd, Pmax) � allocates

operations
9: else
10: d← deallocate(sp, cd, Pmax) � deallocates

operations
11: return (ECT ∗) � returns new energy consumption

plan

crossover, mutation, and heuristic operations, the GreenCap+

algorithm generates a new population of candidate solutions.
The fitness of this new population is then compared and evalu-
ated against the fitness of the previous population. The fitness
evaluation process involves assessing each solution’s quality
based on the optimization objectives, which include reducing
imported energy, increasing user comfort levels, and considering
energy production and grid demand trends. By evaluating the
fitness of the new population, the algorithm identifies potential
improvements and determines whether the solutions have effec-
tively evolved.

Furthermore, the GreenCap+ algorithm incorporates users’
preferences (i.e., user comfort UC) into the fitness function cal-
culation. Users can configure their preference rules PR through
the app or web portal of the proposed SEMF system, defining
their desired IoT configurations. Each successfully adapted rule
is regarded as a successfully executed action, while not adapted
rules are assigned a proportional error cost based on the total set
of PR.

C. Comfort Optimization Heuristic

The proposed local search heuristic, named Comfort Opti-
mization, is designed to maintain the daily total energy consump-
tion at its original level, utilizing the historical records of users’
RCR. This approach addresses potential fluctuations that might
arise as a result of the MA procedures. If the configured set-
tings of PR conflict with the Residential Consumption History
Record (RCR), the system gives precedence to users’ comfort
by adjusting the corresponding preference rules. The algorithm

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 18:21:52 UTC from IEEE Xplore.  Restrictions apply. 



CONSTANTINOU et al.: SUSTAINABLE ENERGY MANAGEMENT FRAMEWORK FOR SMART HOMES 75

Algorithm 2: EnergyOptimization: Avoids Planning
During Peak Hours.

Input: ECT : Energy Consumption Table; GDT : Grid
Demand Table

Output: An energy plan solution ECT
1: EOH(ECTO3, GDT ) � Energy Optimization

Heuristic
2: For each (day in GDT ) � day: iterates daily

through year
3: While (h = 0;h < 24) do � h: iterates hourly

through a day
4: ph[h]← findPeakHours(h) � n peak

demand hours
5: nph[h]← findNonPeakHours(h) � n

non-peak demand
6: pp[h]← findPeakProductionHours(h) � n

peak production
7: EndWhile
8: If (pp �= ph) then � If ph does not fall into pp
9: ra← reallocateAppliances(nph, pp)
10: ia← fitnessFunction(dayECT ) � calculates

ia fitness
11: na← fitnessFunction(dayra) � calculates

na fitness
12: If (ia > na) then � compares allocation results
13: return (na) � returns new allocation as

planning solution
14: else
15: return (ia) � returns initial allocation as

planning solution

computes the cumulative daily energy consumption for each in-
dividual IoT device and arranges the hours of energy production
in order (see lines 4-5 of Algorithm 1). Then, the consumption
of the generated plan is compared with the historical record
RCR of the devices. When the consumption for the day is lower
than the corresponding RCR level, an assignment of operations
(activation) to the respective devices takes place. This procedure,
shown in line 8, considers the upperUd and lowerLd power load
limits applicable to each device, as well as the hours of peak
energy production. Conversely, if the calculated consumption
surpasses the corresponding RCR value, the heuristic disengages
(deactivates) the relevant devices (i.e., indicated in line 10). The
objective of this function is to balance and harmonize energy
consumption levels in scenarios where there is an excessive
activation or deactivation of devices. Hence, this adaptation will
maintain a high level of comfort for users.

D. Energy Optimization Heuristic

The second proposed local search heuristic, coined Energy
Optimization, is responsible to shift devices’ consumption,
while considering peak production times, from a provided
number of peak demand hours to non-peak demand hours, as
calculated per day in the data flow of the total energy network

Fig. 3. The GreenCap+ is liable to find a sustainable plan for the operation of
IoT appliances by only utilizing a Preference Rules (PR) table, a Residential
Consumption Record (RCR) history, and a weather forecast. Each IoT device
is represented with a letter in the chromosomes stack of the proposed MA, and
their state is denoted with 1 = ON or 0 = OFF.

dataset utilized. In case peak demand hours do not fall within
production times, a reallocation of devices occurs, as indicated in
lines 8 and 9 of Algorithm 2. Next, both results, from reallocation
and initial allocation, are compared using the fitness function
as shown in lines 10–12. If the result after reallocation shows
that less imported energy is used then the algorithm keeps that
solution, otherwise, it is discarded. The goal of this function
is to exploit Demand Response, i.e. shifts energy consumption
from peak hours where the cost of electricity imported from
the power grid is higher compared to non-peak hours where the
cost is much lower. In this manner, there is an opportunity for
consumers to receive financial incentives when they reduce or
shift energy usage during peak load times, and also minimize
CO2 emissions.

Case scenario: A user configures five comfort rules in the
following simplified case scenario at the PR table for a house
of three rooms. Various input information from the residence’s
sensors along with certain web services (e.g., peak-demand
hours, high energy production times) are sent to GreenCap+.
The initial operation of GreenCap+ is to convert PR to a binary
vector, where each vector’s position represents a preference
rule in PR (see Fig. 3). Then, it calculates the approximate
daily consumption of each appliance based on the Residential
Consumption History Record (RCR). This calculation supports
Comfort Optimization heuristic, which is incorporated in the
system, to balance the energy consumption by avoiding turning
on/off too many devices that could also affect the users’ ex-
perience. A population function randomly generates a solution
s =< 0, 1, 1, 0, 1 >, meaning that preference rules 2, 3, and 5
will be triggered at a specific time period, thus, 1 and 4 will
be discarded. The solution then is evaluated using the fitness
function with respect to the imported energy from the grid
and user comfort. Further, a new solution is generated by the
Energy Optimization heuristic s∗ =< 0, 0, 1, 0, 1 >, liable to
avoid the allocation of devices during peak demand times by
swapping operations to non-peak hours, while also considering
high production periods. Both solutions are compared using
the evaluation metrics and only the best is forwarded to the
next generation. The procedure stops when the full cycle of
generations is completed.
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E. Performance Analysis

We analytically derive the performance of GreenCap+ with
respect to the estimated user comfort UC and CO2 emission Z,
which are correlated with the imported energy IE. We adopt
a worst-case analysis as it provides a bound for all input. Our
experiments in Section VI, show that under real datasets our
approach performs more efficiently than the projected worst
case. The analysis is based on our system model and ignores
any energy not directly associated with the preference rules.

Lemma 1: GreenCap+approach has a user comfort ofFUC =
1
n

∑D
i=1

∑
j UCj(PRi), j = 1, . . . , n, where n > 0 is the num-

ber of preference rules that will be executed.
Proof: The algorithm will select at least n > 0 preference

rules to be executed. In an unrealistic case scenario and for a
user comfort equal to zero, GreenCap+ will not execute any
PR, meaning no device will be turned on, providing FUC = 0.
However, considering a realistic worst case scenario, our algo-
rithm will perform like the Random approach since the notion of
infinite time is not available, thus, some PRi could be triggered
by turning on a device with a minimum energy consumption. On
the other hand, the Brute-Force approach by greedily executing
all preference rules will offer a FUC = 1.

Lemma 2: GreenCap+approach has a CO2 emission ofFZ =
1
n

∑D
i=1

∑
j Zj(IEj(PRi), z), j = 1, . . . , n, where n ≤ N is

the number of preference rules that will be executed, and z the
CO2 emission of a device.

Proof: Similarly to Lemma 1, the algorithm will select at
most n ≤ N preference rules to be executed. In the worst case
scenario and assuming that all preference rules will be satisfied,
GreenCap+ will act as the Standard approach providing FZ =
1. On the other hand in an unrealistic scenario, not executing any
PRi, meaning no device will be turned on, will provideFZ = 0.
However, in a best case scenario considering a realistic setting,
our algorithm will act like the Brute-Force approach, since it will
exhaustively search the entire space to find an optimal solution
minimizing the imported energy, and consequently reducing
CO2 emissions.

V. THE SUSTAINABLE ENERGY MANAGEMENT FRAMEWORK

(SEMF)

This section provides an overview of the SEMF system archi-
tecture, which consists of four layers: (i) Storage Layer; (ii) Net-
work Layer; (iii) Processing Layer; and (iv) Application Layer.
The Storage Layer comprises several components, including a
relational database (i.e., MariaDB), a file system, and a cloud
storage such as those offered by Google or Azure. The Network
Layer consists of a custom main Control Unit (CU) functioning
as a smart residential management application, which allows the
system to seamlessly integrate with either open Home Automa-
tion Bus (openHAB), Domoticz, or HomeAssistant. The IoT
device connectivity is achieved through the industry-standard
EEBUS, which offers a robust foundation for efficient com-
munication and control. The Processing Layer is composed
of the GreenCap+ Controller, encompassing the entire energy
management logic, and the “AI appliance profiling”, a module
for analyzing energy consumption patterns and producing rec-
ommendation PR. The AI component is hosted in the cloud

and employs a linear regression technique developed in Python.
The Application Layer involved the utilization of the Laravel
framework for the development of the Graphical User Interface
(GUI) and the Application Programming Interface (API), in con-
junction with the Linux crontab daemon. GUI is integrated into
the web portal and mobile application of openHAB, enabling
efficient control of IoT appliances and automated management
of sustainability-aware preferences. The following paragraphs
analyze the core elements of the SEMF system:

Control Unit (CU ): is a Java-based system installed on a
device, such as a Raspberry Pi, functioning within a user’s
localized network.

This design choice underscores the commitment to develop-
ing a system that is not only technologically advanced but also
has low deployment cost due to low computational requirements
(i.e., Raspberry Pi).

To manage IoT devices based on user-configured preference
rules, the CU will establish direct communication with them.
Typically, once the users download the mobile application, they
will gain interactive control over their appliances through the
CU . Considering the design of the CU , one can extend frame-
works like Domoticz, HomeAssistant, or openHAB, all of which
are open-source home automation software platforms offering
an extensive ecosystem of bridges. These bridges enable direct
remote or local communication with devices. This approach
offers the benefit of achieving compatibility with the IoT market,
addressing the substantial challenge of IoT integration.

GreenCap+ Controller: serves as an augmentative application
to theCU , devised to encompass the formulation of the memetic
algorithm in conjunction with the GUI and essential storage
mechanisms. Its purpose is to facilitate users in customizing
their preferences PR, ultimately achieving an energy-aware
planning solution. The user-defined settings, stored within a
local relational MariaDB database, are passed as parameters in
the GreenCap+ algorithm, constructed as a JAVA module. Users
input information into the database via the mobile application,
which has been adjusted to integrate the configuration of PR
through a web-based GUI.

AI appliance profiling module: constitutes a pivotal aspect of
the system architecture, contributing to enhanced user comfort.
Hosted within the cloud, the AI appliance profiling module is a
sophisticated component that employs a linear regression tech-
nique [23]. Written in Python, this module scrutinizes residents’
energy consumption patterns and operational preferences of
their IoT appliances. It then generates a comprehensive array of
recommendation rules, meticulously tailored to optimize energy
usage according to each user’s distinct comfort requirements.
Scikit-learn has been utilized, a robust machine learning library,
which provides a comprehensive suite of tools for data analysis.
Through continual learning and adaptation, the AI component
refines its recommendations over time, ensuring alignment with
users’ evolving needs.

The AI appliance profiling component resides on a cloud
server side, while eachCU (i.e., each residential house) acts as a
client. When considering the technical intricacies, the AI-based
module leverages consumption patterns (i.e., time series data)
and IoT device information as input parameters. These data
representing individual residential houses’ consumption habits,
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Fig. 4. GreenCap+ mobile app: Interfaces displaying IoT appliances and their
operational mode, PRs, energy consumption and performance results.

are processed separately without sharing raw data centrally. Each
CU client, collects and sends energy consumption behaviors to
the cloud, where the processed data are then utilized to generate
recommendation rules that optimize each client’s comfort. The
AI-generated PRs encapsulate valuable insights extracted from
the aggregated data, securing sensitive information. Users can
adapt the recommended preferences or discard them and add
their own customized rules.

Graphical User Interface (GUI): developed in Laravel MVC
framework, utilizing JavaScript, and HTML. The GUI is orches-
trated by the NGINX web server, which is compatible with Rasp-
berry Pi. The web-based interface is composed of the PR portal
and the presentation of results stemming from the GreenCap+

sustainability-aware process. The PR portal facilitates users in
configuring their IoT preference settings for specific date-time
slots (refer to Fig. 4). Retrieving data concerning the status of
openHAB IoT appliances is accomplished through the utiliza-
tion of a RESTful API service. An Indoor Navigation Service
has been also incorporated into our platform, called Anyplace,5

to enhance indoor mapping of IoT functionalities and venue
construction.

Managerial Implications: SEMF presents substantial oppor-
tunities for public service organizations to enhance energy effi-
ciency efforts. By disseminating information about its benefits
and functionalities, alongside collaboration with stakeholders
and offering incentives, such as grants or subsidies, adoption
can be encouraged. Furthermore, its applicability extends to
other entities like university campuses, municipal facilities, or
factories, where energy-saving measures are crucial for sustain-
ability goals. Moreover, the system could participate in demand
response events initiated by utilities or grid operators. By in-
telligently managing connected devices, it could help reduce
overall electricity demand during peak periods, contributing to
grid stability and reliability.

VI. EXPERIMENTAL METHODOLOGY & EVALUATION

This section provides an assessment of our proposed system.
We commence with an outline of the experimental methodology

5Anyplace, URL: https://anyplace.cs.ucy.ac.cy/

and setup, subsequently detailing the series of experiments
conducted to underscore the advantages of GreenCap+.

A. Methodology

This section furnishes information considering the metrics
utilized, the algorithms and datasets employed for the evaluation
of the proposed methodology’s performance.

Testbed: The evaluation process is conducted on our lab-
oratory VMware private datacenter. The computational node
employed is configured with a Ubuntu 18.04 server image, 4 GB
of RAM and powered by 4 virtual CPUs, operating at 2.40 GHz.
It leverages high-speed of 10 K RPM RAID-5 LSILogic SCSI
disks, formatted with VMFS 6.

Datasets: We have embraced a trace-driven experimental
approach, characterized by the utilization of real datasets as
inputs into our simulator. The first two datasets were retrieved
by the Laboratory for Advanced System Software (LASS)
at the University of Massachusetts Amherst, as part of the
research project titled “Optimizing Energy Consumption in
Smart Homes”. Specifically, measurements were gathered for
the energy consumption of diverse appliances within residential
settings (such as ovens, heat pumps, washing machines, etc.),
accompanied by data related to weather conditions and solar en-
ergy production. An additional dataset was employed to discern
the hours of peak energy demand, sourced from the U.S. Energy
Information Administration, which gauges the aggregate energy
transmission directed towards the energy grid.

Moreover, a thorough analysis was conducted based on the
events and energy consumption patterns within these datasets to
gain insights into user behavior, facilitating the understanding
and generation of realistic preference rules.
� Residential Energy-Consumption Dataset [FLAT]: The

408 MB dataset encompasses 527,040 data points per
minute of a flat/apartment, spanning from January 1st,
2016 to December 31st, 2016. It consists of 20 columns,
with the first column indicating the date and time, while
the ensuing 19 columns encapsulate energy consumption
measurements (in kilowatt-hours) for 19 distinct household
appliances.

� Energy-Production Dataset: The dataset employed to
model energy generation through a PV system encom-
passes 65,741 measurements per hour spanning from De-
cember 30th, 2010 to December 16th, 2017. It comprises
two columns; the first one denotes the timestamp, while
the second quantifies the energy production. The PV sys-
tem’s capacity is 5.5 kWp, thereby signifying its maximum
hourly output potential as 5.5 kWh.

� Peak-Demand Dataset: The dataset employed to iden-
tify periods of peak energy consumption encompasses a
volume of 63.1 MB and 579,746 hourly measurements.
The data was collected by numerous energy organizations
across all states of the US from January 1st, 2016 to
December 31st, 2016.

To assess the scalability of our propositions for buildings
of different scales, we have generated two realistic datasets by
expanding the above onto various residential building sizes. The
resulting datasets are the following:
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Fig. 5. Prototype Evaluation: Weekly system evaluation in terms of UC, SE and IE, based on the Standard method performance.

� Residential Energy-Consumption Dataset [HOUSE]: A
dataset for a three-bedroom house was created by replicat-
ing and blending the readings, then scaling up the original
dataset by a factor of four. The number of IoT devices,
energy consumption, and preferences is proportionally in-
creased following realistic patterns as we have a larger
number of residents and requirements. The PV system’s
capacity for the house scenario is 10 kWp.

� Residential Energy-Consumption Dataset [DORMS]: A
dataset for a university campus (dormitories) was also syn-
thetically generated from the original datasets. It comprises
50 dormitory apartments, each containing two bedrooms.
As the number of residents increases, the quantity of IoT
devices, energy consumption, and preferences is corre-
spondingly augmented. The PV system’s capacity for the
dorms scenario is 50 kWp.

Metrics: The effectiveness of the methodology in attaining
the previously introduced research objective is assessed through
two key performance indicators, namely, Imported Energy and
User Comfort, as expounded in Section III. The mean and
standard deviation values derived from the results are depicted
with error bars in all following experimental analyses, based on
ten iterations for each scenario. Experimental series C, D, E, and
F were conducted over the course of a year.

B. Prototype System Evaluation

In this series of experiments, we assess the performance of
the proposed GreenCap+ algorithm integrated into our SEMF
prototype system in comparison to the Green Planner algorithm
embedded in the IMCF+ framework.

According to our prior work [6], Green Planner outperformed
IFTTT ,6 which was state-of-the-art, by 18% increased user
comfort, 30% less energy consumption, and 40% reduction in
CO2 emissions.

We deployed a live instance of our real prototype system for
a household of three individuals over the course of one week.
Each user specified certain preference rules through a mobile
app that interacts with the management system. We utilize data
from the OpenWeatherMap,7 a service that provides real-time
weather information for various locations around the world, to
measure environmental parameters (i.e., sunlight, temperature).

6IFTTT - Automate business & home, URL: https://ifttt.com/
7OpenWeatherMap, URL: https://openweathermap.org/

The evaluation is based on self-consumption, user comfort, and
CO2 emissions, as illustrated in Fig. 5. The Green Planner
algorithm achieved ≈ 96.5% user comfort, around 51 kg of
CO2 emissions, ≈ 17 kWh of self-consumption, and roughly
115 kWh imported from the grid. The GreenCap+ algorithm
yielded a user comfort rate of ≈ 99%, CO2 emissions of about
32 kg, self-consumption totaling around 61 kWh, and an import
of≈ 71 kWh from the grid. Evidently, the GreenCap+ algorithm
delivers notably better results concerning self-consumption and
CO2 emissions. Moreover, the user comfort levels achieved by
both methods are comparably close, although the GreenCap+

approach demands slightly more execution time.

C. Performance Evaluation

In the subsequent set of experiments, we assess the effi-
cacy performance of the GreenCap+ algorithm in comparison
to all other methods, with respect to imported energy, self-
consumption of electricity, and user comfort levels, as indicated
in Fig. 6. The Standard approach provides a breakdown of
the data extracted from the original datasets according to the
metrics mentioned earlier. It reveals a 78% imported energy
from the grid, a self-consumption of 21%, and the best level
of user comfort achieved. The outcome of the Random method
exhibits a relatively diminished user comfort level ≈35% and a
self-consumption rate≈38%, while revealing a higher imported
energy rate from the grid at ≈61%. In terms of self-consumed
energy, the best outcome was achieved by the Brute Force
algorithm at approximately 67% (≈ 6248 kWh), accompanied
by a relatively low imported energy rate from the grid of about
32% (≈ 3011 kWh), due to its capability to provide an optimal
planning solution. However, the user comfort obtained by Brute
Force ranges at only ≈ 40%, being the second lowest among
the other evaluated approaches. As evident from the results, the
GreenCap+ algorithm showcased the best overall performance
and also outperformed its prior version [5], which represents
a traditional GA algorithm, presenting an exceptional user
comfort level of approximately 94%. It achieved a remarkable
self-consumption rate of about 54% (≈ 4980 kWh) and managed
imported energy at around 43-47% (≈ 4440 kWh).

The Standard approach demonstrates the fastest execution
time due to its straightforward error calculation without consid-
ering energy production hours or peak demand times. Following
closely is the Random approach, which features a relatively swift
execution owing to its absence of time-consuming processes.
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Fig. 6. Performance Evaluation: Evaluation in terms of IE, SE, UC, and Ft, based on the Standard method performance.

Fig. 7. CO2 Evaluation: Evaluation with respect to CO2 emissions in different countries/regions based on their kg CO2 per kWh intensity factor. The figures
next to the regions denote the number of countries within each continent.

Fig. 8. Initialization Evaluation: Evaluation of the GreenCap+ algorithm
in terms of the IE (w1) from the grid based and the UC (w2) on various
initialization techniques, based on the Standard method performance.

The GreenCap+ algorithm achieves a reasonable execution time
while effectively balancing all the objectives. The Brute Force
algorithm exhibits the worst execution time, as anticipated, due
to its exhaustive search through all possible solution combina-
tions.

D. CO2 Evaluation

In the third phase of our experimental series, we assess
the algorithms’ performance in terms of CO2 emissions.
Recognizing that energy originates from diverse sources such
as fossil fuels, renewables, and nuclear, the environmental
impact is conventionally quantified in terms of kilograms of
CO2 emitted per kilowatt-hour (kWh) of energy produced. In
countries characterized by a high kg CO2 per kWh coefficient,
this leads to a reduction in CO2 emissions and contributes to
the stabilization of the grid. The GreenCap+ has been applied
across various countries/regions around the globe considering a

household scenario, displaying the CO2 emission intensity (kg
CO2 per kWh) stemming from electricity generation, sourced
from U.S. Energy Information Administration (EIA),8 European
Environment Agency (EEA),9 and International Energy Agency
(IEA).10 The intensity of CO2 emissions is derived from the ratio
of CO2 emissions from public electricity production (relative to
CO2 emissions from public electricity and heat production) by
the gross electricity production.

As depicted in Fig. 7, the data clearly reveals that in regions
characterized by high kg CO2 per kWh factor, GreenCap+ show-
cases the capability to decrease CO2 up to 45% in comparison
to the Standard approach. Notably, the Brute Force method
outperforms other methods in terms of emission reduction,
attributed to its exhaustive exploration of the solution space.
The Random technique exhibits relatively higher emission levels
compared to most approaches (i.e., second worst approach). On
average, it is evident that a significant number of regions are still
at a considerable distance from achieving CO2 neutrality. This
underscores the pressing need for innovative contributions in
this domain, which presents an exciting opportunity to address
the challenges associated with reducing carbon emissions and
advancing sustainability.

E. Initialization Evaluation

In the fourth experiment, we evaluate the performance of the
proposed GreenCap+ algorithm using various population fig-
ures and different percentage weights, as described in Section III,

8U.S. Energy Information Admin., URL: https://tinyurl.com/3bzspb9c
9European Environment Agency, URL: https://tinyurl.com/46vh8tt2
10International Energy Agency, URL: https://tinyurl.com/3w48mm8v
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Fig. 9. Energy Conservation Study: Evaluation in terms of the SE and the IE, considering different UC values, based on the Standard method performance.

Fig. 10. Scalability Evaluation: Evaluation in terms of IE, SE, UC, and Ft, based on the Standard method performance, while considering different scale of
residences over the course of a week, a month, and a year.

with respect to the imported energy weight w1 from the grid,
and the user comfort weight w2. After conducting multiple tests
and tuning parameters, it has been determined that increasing
the number of generations results in a longer execution time
for the algorithm to complete. However, more generations do
not necessarily mean a better performance outcome. As shown
in the left plot of Fig. 8, during the initial ≈10 generations
the reduction of imported energy from the energy network is
noticeable, where in the following generations, the improvement
becomes less significant. In a similar manner, the larger the
population of the algorithm we select, the longer the execution
time will last. Because of the randomness that exists in the
genetic algorithm, it was chosen to use a population equal to
50, as it provides a fairly large range of random solutions. By
examining the first plot of Fig. 8, we identified a point where the
population and generation settings led to minimal improvement.
This point can be considered indicative of high convergence
using those specific configuration parameters (i.e., population
= 50, generation = 10). Based on our empirical findings, the
upper bound limits for both parameters were set to 100, and are
sufficient enough to allow the algorithm reach a solution.

To find the ideal balanced allocation between the two metrics
we conducted several experiments adjusting the weights of the
objective function and observed the overall performance, as
shown in the right plot of Fig. 8. The results in the middle
plot are displayed with respect to the percentage of the total
consumption (considered as 100%) against the w1 and w2.
The trade-off is clearly presented through the various weight
percentages utilized in the fitness function. According to the
results obtained, the best allocation case scenario was obtained
using w1=75% for the imported energy and w2=25% for the
user comfort. Thus, the more we reduce the w1 percentage,
the more energy is imported from the grid, while the algorithm

manages to maintain the user’s comfort quite high (≈90%), even
with just w2=25% allocation.

F. Energy Conservation Study

In the fifth experimental series, we evaluate the monthly
performance of the proposed GreenCap+ algorithm, in terms of
user comfort. In Fig. 9, we observe the algorithm’s performance
and trade-off for each month with respect to self-consumption
and imported energy, while comparing two different cases. In the
first case, the GreenCap+ completely ignores the user comfort
(non-user oriented), meaning that none of the preference rules
configured by users are considered, where in the second case all
preference rules are considered accordingly (user oriented).

In Fig. 9, the algorithm manages to consume more solar
energy produced by the PV system when user comfort is not con-
sidered. Specifically, the GreenCap+ manages to self-consume
54% of the total consumption when preference rules are com-
pletely ignored, while the self-consumption when user comfort
is taken into consideration is about 51%. We also observe that
the IE from the grid for each month of the year is slightly less
when the algorithm does not consider UC, which is expected.
Specifically, the total input energy when preference rules are not
considered is about 46%, while it increases to ≈49% when the
algorithm takes into account UC.

G. Scalability Evaluation

In the last experimental series, we assess the scalability
performance of the GreenCap+ algorithm in comparison to
state-of-the-art Green Planner, with respect to imported energy,
self-consumption of electricity, user comfort levels, and CO2

emissions, as indicated in Fig. 10. Specifically, we tested the sys-
tem on realistic large-scale scenarios (utilizing real and synthetic
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data as described in Section VI-A) involving a flat apartment, a
house, and dormitories over the course of a week, a month, and a
year. Fig. 10 demonstrates that GreenCap+ outperforms Green
Planner in all cases, while it shows a balanced performance
considering the increase of users, IoT devices, preferences, and
energy consumption. In the flat case GreenCap+ outperforms
Green Planner by IE ≈29%, UC ≈2.5%, SE ≈35%, and
Z ≈34%. According to the house scenario GreenCap+ achieved
better results than Green Planner by IE ≈28%, UC ≈6%,
SE ≈32%, andZ ≈30%. In the last case of dorms, better perfor-
mance is achieved from GreenCap+ by IE ≈23%, UC ≈14%,
SE ≈28%, and Z ≈27%. In summary, our system proficiently
performs under different scales and time frames, highlighting its
robustness and effectiveness in diverse settings.

VII. CONCLUSION & FUTURE WORK

The majority of the works in the existing literature established
an energy management model to either cater to user comfort
levels or electricity costs. However, none of them simultaneously
cater to CO2 emissions, integration of RES, multiple constraints,
peak demand times, and user comfort to fully utilize the inno-
vative smart metering infrastructure. In this work, an intelligent
evolutionary algorithm is proposed, called GreenCap+, inte-
grated into a framework, coined SEMF, that enables users to
find an energy efficient allocation plan for the operation of a
set of IoT devices along with a pool of preference rules, while
considering peak-demand and high production periods. The
system’s sophisticated heuristics are adept at analyzing historical
energy consumption patterns, considering weather conditions,
and operational preferences through a centralized CU to curate
a personalized energy management experience for an easier and
greener life. According to our experimental evaluation utilizing
real-world data, SEMF has outperformed the state-of-the-art
approach by up to≈29% reduction in imported energy from the
grid, ≈35% increase in self-consumption of renewable energy,
and≈34% decrease in CO2 emissions, while maintaining a high
level of user comfort ≈94%-99%. In the future, we intend to
expand our research on Green Planning solutions, tackling chal-
lenges, such as interoperability, scalability, and fluctuations in
power supply, and detection of unusual energy-pattern behavior.
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