Distributed and Parallel Databases (2024) 42:403-445
https://doi.org/10.1007/s10619-024-07441-9

®

Check for
updates

A blockchain datastore for scalable loT workloads using
data decaying

Panagiotis Drakatos' - Constantinos Costa'> - Andreas Konstantinidis'? -
Panos K. Chrysanthis' - Demetrios Zeinalipour-Yazti'

Accepted: 1 April 2024 / Published online: 10 May 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

The Internet of Things (IoT) revolution has introduced sensor-rich devices to an ever
growing landscape of smart environments. A key component in the IoT scenarios of
the future is the requirement to utilize a shared database that allows all participants
to operate collaboratively, transparently, immutably, correctly and with performance
guarantees. Blockchain databases have been proposed by the community to alleviate
these challenges, however existing blockchain architectures suffer from performance
issues. In this paper we introduce Triabase, a novel permissioned blockchain system
architecture that applies data decaying concepts to cope with scalability issues in
regards to blockchain consensus and storage efficiency. For blockchain consensus,
we propose the Proof of Federated Learning (PoFL) algorithm which exploits data
decaying models as Proof-of-Work. For storage efficiency, we exploit federated
learning to construct data postdiction machine learning models to minimize the
storage of bulky data on the blockchain. We present a detailed explanation of
our system architecture as well as the implementation in the Hyperledger fabric
framework. We use our implementation to carry out an experimental evaluation
with telco big data at scale showing that our framework exposes desirable qualities,
namely efficient consensus at the blockchain layer while optimizing storage
efficiency.

Keywords Blockchain - Data decaying - Storage and retrieval

1 Introduction

Internet of Things (IoT) refers to a large number of physical devices being connected
to the Internet that are able to see, hear, think, perform tasks as well as communicate
with each other using open protocols [1-4]. IoT devices are connected to Cloud and
Edge computing appliances through massively parallel I/O channels (e.g., 5G, Wi-Fi

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10619-024-07441-9&domain=pdf

404 Distributed and Parallel Databases (2024) 42:403-445

6) with millisecond latency offering new opportunities in industrial optimization,
human health, and well-being as well as safety. This will procreate tremendous
opportunities for IoT applications between multiple parties, such as collaborative
multitasking techniques [5], machine learning [6], cooperative benchmarking [7],
and augmented reality technology [8].

A key component in the IoT scenarios of the future is the requirement to utilize
a shared database that allows all participants to operate collaboratively with more
functionality. The shared database can bridge the actual gap between the data
generated from the IoT applications [9] and the rate that these are processed and
analyzed in real-time. The objective is to enable users execute updates and queries
on the collaborative database while preserving a consistent view among all users
maintaining the system consistency and transparency. Moreover, it is essentially
common to be compromised by malicious outsources. To mitigate the problem
described, an innovative design of a shared database with high performance is
required for all the participants, in order to collaborate among each other with trust.
Blockchain databases have been proposed by the community to alleviate these
challenges, however existing blockchain architectures suffer from performance
issues measured in terms of throughput and latency. In this situation, the
transactions are basically executed in a sequential manner and this, in conjunction
with confidentiality issues, does not leave much space for scaling.

It is imperative to devise a database architecture that can withstand billions of
transactions per second, as opposed to thousands transactions per second that is
currently the case for typical blockchains due to the expensive verification cost. For
example, the popular Bitcoin network typically supports transaction ingestion rates
of 7 s/TX, Hyperledger Fabric: 3000 TX/s and Bitcoin Satoshi Vision (SV): 9000
TX/s. In an IoT environment however, the ingestion rate is usually much higher
and even more distributed, which calls for new architecture types we discuss in this
work.

In order to motivate our description, we now explain a Web 3.0 scenario in the
scope of Telco Big Data (TBD) [10]. A telecommunication company (telco) is
traditionally only perceived as the entity that provides telecommunication services,
such as telephony and data communication access to users. However, the radio and
backbone infrastructure of such entities spanning densely most urban spaces and
widely most rural areas, provides nowadays a unique opportunity to collect immense
amounts of data that capture a variety of natural phenomena on an ongoing basis,
e.g., traffic, commerce, mobility patterns and user service experience [10—12]. The
ability to perform analytics on the generated big data within tolerable elapsed time
and share it with key TBD enablers (e.g., municipalities, public services, startups,
authorities, and companies), elevates the role of telcos in the realm of future smart
cities from pure network access providers to information providers. Consider a
TBD scenario in which telcos aim to share network health data from cell towers
(e.g., signal strength, call drops, bandwidth measurements) with public authorities
for monitoring and compliance (e.g., EMF-compliance). Huawei alone reports
5 TBs/day for 10 M clients (i.e., 2 PB/year) for Shenzhen, China, for a respective
telco big data scenario. From an architectural perspective the challenge is how to
transparently and immutably store the collected massive velocity data at the edge

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 405

of each telecommunication network in order to facilitate efficient and scalable data
sharing and access. Storing big data in a centralized way is not a preferable choice,
because it doesn’t fulfill any of these requirements.

In this paper we propose Triabase' (inspired from Greek “Tria”, meaning
“three”), being a database architecture designed for the Web 3.0 era. This new
era envisions a more decentralized and open Web with greater utility for its users,
beyond the original Semantic Web vision being trust-less and permission-less and
entailing Machine Learning, IoT and Artificial Intelligence. Triabase is a block-
chain datastore system that carries out machine learning on IoT feeds at the edge,
abstracts machine learning in primitive blocks that are subsequently stored and
retrieved from the blockchain. In a permissioned blockchain the distributed ledger
is not publicly accessible and we use this formulation for to ease the uptake without
hindering the uptake of permission-less counterpart trust solutions in the future. In
Triabase, we have two types of nodes those that store the entire shared database, and
the others that use the database for their own operations, such as sending query and
update requests to the blockchain shared ledger. We expect the blockchain nodes to
be synchronized under the decentralized blockchain network. The clients that use
the blockchain only for database operations store only the appropriate block header
in contrast with the full nodes that store the entire blockchain ledger. Triabase is
organized in a tiered architecture (see Fig. 1) that comprises of: (i) a Storage layer,
which includes a local document store and blockchain node used for distributed data
retrieval; (ii) a Data Postdiction layer, which abstracts locally-ingested data into
machine learning models using federated learning; and (iii) an Application layer that
includes APIs and access methods to initiate the search and retrieval functions at the
application layer.

Our proposed Triabase architecture, has a number of provisionings to cope
with the network bottleneck for the bulk of conventional machine learning models
available in different sectors. Typical models found on Vertex.ai might be up to
several GB capturing a range of applications from Computer Vision, Generative Al,
MLOps and general Data Science. Our proposed Triabase system, is agnostic of the
model type and size, as it essentially abstracts raw data into data postdiction models.
This provides generality as it is not bound to specific types of ML models. To cope
with large scale models, we utilize a combination of techniques enumerated below:

(i) we provide the possibility to transcode ML models down to lighter versions
using fp16 (floating point 16) editions, which are typically also deployed in
scenarios of tinyML and tensorflow lite on mobile devices. In this case, an
original model size of 20 GB can be reduced in half or more down to 4-5 GB;

(ii)) we optimize SQL queries by implementing batching principles that allow to
minimize the communication cost in the execution of continuous queries on
velocity data emerging from IoT scenarios. By minimizing the number of
federated learning parameters that are communicated during the execution of
a query, we can dramatically reduce the network load;

! Triabase. https://triabase.cs.ucy.ac.cy/.

@ Springer

https://triabase.cs.ucy.ac.cy/

406

Distributed and Parallel Databases (2024) 42:403-445

Data Postdiction

Application Layer

@;Ehm
8 @

loT Devices

Send data to multiple
:1federated nodes

3

i

Send a query toreduce the
storage requirements using a ML

i

Federated nodes

cxm
wik)| —p CI—>]
Lot vy ¥

TFF instantiate the model

.
Receive and send results to

A database COUCZdb Cache, shuffle,‘ train/test data N Send async remove unnecessary
searchingl process ingestion to keras Pass the state A Sy values
process del to builder i
5 mace Server model ot
] < o R — £
o Y - — > g s
=

< - X
Blockhain
nodes

federated server

for the data

Storage Layer

Query

«

CouchDB

—
Access

Method/
Indexing

Search in blockchain with
indexing and paginationin
couchDB

Blockchain

Invoke Process

A
o@D o
Nodes broadcasts
commit, replicate
message toallthe

participant

Endorsement Blockchain nodes
run 2-stepconsensus

olicy nodes
POy protocol

Fig. 1 The Triabase

architecture layers

(iii) we implement sharding, which is a popular on-chain scalability method that
focuses on scattering the blockchain network into more controllable, smaller
units known as shards. The shards would then be executed concurrently by
the network and process a fraction of the group’s transaction load; and

@iv)

We use a scalable consensus algorithm that provides greater scalability

and transaction throughput. Byzantine Fault Tolerance (BFT) consensus
techniques have been one of the most reliable tools for dealing with the
Byzantine Generals Problem. BFT generally refers to a distributed system
characteristic that suggests the necessity for continual consensus, despite
multiple antagonistic participants in the network.

For extremely large models, like proprietary GPT-4 (OpenAl) or BART (Google),
designated data centers with high performance HPC with NVLink, SmartNIC and
RDMA might be necessary, but these remain outside the scope of this work.

This paper builds on our previous work in [13, 14], in which we presented
the preliminary design and results of our Triabase architecture. In this paper

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 407

we propose several new improvements, particularly a structured and tiered
architecture along with an extensive description of implementing the architecture
in the Hyperledger Fabric framework (including relevant algorithms and
techniques). Additionally, all our propositions are evaluated using real telco data
in a prototype architecture we have developed. The overall contributions of our
work are summarized as follows:

— We introduce Triabase, a platform for a permissioned blockchain datastore that
employs data decaying principles to ingest massive amounts of IoT data swiftly;

— We propose a new consensus empowering collaborative mechanism namely
PoFL to share parameters over distributed multiple parties to reduce the risk of
data leakage and to protect federated nodes from being tampered;

— Triabase integrates the fabric open-source platform to provide a more realistic
blockchain assessment using Telco Big Data.

The remainder of this paper is structured as follows. Background and related work is
included in Sect. 2. An overview of the Triabase architecture is presented in Sect. 3,
where we discuss the specific internal techniques of each layer in our architecture.
Section 4 presents our prototype architecture and its user interfaces. In Sect. 5, we
describe our experimental methodology, the datasets, and evaluation metrics while
Sect. 6 presents our experimental results. Finally, we summarize our conclusions
and future work in Sect. 7.

2 Background and related work

In this section we overview the background and related work with a focus on: (i)
federated learning; (ii) blockchain data management; and (iii) data decaying, both of
which are instrumental in the design of our architecture.

2.1 Federated learning

Federated learning [15] is a machine learning approach that protects privacy by
training models on several devices using local data samples without needing to send
the whole model to the aggregators but instead only an updated version. Federated
learning presents a number of difficult challenges, including coordinating member
actions, adjudicating participant rewards, and aggregating models. The majority
of systems now in use have a centralized approach, requiring coordination from a
reliable central authority. Such a strategy has a number of drawbacks, such as assault
susceptibility, lack of trust, and challenges in estimating incentives [16].

To properly protect the privacy of companies and customers, several federated
learning issues must be addressed. The authors of [17] categorize existing system
models into three classes: decoupled, coupled, and overlapped, according to how
the federated learning and blockchain functions are integrated. Then, they compare
the advantages and disadvantages of these three system models, especially focusing

@ Springer

408 Distributed and Parallel Databases (2024) 42:403-445

on the challenges issues on BlockFed, and investigate corresponding solutions.
Finally, they identify and discuss the future directions, including open problems in
BlockFed. In another survey, authors of [18] explained the rationale behind MEC
(Mobile Edge Computing) and discussed how Federated Learning may be used
as an enabling technology for group model training at mobile edge networks. The
foundations of DNN model training, Federated Learning, and system architecture
for Federated Learning at scale are then discussed. They also provide thorough
assessments, analyses, and comparisons of various implementation strategies for
new implementation difficulties in Federated Learning. Costs associated with
communication, resource allocation, data privacy, and data security are among the
problems. Additionally, the authors talk about how Federated Learning may be used
for privacy-preserving mobile edge network optimization. Finally, they talk about
problems and potential future study areas. In addition in article [19] the authors of
this article build FedIoT platform that includes the FedDetect algorithm for detecting
anomalous data on-device and a system architecture for federated learning on IoT
devices. Furthermore, the authors are building FedDetect learning framework,
which boosts performance by employing a cross-round learning rate scheduler and
a local adaptive optimizer (such as Adam). They analyze the model and system
performance of the FedIoT platform and the FedDetect algorithm. The results show
that federated learning is effective in identifying a greater variety of attack types that
happened at numerous devices. According to the system efficiency study, end-to-end
training time and memory costs are reasonable and show promise for IoT devices
with limited resources.

The authors of [20], remediate this problem by introducing the concept of
proof-of-learning in ML. Inspired by research on both proof-of-work and verified
computations, they observe how a seminal training algorithm, stochastic gradient
descent, accumulates secret information due to its stochasticity. This produces
a natural construction for a proof-of-learning which demonstrates that a party
has expended the compute require to obtain a set of model parameters correctly.
In particular, their analyses and experiments show that an adversary seeking to
illegitimately manufacture a proof-of-learning needs to perform at least as much
work as is needed for gradient descent itself. They also instantiate a concrete proof-
of-learning mechanism in both of the scenarios described above. In model ownership
resolution, it protects the intellectual property of models released publicly. However,
the authors lack the novelty of how the distributed process happens and how the
nodes reach agreement or decide to commit blocks and how we can protect the
privacy of the data. Furthermore, they are not targeting IoT devices and finally, there
is a condition to adjust a lot of parameters.

Since federated learning is advocated as a solution to the issue of privacy data
protection in machine learning, we must make sure that the training model in
federated learning does not divulge users’ personal data [21]. In a dispersed context,
the quantity of data on each mobile device is insufficient, while a big amount of
data is needed to train a model with high performance in classical machine learning
[22]. On the other side, centralizing data collection might result in significant costs.
For that reason, federated learning mandates that each device utilize local data to
train the local model, which is subsequently aggregated into a global model on the

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 409

server. In the federal environment, there are many edge devices, and the data stored
on these devices may not be independent and identically distributed (Non-1ID).

2.2 Blockchain data management

The main usage of the blockchain architecture is to keep records on an immutable
chain of blocks, so later on, nodes agree on the shared state across a network of
untrusted participants. Thus, it forms the blockchain platform that can be viewed
as a distributed (transaction-log or) database system. The blocks are agreed by the
majority of validators according to the consensus protocols that tolerate Byzantine
faults. The most well-known platforms include Capera [23], Hyperledger [24],
Monoxide [25]. This design does not require a centralized server and operates
in untrusted environments of arbitrary nodes. The state of the art and technical
emphasis on the most recent developments in the underpinnings of blockchain
systems are first presented in this book [26]. It addresses hot topics in blockchains
from a theoretical perspective, including cryptographic primitives, consensus,
formalization of blockchain properties, game theory applied to blockchains,
and economic issues. It is a collaborative work between experts in cryptography,
distributed systems, formal languages, and economics.

The authors of [23] introduce a system named Caper, a permission blockchain
architecture based on an acyclic graph and on three consensus protocols to support
internal and all cross-application transactions. Moreover, [27] introduces a novel
framework, called vChain, which is able to improve the storage and computing costs
of the user and employs verifiable queries to ensure the system integrity. The design
of a privacy-preserving contact tracing framework to ensure the integrity of the
tracing procedure has not been sufficiently studied and remains a challenge. In paper
[28], the authors propose P2B-Trace, a privacy-preserving contact tracing initiative
based on blockchain and privacy-preserving principles are a future direction of our
proposed architecture.

Artificial intelligence along with the integration of blockchain technology
is a great promise to solve various resource optimization problems. For instance,
the merit of the two technologies is proposed in [29] providing a secure resource
sharing scheme by developing a caching mechanism with the usage of DRL
(Deep Reinforcement Learning). Reyna et al. [30] introduced how blockchain may
potentially improve the IoT environments and how blockchain can protect from
IoT security problems. However, Al algorithms, which are vulnerable to security
threats depend much on centralization approaches, a fact that has a negative impact
on improving efficiency, because it consumes a large number of communication
resources.

Moreover, a considerable interest in the blockchain field is the scalability and
performance characteristics of blockchain networks. Algorand [31] and RandHound
[32] achieve high scalability by randomly selecting a subset of validators to
participate in the consensus, while they maintain and guarantee the same security
level with other blockchain infrastructure. Other works [33] use directed acyclic
graphs instead of a blockchain structure and they ensure that the average amount

@ Springer

410 Distributed and Parallel Databases (2024) 42:403-445

of time for each transaction is reduced. Blockbench [34] was the first to look for
permissioned blockchain in the context of benchmarking. They present an approach
for comparing the performance of different platforms including Ethereum Parity, and
Hyperledger Fabric by using a set of micro and macro benchmarks. Furthermore,
[24] introduces the architecture of fabcoin which presents the performance of bitcoin
in Fabric. The research [35, 36] presents Adrestus which describes what techniques
cryptocurrencies should adopt to build a scalable cryptocurrency with enhanced
security.

Ghost protocol [37] is a well-prominent work paper that leverages existing
problems on PoW algorithms, in order to prevent malicious attackers to create
forks in the network by following selfish mining attacks. Moreover, some other
recommendations come next to improve the scalability of blockchain. Bitcoin-NG
[38] is a distributed fault tolerant protocol designed to scale the blockchain
architecture, which claimed the same trust model as Bitcoin. Although Bitcoin-NG
increases the overall throughput, it is still vulnerable to these kinds of attacks [39,
40]. However, it goes beyond the state of the art and can be seen as an enhancement
of the existing models, improving the performance and focusing on the achievement
of better security, scalability, and robustness.

2.3 Compacting data

There are a variety of techniques to compact data, ranging from compression
algorithms [11] to data synopsis and data decaying ideas, described in this section.

2.3.1 Data decaying

This refers to the progressive loss of detail in information as data ages with time
until it has completely disappeared. Kersten refers to the existence of data fungus in
[41] with a decaying operator coined “Evict Grouped Individuals (EGI)”. The given
EGI operator performs biased random decaying, resembling the rotting process in
nature (e.g., in fruits with fungus). In our previous work [12], we used the First-In-
First-Out (FIFO) data fungus, i.e., “Evict Oldest Individuals”, which retains full
resolution for recent data but abstracts older data into compact aggregation models.
Both EGI and FIFO do not retain full resolution for important instances that occurred
in the past. Consequently, data would have been rotted and purged either randomly
or based on its timestamp. We call this the long-term dependency problem. In [12],
we chose a radically new decaying technique that could be termed as LSTM data
fungus, which is explicitly designed to avoid the long-term dependency problem.
Particularly, the TBD-DP operator replaces the data with abstract LSTM models,
which capture the essence of the past, i.e., both recent data and important old data is
retained at the highest possible resolution. There are a variety of amnesia functions,
namely FIFO amnesia, UNIFORM amnesia, SPATTAL amnesia and query-based
amnesia that differ in the predicate used for amnesia function.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 411

2.3.2 Compressing incremental archives

Scientific simulation floating point data [42-45], spatiotemporal climate data
[43], text document collections [42], and data streams, are all frequently use
domain-specific compression algorithms. The trade-off between compression
ratio and decompression times for incremental archive data has also been studied
using differential compression algorithms in a number of research investigations
[46, 47]. However, none of these earlier studies have ever suggested a
method for addressing data decay in distributed systems that are special to
telecommunications companies.

2.3.3 Data synopsis

This is the procedure of picking a subset of data pieces at random from a sizable
dataset. Using probabilities and statistics, sophisticated approaches like Bernoulli
and Poisson sampling select data items. Stratified sampling was suggested by
Chaudhuri et al. [48] when the likelihood of the selection was biased. Zeng et al.
[49] implemented G-OLA, a model that generalizes online aggregation in order
to accommodate general OLAP queries using delta maintenance techniques, in
order to deal with the huge data sampling problem. In particular, BlinkDB [50]
uses dynamic sampling methods to let users select the error bounds and query
response times. A system called SciBORQ [51] enables users to select the level
of the query result’s quality based on a variety of intriguing data samples known
as impressions.

3 The Triabase architecture

In this section, we present the tiered architecture of Triabase, which comprises of
a Storage Layer, Processing/Indexing Layer and the Application Layer.

3.1 Storage layer

We introduce the proposed Storage Layer of Triabase, and discuss its two internal
routines, namely: (i) Proof of Federated Learning (PoFL) routine, which trains
in a distributed manner a global model for the ingested data; and (ii) Blockchain
Consensus routine, which commits this generated model data on permissioned
blockchain datastore. The core functionality of our proposition is illustrated at a
high level in Algorithm 1. The first routine of Triabase is the PoFL, which utilizes
a convolution network loss function to train the local models across multiple
decentralized edge nodes holding local data samples, without exchanging them.
The final goal is to compute an average model and to converge fast with high
learning accuracy. The second routine of Triabase is the blockchain process that
is triggered after a respective leader election process takes place. The blockchain

@ Springer

412 Distributed and Parallel Databases (2024) 42:403-445

process is responsible to collaboratively maintain the blockchain structure,
endorse new transactions from blockchain nodes, and is partially responsible for
the 2-step consensus protocol.

(A) Triabase storage: The Bitcoin protocol uses a PoW (Proof-of-Work) consensus
mechanism to validate users’ transactions in the blockchain. This is associated
with an extremely high energy consumption bill, which is unnecessary in a
private (permissioned) blockchain where contributing nodes are of higher trust.
Yet, provisioning a consensus mechanism is still necessary in order to provide
an incentive to participating nodes to contribute to the transaction verification
process. To this end, in this work we propose such a consensus mechanism that
relies on Federating Learning, as such, is coined Proof of Federated Learning
(PoFL).

Algorithm 1 Triabase: proof of federated learning blockchain consensus

Input: Blockchain nodes IV, Time Epoch ¢, Model Weights (from Raw Data) Wy
Output: Blockchain TX identifier B; 4

1: determine l = leader(N,t) > Leader / Orderer Election
2: determine u = view_number(N,t) > Consensus Round
3: Trp < init_tax(t, u, Wy); > Initialize transaction
4: while (!T.,) do > Fabric Consensus Phase
5 if 7., .PRE-PREPARE then > Fabric stage PRE-PREPARE
6: calculate f =1.difficulty(W,alpha) > alpha = bCyepm(t-1)
7. construct B;g = Lbuilld(T, Wy, u, f) > Triabase Block
8 foralln; € N do

9: send(PREPARE,t,1.f,B;4) > lead by [
10: n;.receive(PREPARE,tLf, B; 4) > 2-step consensus initiated
11: end for

12: end if

13: if 7', .LEDGER-UPDATE then > Fabric stage LEDGER-UPDATE
14: for alln; € N do

15: L.send(COMMIT,t,Lf, B;4); > lead by [
16: n;.receive(COMMITtLE, B; q); > Commit block in Triabase
17: end for

18: end if

19: end while

20: return B;4

Particularly, our system ingests model weights (constructed from raw data
D which will be described in the next section), and generates a global model
M every t epochs with weights W, in a distributed manner through federated
learning. This procedure has two usages: (i) it contributes to the transaction
verification process at the blockchain layer; and (ii) it helps in the reduction
of space at the storage layer, as our framework stores now only W, on disk as
opposed to the raw data D. The storage layer is complemented with a local
datastore for caching and handling of intermittent network connectivity, which
however does not affect the overall philosophy of the system architecture where
all data blocks have to eventually be committed to the blockchain layer. To
improve performance in Triabase, we minimize the amount of data committed
to the blockchain layer through data decaying principles, namely through the

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 413

K 2.1 peer invokes chaincode with proposal \ Blockchain
Network
App ioh
1. connect to peer
A 2. invoke chaincode (pr 2.2 i generat| S|
:3. proposal response queryroers:z:::e PrOROPa n Peer
I 5. led dat t :
. ledger update even .
o2 gel pCate e IRV 1 Chaincode
| ~ 1 4.2 peer updates ledger
| using transaction blocks
I
L}
| - CouchDB
4. request that transaction is order) _‘l 4.1 Transactions sent to
peers in blocks
S N (@

Fig.2 Triabase blockchain consensus workflow

(B)

storage of a data postdiction model that allows for the retrieval of stored data
through abstract models trained through federated learning.

In this section, we focus on the Triabase Storage Consensus algorithm (i.e.,
Proof of Federated Learning (PoFL)), which entails the first contribution of
this work. Particularly, in Algorithm 1, we show the overall execution of the
blockchain consensus routine. The process starts in lines 1-2 with a leader
election routine followed by a view_number routine, both of which take as input
the blockchain network N and the epoch ¢. The former yields the leader / while
the later infers the fabric consensus round, which helps in the convergence of
the consensus process and guarantees the liveness of the consensus protocol.
Subsequently, in line 3 the transaction is bootstrapped and passes through two
stages: the PRE-PREPARE stage (lines 5-12) and the LEDGER-UPDATE
stage (lines 13—18). The PRE-PREPARE stage starts out by having the leader
[computing the blockchain difficulty, which is derived based on the length of
the blockchain (alpha = bc gepni.1))- Particularly, longer chains are expected to
be more difficult compared to shorter chains. Based on the above a Triabase
data block is constructed and broadcasted in the network for storage (i.e., lines
8-11). The LEDGER-UPDATE stage basically wraps up the communication by
carrying out a final commit broadcast (lines 13—18).

Blockchains require to be versatile to different type of storage technologies.
For this reason, our system architecture deploys pluggable local document
stores. We have assessed two different types of NoSQL stores in our design,
namely a CouchDB (default for Hyperledger Fabric) and LevelDB and provide
experimental evidence for the utility of each of these storage layers and the
impact they have on our overall system architecture.

Triabase Consensus Workflow: The overall scheme of Triabase is shown in
Fig. 2. The process starts with the local training of the model on user’s data.
After that, the communication process takes place where all users broadcast and
upload the appropriately trained models to the blockchain nodes and store them
as transactions to the distributed ledger. The blockchain node that was the winner

@ Springer

414 Distributed and Parallel Databases (2024) 42:403-445

from the previous round (depends on the blockchain difficulty) is responsible
for initiating a 2-step consensus protocol and construct the blocks with all the
cached transactions that are not validated yet. In addition, the winner node is in
charge of aggregating the local model of clients and producing a shared model
by putting it as the first transaction in the block, so later on, the federated learn-
ing nodes can access it in the next round r 4+ 1. Our PoFL consensus protocol
contemplates that users who participate in the blockchain process get rewarded
with training coins for their contribution in the whole algorithm (e.g, system
usage coins contributed by participating parties). The coins of each user are
awarded according to the performance in the training process. Particularly, feder-
ated nodes converging faster and achieving more accuracy are rewarded higher.
The node that receives highest accuracy considering the difficulty of the block
is recognized as the winner of round r. Furthermore, in every training round the
coins will be adjusted to the users depending on their work.

Nevertheless, to secure our protocol and ensure that every user will obey the
protocol, we introduce a new hierarchy of nodes that we called peacemaker
entity. This entity is responsible to observe the correctness of the protocol
followed by all the federating nodes. For example, users that refuse to cooperate
with the protocol will get no payment for their work. Moreover, users that will try
to get more rewards and try to counterfeit the correctness of the whole process
will not be rewarded by the peacemaker entity. The peacemaker will then claim
the adjusted coins as it’s own reward for it’s effort in the protocol correctness.
Initial coins will be delivered to all participants as rewards after every epoch,
it will also be available to claim after each block creation to those who prove
correctness with the digital signatures. We set a minimum of 30 coins as the
default setting, like Bitcoin used to have at the early stages generated for every
block and spread it to validators.

(C) (C) Consensus Protocol: The two steps of the consensus protocol, summarized
in Algorithm 1, include the execution of the PBFT [52, 53] algorithm and
the notation of the detector. The orderer collects all the received transactions
along with some endorsement proposals, constructs a new block, and initiates
the 2-step phase by sending the proposal block to all blockchain nodes for
verification.

In particular, the orderer broadcasts a pre-specified message to all fabric nodes
to initiate the protocol. The message contains the proposed block B,;, the current
epoch ¢, the current leader [based on the view number u (used for the PBFT [52]
participation) and the block difficulty fthat relies on the height of the blockchain.
Then all fabric nodes n € N echo the same message until the majority of them
receive at least a quorum of 3f + 1 valid messages. Each blockchain node checks
the validity of all transactions that exist in a block, by analyzing the endorsement
policy from the assigned peers.

The detector is responsible for supervising that all the appropriate nodes
comply with the endorsement policy and only the applicable peers join the
process. The latter ensures that the client is not compromised and does not
incorporate invalid results that may cause erroneous behavior to the Triabase
blockchain.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 415

_, | E 7T ——B Val porL

Fig.3 Triabase converts raw data coming from TBD into dataset to be passed on federated nodes. If the
parameters are approved, they could either be made public or used in a prediction service

(D) Ledger Update: After the fulfilment of the consensus protocol, the invoking
process is called in which: (i) each client updates its copy of the ledger; and
(ii) each client is notified about the ledger updates. In the proposed Triabase
algorithm, the learning process is executed locally, i.e., trains machine learning
models locally. Furthermore at the edge division, all local models are aggregated
iteratively (in multiple rounds) to construct the final models, which are then
stored in the blockchain (during the invoking process). We assume that all edge
server nodes have enough computing and caching resources for completing
complex calculations and maintaining the blockchain, in order to store the
federated learning parameters collected from the users.

3.2 Data postdiction layer

The major objective of this layer is to reduce the query response time and keeping
the storage capacity low by using data decaying concept.

The core idea of the layer is to deploy Data Postdiction (DP), which is a
technique that attempts to restore historical data from tuples that have been
deleted in order to free up disk space [11, 12, 54]. Unlike data prediction, which
aims to make a statement about the future value of some tuple, data postdiction
aims to make a statement about the past value of some tuple, which does not exist
anymore as it had to be deleted to free up disk space. Application send a query
to compact models that can be stored and queried when necessary and with the
notation of DP we recreate the past value of some tuple, which has been deleted
to reduce the storage requirements, using a ML model from the compacted model.
The DP operator has been modified to employ federated learning to transform IoT
and telecommunications data into machine learning models that can be saved and
retrieved on a blockchain network as needed. The DP operator utilizes an index to
obtain the transactions found in the Blockchain after the successful completion of
the federated learning and stores them to the temporal base index for quick retrieval.

In Fig. 3 we describe an ordinary ML training pipeline. Training set D, and
test set D,,, are created from the data D that is streaming to Triabase. Cache values
received then batch and shuffle data and prepare for processing. A training algorithm
A that makes use of a regularizer I may be used to enhance the training data T after

@ Springer

416 Distributed and Parallel Databases (2024) 42:403-445

FederatedTraining "= - """ 77777 |

1
] | Data |
| |
: Models |
' :
d |
g 1
p 1
1

Hidden Layer Boundary Condition

Initial Condition

[l Input Layer
| Time

|_Location] |
t

HA
&\\ TS

§> i /‘/' \\\"’//, I " o
Lstm © %//'A&\ // '\
F'Llf. Tk w,,\‘“ .l /n\\\
T

’A\‘\‘"/"' = \\W
\ /< XS
S

Fig.4 Triabase reverse process indexing layer that show how the datasets given as input to the LSTM
and produce the output layer to generate the model. The reverse operation is also happening to transform
machine-learning models back to past values

which parameters are generated. The test set is used to validate the output param-
eters, which are then approved or refused (in which case an error is output). If the
parameters f are approved, they could either be made public or used in a prediction
service that the federated node has input/output access to (black-box model). The
pipeline segments pass trained data with test data to keras model wrapper. Tensor-
Flow Federated (TFF) is an open-source framework for machine learning and other
computations on decentralized data. TFF can properly instantiate the model for the
data that will actually be present on client devices are indicated by the dashed box
defines the sequence for better performance. Federated nodes initialize the mode
and pass the state to the federated process builder and send the results to federated
server. Server collects results from all clients aggregates them and send the result
back to federated nodes to process on next round. Federated nodes also remove the
values that are not needed anymore to free up disk space. Server then sends the
aggregated model to the Blockchain nodes in an asynchronous manner.
Additionally, we keep a global model M for a period p and its pointers, which
lead to a list of transactions kept on the blockchain under the Triabase of the
algorithm. With nodes that are the same size as disk blocks, the index is a
B+ tree that minimizes the number of disk visits. The overall number of disk
accesses for the majority of the activities are greatly decreased because the B+
tree’s height is low. According to this, leaf nodes replicate all values related to
non-leaf nodes. The B+ tree data structure is more difficult to use for Block-
chain indexing since it contains both a key and a value attached to it. A pointer
to the underlying data record is contained in this value. The payload is the result
of the union of the key and the value. Each node’s data in the B+ tree structure
is stored in ascending order. Each of these keys contains two pointers that go to
two further child nodes. There are fewer keys on the left side of the child node
than there are now, whereas there are more keys on the right side. The maximum
number of child nodes is n + 1 if a single node contains k keys. The DP operator

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 417

works in two conceptual phases:(i) offline phase, where it uses LSTM-based fed-
erated learning to build a tree of models M over time and space; and (ii) online
phase, when it applies the tree M to retrieve data with a specific level of accu-
racy (Fig. 4).

Algorithm 2 shows the pseudocode for the Retrieve Data algorithm. The
loading phase, in summary, loads the database sequence file in parallel such that
federated node Pi gets approximately the ith g byte chunk of the file. It’s

important to read sequences near the edges thoroughly, in order to improve the
accuracy of future predictions. This phase guarantees that the database
sequences are distributed evenly among the federated nodes. The query file is
read in the same way, so each P; gets around % queries. The queries are then

processed across p iterations in the following phase. Processor P; checks all of
its queries against D; at any step s, where j = (i +s) mod p. A non-blocking
request to obtain the database part for the next iteration is sent before the queries
are executed. The communication is accomplished via the Triabase Get() one-
sided communication primitive, which ensures that the distant CPU is not
disturbed. P; also maintains a separate running list of the highest results for each
query in Q; at each iteration phase. This list is printed after the program ends.
Algorithm 2 Retrieve data algorithm

> Step 1: Loading
1. Input: D; = P; share of database (size O(%)
2: Input:Q); = P; share of (%) queries

> Step 2: Blockchain Query processsing

3: foralls< Otop—1do > Retrieval Iteration
4 j=(i+ s)modp

5 if s > 0 then > wait until D; is received in Dy.ccy:
6: Wk < Wg—1

7 D comp < copy Dyecy > Compute V g € @Q); against Doy
8 Jneaxt = (.] + 1)m0d p

9 D¢, = Place non blocking request for D next

10: end if

11: for all ¢; € Q do > For each local query
12: res <= Update(q) > Find 7 hits seen so far and update in every iteration
13: end for

14: end for

> Output: Reporting
15: Output the final top 7 hits for every local query

@ Springer

418 Distributed and Parallel Databases (2024) 42:403-445

3.3 Application layer

An application that controls how a network system functions is part of the
application layer. Users interact with the network, download data, and send data to
other users of the network. They also utilize tools to access and share information
at each other. Additionally, this layer is the highest level of our system, providing
services directly to the underlying processes. The application layer contains the
querying module and the user interface. In our example, the Triabase query module
receives a data exploration question Q(a, b, w) and uses the index to recover the data
and respond to the query based on a, b, and w parameters. Finally, Triabase includes
an RestFull API that hides the system’s complexity while yet allowing access to all
Triabase functionality.

It further allows smart devices coming from the TBD infrastructure to connect
with one or more remote peers in the other layers and query information and get
their results back as the whole data is saved in the blockchain and can be queried
and verified very fast. In addition, users can query machine learning models and
with the notation of DP model they can convert this model to raw data and take the
result past for further processing.

At the application layer, the transfer of all operational data from mobile devices
to edge servers required to create distributed models leads to a massive amount of
communication burden and making the system susceptible to user privacy issues.
In our proposed architecture, the learning process is carried out locally, allowing
for the training of machine learning models on data from a range of users. The
permissioned blockchain is maintained and the federated learning parameters
collected from IoT devices are stored by the base station, which are computational
and caching nodes. The base station aggregate the parameters in order to update
the distributed model. Each BS implements the permissioned blockchain consensus
process in order to maintain the consistency of the distributed model.

Due to the sensitive nature of the majority of the data and the amount of data to
be processed, storing it on the Triabase limited storage space is a time-consuming
and potentially dangerous operation. As a consequence, we use blockchain to get
access to data, while the original data remains in the consumers’ hands. When a new
data provider joins, the blockchain records the data provider’s unique identification
(ID) together with other data attributes stored as a transaction. Each user’s data
account will be recorded in the form of transactions, which will be confirmed using
the Merkle tree [55]. Each material distribution event is also logged as a transaction
on the Triabase.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 419

4 The Triabase prototype system

In this section, we describe our prototype system developed in the Hyperledger
Fabric framework. We particularly overview the GUI and protocol of the framework
as well as its evaluation and setup. Our prototype realizes the Triabase architecture
using the DP, Blockchain and federated learning subsystems we described earlier.

4.1 Overview

Our server-side code? is written in Golang 13.8 node.js 10.23.0 and consists of around
8500 lines of code. In particular our server-code uses 5000 LOC its open source and
you can fully retrieved from GitHub and runs over docker containers and Ubuntu
Linux. The server side also includes CouchDB database and utilizes the Triabase pack-
age for drawing the docker images. A cross-platform, open-source runtime environment
called NodeJS is used to create server-side web applications. The event-driven design
of Node]S also supports asynchronous I/O. NodeJS implements an event-driven, non-
blocking I/O mechanism, which contributes to its efficiency and portability. NPM is a
package module that aids in efficiently loading dependencies for javascript developers.

Our client-side code uses has around 2000 lines of code its written in python and
can easily be integrated and handled with PyPi. It has a size of 2GB excel elements
with datasets from Telco Big data. In order to run successfully run the code, you
need to have Python 3.7-3.10, pip version 19.0 or higher for Linux and Windows.
pip version 20.3 or higher for macOS. Because we use NVIDIA cuda cores in our
testbed, the following NVIDIA software is required for GPU support: NVIDIA®
GPU drivers version 450.80.02 or higher. CUDA® Toolkit 11.2. cuDNN SDK 8.1.0.
(Optional) TensorRT to improve latency and throughput for inference.

4.2 Setup

The below commands bring up the REST server and execute the following from the
project’s app directory:

nvm use 12.19.0

npm install

rm —-rf credstore

node cred-store.js orgl Admin

node —--max—-old-space-size=4096 server.js /
none 10 false true 15

The last command can be adapted to suit the user’s requirements as follows: max-
old-space-size sets the server’s max heap size (in bytes). The server (optionally)
uses data compression to reduce the volume of the data sent to Layer 2. The options
are none, compress-json, compressed-json, jsonpack, and zipson. The server uses

2 Triabase. https://triabase.cs.ucy.ac.cy/.

@ Springer

https://triabase.cs.ucy.ac.cy/

420 Distributed and Parallel Databases (2024) 42:403-445

paging in order to be able to handle big data volumes more efficiently. The page
size is by default set to 10 MB. The value false deactivates console prints that can
be used for debugging. Set to true to activate the debugging prints, which prints the
average model submission latency of the N first model submission requests received.

4.3 Graphical user interface

Our system’s Graphical User Interface gives users a basic interface via which
they may inquire about the community’s active users (the details of the protocol
are presented in the next paragraph). Triabase provides the following distributed
algorithms for storage and retrieval: (i) Storage Algorithm of the Triabase
Architecture, and (ii) the Retrieve Data algorithm.

4.4 Query evaluation and processing

The Application Layer performs the basic functions of the interface between
the Processing Layer and the Storage Layer. The usage of an intermediate level,
inspired by the Hourglass Architecture internet-based is mainly intended to increase
the interoperability of the Edge and Storage levels, sharing at least one function.
Therefore, we have the maximization of the number of Federated Learning and
Blockchain platforms/technologies that can be used in our Triabase architecture.

When scaling data across numerous nodes and dividing databases into separate
partitions, CouchDB’s architectural design allows for great flexibility. In order to
establish an easily managed method for balancing read and write loads during a
database deployment, CouchDB enables both horizontal partitioning and replication.
The Application Layer acts as an intermediate layer that hides the complexity of the
communication with the database blockchain network. This layer includes a REST
server that communicates with the blockchain in behalf of its clients (the smart
devices from the Edge Layer), who just use its simple endpoints instead. As of now,
the supported endpoints offer model submission, updates and retrieval services, as
well as basic metadata querying options, while the aspiration is to expand on a full-
fledge datastore over the years. The ability to hide the complexity of communication
with the storage level is another benefit of employing the intermediate level of
application. This enables the option of manual data management of the Storage
Layer to the authorized users of the system.

In the current version of the Triabase system at the application level there is a
REST server, which implements two main functions. The first is the reception (from
the Edge Layer) of the models data to be stored and their (conversion and) transmis-
sion in the form of transactions to the underlying Blockchain (in the Storage Layer).
The second major function is to retrieve a model data from Blockchain. Specifically,
after the successful execution of the relevant queries for their collection, the data (of
the requested model) are returned to their original state and sent to the applicant.
At this point, we note that the server offers exactly the same interface to both smart
devices and authorized system users (the users don’t provide a split/authentication
mechanism), hence the introduction of the term: “applicant”.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 421

body

Fig.5 Triabase provides an API through which ML models can be inserted to the blockchain in Base64

Finally, an interesting point to consider is the choice of utilizing the technique
of tokens in the system. This is done to protect the security of the data of the
storage level, by confirming the authorization to use the services of the Application
Layer by the applicant. In particular, further to the information identification data
of the model for storage/retrieval purposes, requests for services must include the
applicant’s token. The validity of this token is checked, and the execution of the
request takes place only if it is confirmed (validity). Figure 5 shows the functionality
of the model that stored and retrieved from the Triabase system.

In the current version of Triabase, we assume that authorized applicants have
the ability to communicate directly with the permissioned blockchain of the Stor-
age Layer, and store in the system ledger a string claimed to be the (valid) token.
Although not an optimal solution, the system security is not compromised by the
aforementioned approach, as in any case, only authorized users can contact Block-
chain directly and successfully secure the token they want.

4.5 Query exploration interfaces

This subsection analyzes the various techniques and schemes selected during the
interface component design phase, taking into consideration the requirements and
limitations mentioned above.

First of all, like any interface that can be used by any programmer, the interface
component must be easy to understand and use. It must also hide the complex
communication with the system Blockchain, providing already implemented easy-
to-use methods of interacting with it. Moving on to more technical requirements,
the interface component must be able to handle the (possibly large and) different
types of files of the serialized learning models that the Triabase system deals
with. Moreover, it should be compatible with a wide range of other technologies
that can be used by smart devices and IoT network systems. Finally, the interface
component is called upon to ensure the integrity of the data as it is transferred from
the application layer to the storage layer.

@ Springer

422 Distributed and Parallel Databases (2024) 42:403-445

model g
model
model/submit
model/submit/check
model/delete
model/delete/check
BEGED /moder/creanvy Con
m /model/cleanup/chack Check the status of a model Cheanup wansaction
metadata uery mocel metacata 5

Fig.6 The Triabase API definition is a file that describes all the provided functionality along with the
necessary documentation

Triabase implements a full-fledge REST 2.0 API using Node.js and docu-
mented with Swagger. REST(Representational State Transfer) is the cli-
ent—server architecture standard used in modern web applications. Figure 6
defines the available requests, as well as the response of each request. Among
others, an important feature of a RESTful API is the provision of services
through URL-based endpoints by a dedicated server. In the case of the inter-
face component, the REST architecture was chosen for ease of use (simple, well-
known concepts), moreover to increasing the number of smart devices capable
of interacting with the application-level compatibility API (most devices sup-
port HTTP messaging). Additionally, regarding the implementation technol-
ogy of the REST-full API of the component, given the limited options (SDKs)
mentioned in the previous subsection, the Node.js ecosystem was selected. This
selection was made for performance purposes only.

Let us mention the ways in which the interface component utilizes the
techniques of digests and data compression. Regarding the use of digests, when
receiving data in the endpoint model, the server of the interface component
creates the corresponding pages (data) that are forwarded for storage in the
system blockchain. For each page, the server calculates a digest, stored it in its
database, and attaches it before sending it for storage. When, at a later stage,
a request for retrieval of this data is received (endpoint model), the server
retrieves the pages of the request model, ensures the integrity of the data of each
and, restores the data. After that, it sends them to the user. Specifically, for the
existing version of the interface component, the use of the MD5 fragmentation
function was chosen, mainly for saving space (MDS5 digest size = 128 bits). The
purpose of the application of compression mechanisms is to reduce the volume
of data circulating in the network of the Blockchain system and at the same
time to increase the speed of completion of storage and recovery operations of
models. Noting that the data files of the machine learning models may already
be in fairly compact/compressed form.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 423

4.6 Compression

This technique is mainly responsible for reducing the amount of storage space
needed while exerting as little pressure as possible on query response times. It makes
sense to adopt compression methods that result in high compression ratios while
also ensuring quick decompression duration. In this paper, the GZIP compression
is adopted because it provides fast compression and decompression times, a high
compression ratio, and optimal compatibility with I/O stream libraries. Additionally,
in order to supply the decay mechanisms for the following layer, we employ the DP.
The Triabase indexes’ (B+ trees) leaf pages are essentially the only thing the storage
layer is in charge of; this is covered in the following layer.

With each new data snapshot received, the multi-resolution spatio-temporal index
used by the Indexing Layer is increased on the rightmost path (i.e., every 30 min).
Additionally, the component creates highlights-interesting event summaries-from
the data kept in the child nodes and keeps them at the parent node. The internal
node that covers the query’s temporal window is accessible for each data exploration
query, and its highlights are used to provide an answer. The querying module and
the data exploration interfaces are implemented in the application layer. These
interfaces accept visual or declarative data exploration questions and use the index
to compile the necessary highlights and snapshots to respond to the query.

5 Experimental testbed and methodology

In this section, we describe our experimental methodology, which involves both a
set of real micro-benchmarks for the Triabase system, utilized with real datasets
from the Telco dataset, Smarty dataset and Marta dataset.

5.1 Datasets

We make use of the following three realistic datasets in our trace-driven experiments
to simulate regular-scale, medium-scale, and large-scale distributed machine
learning models:

— Telco Dataset: We [12, 54] utilize anonymized data from a real
telecommunications company with 1192 genuine cell towers (i.e., 3660
cells from 2G, 3G, and LTE networks) spread across a 5896 km? area. The
cells are linked to a cluster of computers through a gigabit network. For the
performance of the tower, each cell tower keeps numerous UMTS/GSM
network logs and passes the information to the base station controller (BSC)
or the radio network controller (RNC) to be kept. In the enterprise, a CDR
server generates call detail records (CDRs) for incoming and outgoing calls.
The management server and third-party application can use SFTP to get a
CDR from the CDR server after it has been generated. The Telco can then

@ Springer

424 Distributed and Parallel Databases (2024) 42:403-445

query the CDRs for call/data details and check the carrier’s outbound call/data
fees. We utilize an anonymized dataset of telco traces comprising of 100 M
network measurements records (NMS) and 3660 cells (CELL) coming from
2G, 3G and LTE antennas. The data traffic is created from about 300K objects
and has a total size of 10GB. Our dataset includes 200 snapshots from the 5GB
anonymized and uncompressed telco dataset that comprises of 1.7M CDR and
21 M NMS records. Our microbenchmark is performed atop an HDFS v2.5.2
filesystem.

— Marta Dataset: This [56] is an anonymized dataset of IoT network data
comprising of 93.1MB network measurements records and 102 columns from
13 different files coming from sensors of an intelligent city. This dataset will
showcase data collected via sensors within the system, specifically real-time
data of trains buses and parking. It contributes to the development of practical
solutions to issues that help improve the riding experience and boost ridership.

— Smarty Dataset: Sma-Rty [57] is an Italian-French startup specializing in Al
and Machine Vision. Sma-Rty produces solutions for the integration of modern
artificial intelligence technologies in real life through close collaboration with
research institutes. In this context, the 5G Automotive Digital Twin (ADT)
project intends to test and validate an innovative system for driving assistance
and support based on 5G technology and Artificial Intelligence. The ADT
system creates a digital depiction of the setting called a Digital Twin using
traffic cameras and 5G infrastructure. This representation is used to replicate
road user behavior in a virtual environment in order to predict potential risk
situations in the real world and improve road safety. The behavioral prototypes
of the identified entities and their visual features (for example, type, color,
form, and speed) will be reconstructed beginning with the acquisition of video
flows. After that, the ADT model gathers data from local and simulation units
to deliver a proactive, non-invasive service for increasing road safety. The
Torino City Lab experiments will thus focus on the validation of the digital
twin model’s functions as well as the accuracy of the rebuilt model.

We also considered other types of datasets/benchmarking efforts for our
experimental methodology as follows: TPC and YCSB focus on data management
workloads in conventional SQL and NoSQL environments and have little
provisionings for both IoT scenaria and Blockchain scenaria. Also our effort was
not to investigate these systems from a clearly data management standpoint, but
rather from the standpoint of IoT data ingestion over a distributed blockchain
layer that made the selection of benchmarking datasets a challenge. For this
reason we carefully chose to feed our architecture with custom datasets from
Telco (TBD), IoT (Marta) and AI/ML (Smarty). The TPC council only recently
issued the TPCx-IoT bechmark, which is an iot-specific benchmark but has no
specific provisionings for blockchain operation. On the other hand, there are also
some Blockchain-specific benchmarking efforts underway (such as BlockBench
[34]), but unfortunately these efforts have not ripened to allow generalizability for
the types of IoT blockchains we consider in this work.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 425

5.2 Metrics

The experimental evaluation described in this section focuses on the following
metrics that aim to assess the performance qualities of the Triabase framework. We
break the evaluation into two sections: (i) data ingestion, storage capacity, accuracy
in NRMSE, and data retrieval experiments; and (ii) blockchain storage layer
experiments, which respectively feature separate performance metrics.

For data ingestion and data retrieval experiments, as part of the decaying layer,
we employ the following metrics:

— Ingestion Time: This measures the wall clock time to ingest each new snapshot
and is measured in seconds (s).

— Storage Capacity: This measures the total space that machine learning data
occupy together, as a percentage of storage required by the RAW method (no
decaying, no compression).

— Accuracy: This measures the error of the machine learning data using the
Normalized Root Mean Square Error (NRMSE). A lower NRMSE value
indicates a higher accuracy in the recovered data.

1 n
\/; Zl:]()cl,t—)cz,t)2

Ymax — Ymin

NRMSE = (D

which is the normalized difference between the actual data (x1, 7) and the

predicted data (x2,), where ¢ is a discrete time point and y,,,., V., are the
maximum and minimum observed differences.

— Retrieval Time: This measures the wall clock time to recover a data block from
the blockchain and is measured in seconds (s).

Fabric’s major performance indicators are throughput and latency, which we
investigate thoroughly in the subsection 6.2. In Triabase we say that the cost
where transactions are passed the consensus and stored to the ledger is known as
throughput. Latency is defined as the time it takes for an application to deliver a
transaction proposal to a transaction commit. For blockchain latency, as part of the
storage layer, we employ the following metrics:

— Blockchain Duration and Throughput: This measures the duration of the
individual blockchain latency to finalize a Triabase transaction, measured in ms
(millisecond) and tps (transactions per second).

Algorithms: The proposed Triabase framework is compared with the following
approaches:

— RAW: does not apply any decaying on the whole dataset.

— COMPRESSION: the decayed dataset is compressed with the GZIP library,
which has been shown in [11] to offer the best balance between compression/

@ Springer

426 Distributed and Parallel Databases (2024) 42:403-445

decompression speeds, compression ratios and compatibility with I/O stream
libraries.

— SAMPLING: a sampling method that picks every second item in the input
stream, yielding a 50% sample size.

— RANDOM: uniformly randomly select one record from the decayed dataset.

Note that RAW and RANDOM are the baseline approaches used to demonstrate the
trade-off between the storage capacity and the NRMSE objectives. This project’s
primary objective is to identify performance bottlenecks, thus we built a system
called Triabase that spans several clients and stresses the system by constantly
making transactions. In addition, each client sends out proposal requests at the
same time and collects endorsements. The transactions are sent asynchronously in
order to meet the deadline without having to wait for commitments. The benchmark
framework, on the other hand, calculates performance and latency. All organizations
and their colleagues participate in multi-channel trials. While various combinations
are feasible, we believe our strategy will put the system through its paces.

5.3 Testbed and workloads

Testbed: The DMSL VCenter IaaS cluster of computers, a private cloud, houses 5
IBM System x3550 M3 and HP Proliant DL 360 G7 rackables, each with a single
socket (8 cores) or twin socket (16 cores) Intel(R) Xeon(R) CPU E5620 @ 2.40GHz
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz Intel(R) Xeon(R) CPU E5620 @ 2. On
an IBM 3512, these hosts contain a total of 300GB of main RAM, 16TB of RAID-5
storage, and are connected through a Gigabit network. The cluster of computers is
controlled by a VMWare vCenter Server 5.1, which is connected to the VMWare
ESXi 5.0.0 hosts. Nodes for computing: The compute cluster, which is running on
our VCenter IaaS, is made up of four Ubuntu 16.04 server images, each with 8GB
of RAM and two virtual CPUs (both running at 2.40GHz). Fast local 10K RPM
RAID-5 LSI- Logic SCSI drives formatted with VMFS 5.54 are used in the images
(1IMB block size).

Workloads: Our experimental evaluation has been conducted based on an
a diverse mix of federated learning, Tensorflow, blockchain, data mining, and
Machine Learning (ML) workloads. All aforementioned workloads are driven by
a telco-specific domain task. We particularly formulated the following five tasks
(T1-TS). More specifically the query types supported by Triabase include standard
queries, where only the newest database version is queried, full historical queries
on a particular predicate, range historical queries on all updates in a specific time
range, delta query and equality.

— T1. Standard queries: The main objective is to query the Triabase blockchain
as a traditional database, where the clients send a query result and they only
care about the result in the newest version. We require to guarantee that only the
records that are not expired could be selected.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 427

— T2. Full historical queries: Another type of supported query in the Triabase
blockchain is called a historical query. This type of query provides transparent
history to database federated clients and grants them access to all of the data
records. In a full historical query, the client wants to see all historical records that
satisfy a specific predictor.

— T3. Range historical queries: Historical queries can also be executed with
desired time ranges in mind. This can be achieved by applying additional
conditions to the blockchain attributes (To be more specific, all records are paired
with two extra attributes: VF (stands for ‘valid from’) and VT (stands for ‘valid
to’). For example, let’s assume that we want to get a snapshot of the database for
a random block b at the height i, we are able to collect the records with VF < h
and VT > h.,e.g.,

SELECT upflux,downflux
FROM CDR
WHERE ts>=2015 AND ts<=2016;

— T4. Delta query: Triabase further guarantees transparency by supporting delta
queries. Delta query gives the opportunity to clients to make more flexible
queries and always be informed from the previous updates. More specifically,
we plan to provide an interface for clients to query the changes made by the
transactions committed at any particular block. For example, we assume a user
u, then if we make a delta query for this user we will get as a result the records of
his transactions that involved before and after the height of the block which we
give as input.

— TS5. Equality: This task aims to retrieve the download and upload bytes for a
requested snapshot, e.g.,

SELECT upflux, downflux
FROM CDR
WHERE ts=201601221530;

6 Experimental evaluation results

This section presents the experimental evaluation of our proposed Triabase
system. We start out with data decaying evaluation, followed by four sets of
benchmarks. Then, we continue with blockchain control experiments with respect
to the throughput and latency of our blockchain system, as well as, benchmarks on
different databases. This is followed by processing learning experiments to measure
the learning time, NRMSE, and percentage of raw for three different ML modes.
In addition, we measure machine learning models that have been pre-trained from

@ Springer

428 Distributed and Parallel Databases (2024) 42:403-445

Ingestion Time: Disk space:
Response time for the whole real dataset Space capacity for the whole real dataset
(model=LSTM, neurons=16x16, block size=50, (model=LSTM, neurons=16x16, block size=50,
endorsers=3, channels=8) endorsers=3, channels=8)
: : 150 :
Raw —— Raw ——
Compression Compression
Sampling Sampling
L Random Random
3 8000 Triabase Exx<1 = Triabase Exx<1
£ £ 100
o e
£]
= g
c g
2 5
17
“g’, g 50
= 6000 o
0
TelcoDS MartaDS ~ SmartyDS TelcoDS MartaDS SmartyDS
Different Dataset Different Datasets
Accuracy: Retrieval Time:
NRMSE for the whole real dataset Retrieval Time for the whole real dataset
(model=LSTM, neurons=16x16, block size=50, (model=LSTM, neurons=16x16, block size=50,
endorsers=3, channels=8) endorsers=3, channels=8)
. . .
Raw Raw ——
2 Compression EXXxX1 Compression EXXx1
[Sampling 9000 Sampling
Random Random e
Triabase E55<1 ’uE? Triabase ESx<1
8 E
= e
Z 6of € 6000
2
©
i
30 s T 3000
TelcoDS MartaDS SmartyDS TelcoDS MartaDS ~ SmartyDS
Different Datasets Different Dataset

Fig.7 Triabase performance evaluation: Triabase data ingestion, evaluation in terms of storage capacity
S as a percentage to the RAW data (left) and accuracy in terms of NRMSE on the decayed set of data
(right) in all datasets and retrieval evaluation for four evaluation metrics

different Machine Learning hubs. Typical examples of such hubs are the TensorFlow
Hub and the Hugging Face.

6.1 Data decaying evaluation

In the first experiment, we evaluate the performance of the proposed Triabase sys-
tem against all algorithms and over all datasets (Telco, Marta, SmaRty) introduced
in Sect. 5.1, with respect to performance (as ingestion time of the model), space
capacity (as a percentage to the RAW data), accuracy (in terms of NRMSE on the
federated set of data) and retrieval time with the given datasets. We configure the
Triabase framework according to the best configuration of blockchain network
parameters and machine learning parameters that have been inferred through the
control experiments of Sect. 6.2 and 6.3.

Figure 7 (top-left) demonstrates the data ingestion time for the three datasets
in our evaluation. We observe that the highest ingestion time for all five methods
is by the RAW method, which ingest the data in its raw representation. In
contrast, the random method achieves the lowest time as it takes only a portion of

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 429

the models. Sampling and compression are semi-equal with only a difference of
10-20%. This is also reasonable, because first the decayed dataset is compressed
with the GZIP library, to offer the best balance between compression-
decompression speeds, thus we expect less data travel through the network and
hence less retrieval time. Triabase demonstrates that the system has optimal
ingestion time near random or sometimes semi-equal to it due to the learning
time required by the federated process and the time required by the sequel for
the commitment of the models as transactions on the Fabric blockchain store.

Figure 7 (top-right) demonstrates that the RAW occupies the most disk space
because it stores all raw data. The sampling approach is following as the second
worst case in terms of disk space. This happens because the sampling method
picks every second item in the input stream, yielding a 50% sample size so
we expect the disk space to be fair and not optimal. Random and Triabase are
placed together with a difference of 2-5%. We expect Triabase to occupy this
disk space because there is an extra overhead from the LSTM method that we
can’t avoid. The COMPRESSION approach, however, cannot be customized to
achieve an even lower disk space occupancy. In comparison, the Triabase system
can be configured, through its neurons, block size, endorser, and channels to
accomplish a space occupancy that will fit the space budget of the application.
This particular parameter will be investigated next in Sects. 6.2 and 6.3.

Figure 7 (bottom-left) demonstrates the trade-off between the space capacity
S and the accuracy (NRMSE) objectives. The figure shows that the RAW
approach obtained the worst possible S = 100% of the three datasets, and the
lowest error NRMSE = 0%. In contrast, the RANDOM (almost all data model
in Triabase) approach obtained the best possible S = 60% disk space of the
whole dataset because it takes a batch size of the whole dataset, and an error
rate of NRMSE = 30% on the decayed dataset. The proposed Triabase system,
however, provides around 5% and 10% worst space capacity S compared to
COMPRESSION and SAMPLING approaches, respectively. This is due to
the fact that an additional space required by the set of LSTM models is much
more than the sample set of SAMPLING and the compressed decayed dataset
of COMPRESSION. The SAMPLING outperforms the Triabase approach
by 10-30%, on average. The COMPRESSION approach provides an optimal
NRMSE = 0%, since it does not apply any further prediction on the Blockchain
model data but recovers it via decompression when requested.

Figure 7 (bottom-right) investigates ingestion time and we can observe that
the RANDOM approach outperforms all the other approaches in all datasets.
This happens because the RANDOM does not take all the dataset but instead
takes a random batch size that is determined by the user. Hence, the retrieval
time is less than all other approaches. After that, sampling and compression take
place because compressed data can be retrieved more efficiently. Finally, the Tri-
abase system takes the second lowest time because it needs not much time to
calculate the LSTM models due to the extra optimization that we make.

@ Springer

430 Distributed and Parallel Databases (2024) 42:403-445

BI in Control Experi k Size in Control Experi
Performance Arrival Rate: Resource Utilization:
Latency for different size of blocks Utilization for different number of channels
(endorsers=3, channels=16) (endorsers=3, block size=50, channels=increment)
11000 L — L 1500 L L T L 80
(block size: 10) —— CPU Utilization
10000 [(block size: 30) ExXxXx1 Throughput —%—
9000 F (block size: 50) === 1250
(block size: 100) m—m
8000 —
0 <
g 7000 g 1o 2
S so00 3 8
3 2 750 E
$ 5000 4 S 2
2 >
S 4000 . 2 a
- £ 500 S
3000 ol
2000 8 250
1000 s
0
25 50 75 100 125 150 1 2 4 8 16 32 48
Transaction Arrival Rate (tps) Number of Channels

Blockchain Control Experiments:Endorsers
Resource Utilization:
Utilization for different number of Endorsers
(endorsers=increment, block size=50, channels=8)

1000 L ; b 80
CPU Utilization mmm—
900 I Throughput —»— |
800
1 60
700
600

500
400
300
200
100

0

CPU Utilization

Throughput (tps)

1 2 3 4
Number of Endorsers

Fig.8 Blockchain control experiments: the effect of various number of channels and endorsers on
throughput

6.2 Blockchain control experiments

The storage layer of Triabase comprises of: (i) local data store used for caching
and disconnected operation; and (ii) a fabric blockchain network. In this
experiment we aim to evaluate the blockchain layer of the Triabase architecture,
through a series of control experiments where various configuration parameters
(blockchain block size, channels and endorsers) are assessed in isolation. In the
next experiment of this section, we also present a microbenchmark where we
assess the following incurred latency in the scope of two data store systems,
namely CouchDB and LevelDB. Below is a breakdown of latencies incurred at
the Blockchain layer:

— Endorsement Latency: The time it takes the client to collect all proposal
answers as well as endorsements.

— Broadcast Latency: The time between when a client submits a request to an
orderer and when the orderer acknowledges the request.

— VSCC Latency: The time it takes to check all of a block’s endorsement
signatures against the endorsement policy.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 431

— Ledger Update Latency: The time it takes to check all of a block’s endorsement
signatures against the endorsement policy.

— Commit Latency: The time it takes for a node to prove that a transaction is valid
and save it on the blockchain.

— Ordering Latency: The time needed for a transaction to complete its final
ordering.

Finally, performance metrics for the response, ingestion time, and percentage of the
total time are also included to present detail about how Triabase behaved both on the
machine learning process and blockchain query time.

Figure 8 shows the impact of Block size, Channels, and Endorsement latency and
throughput.

Block Size Evaluation: Figure 8 (top-left) demonstrates a liner improvement
in latency while the transaction arrival rate increases until the congestion point
of around 250tps (depends on block size). In addition, it shows that close to the
congestion point there is a significant increase of latency, which is mainly due to
the fact that the transactions are waiting in a queue to pass the validation phase
and consequently delay the process. Moreover, the results show that latency is also
affected by the block size, since when the block size is high, the latency is also high
for low arrival rates. For example, when the arrival rate is 100 tps and the block size
is increased from 30 to 50, the latency of the transactions is also increased from
4000 to 7000 ms. This happened because large block sizes increase the forging time
of a block at the leader node, on average. For high arrival rates, however, and greater
than the congestion point, the latency decreases. This is due to the fact that the time
required to verify and store a block m is always less than the amount of time needed
to verify and store b blocks. The major conclusion drawn from this experiment is
that: (i) if the arrival rate of a request that represents a transaction is lesser than the
congestion pivot, it is preferable for the application to use in most cases a lower
block size to achieve low transaction latency. The throughput in those cases will be
the same with the arrival rate. (ii) in cases where the arrival rate of a request is high
and greater than the congestion point, it is preferable to use a large block size to
achieve higher throughput and lower transaction latency.

Channel Evaluation: Figure 8 (top-right) demonstrates the Triabase throughput
along with CPU metrics. The table below shows the number of channels and
transaction arrival rate that were employed in this study. As indicated, all peers join
all of the channels. Throughput increased as the number of channels increased. This
is reasonable because more transactions happened parallel via the new channels
as the throughput scales linearly. The negative fact of that is that as per channel
increased the time to sync between nodes and channels increased dramatically
because the network needs more hops to reach all endorsers and come to a consensus
thus having all synced blocks on the network consumes enough time. Figure 8 (top-
right) shows how resource use, such as CPU, increases.

@ Springer

432 Distributed and Parallel Databases (2024) 42:403-445

Parameters Values

Number of channels 8

Number of endorsers 3

Transaction complexity 1 KV write (1 — w) of size 20 bytes

SatateDB database GoLevelDB

Peer resources 32 vCPUs, 3 Gbps link

Endorsement Policy AND/OR OR [AND(a, b, ¢), AND(a, b, ¢),
AND(b, c, d), AND(a, c, d)]

Block size 30 transactions per block

Neurons 16x16

Model LSTM

Endorser Evaluation: Endorsers are nodes that exhibit leadership behavior and
are in charge of starting the consensus process. As we can see in Fig. 8 (bottom-
left) with 4 endorsers, which is the default setting and most ideal, we are able to
obtain 700 tps. Figure 8 (bottom-right) also shows that as the number of endorsers
grows, the number of throughput scales linearly. It is also important to note that if
the number of endorsers is increased excessively, throughput will not increase but
rather eventually be destroyed because more time will be required to sync blocks
across channels. As a result, we can anticipate an increase in latency and additional
overhead, but this also depends on the block size. For instance, when the number
of zones was increased from 2 to 15 we observe, the performance increased from
250 tps to 750 tps and 1200 tps (i.e., by 9.5 in the overloaded situation). This is
due to the fact that each channel is self-contained and maintains its own blockchain.
As a result, the validation process and the phase of updating the ledger of multiple
blocks (one per channel) are executed with a parallel way, resulting in better CPU
utilization and throughput.

Observation 1 1t is preferable to dedicate at least one vCPU per channel in order to
obtain good performance and reduced latency. To distribute vCPUs optimally, we
must first evaluate the projected demand at each zone and then allocate sufficient
vCPUs.

Observation 2 To maximize throughput and minimize delay, it is better to avoid
heterogeneous peers, since their performance will be dominated by less powerful
peers.

Microbenchmark: In this subsection we start out with a microbenchmark that
evaluates the latencies incurred at the lower layers of the architecture measured in
ms (milliseconds) as well as the generated throughput measures in #ps (transac-
tions per second) for two types of local key-value store systems: GoLevelDB and
CouchDB.? LevelDB is a fast key-value storage library written at Google that

3 CouchDB. https:/couchdb.apache.org/.

@ Springer

https://couchdb.apache.org/

Distributed and Parallel Databases (2024) 42:403-445 433

Blockchain Control Experiment: Latency Blockchain Control Experiment: Latency
CouchDB (read-write, with lock, endorsers=3, LevelDB (read-write, with no lock, endorsers=3,
block size=50 channels=8) block size=50 channels=8)
920 T T T 1200 90 T T T 1200
Endorsement Latency ——— Endorsement Latency ——
80 | Broadcast Latency kxxx1 - 80 H Broadcast Latency kxxx1 4
VSCC Latency &= | | 1000 VSCC Latency &= | | 1000
70 H Ledger Update Latency s 4 70 H Ledger Update Latency s 4
Commit Latency E=~<1 Commit Latency £5x<1
— L Ordering Latency ezzza J > L Ordering Latency ezzza 4
\,UC_Li 60 Throughput —+— 800 ’g é 60 Throughput —+— 800 ’g
5 50 te 4 ~ z 5 50 =
e 41600 § = 4600 §
S 40 1 g S 40 g
3 / 5 3 L 5
£ 30 » 4 400 © £ 30 4 400 ©
20 ul ul
1 200 1 200
10 ol ol
0 0 0
1rw 3rw Srw 3w Srw
Number of I/0 writes Number of I/O writes

CouchDB (write, without lock):
Throughput in TPS for different number of KV writes
s=3, block size=50 8)
70 1 1 |
Endorsement Latency ——1
VSCC Latency kxxx1 4 800
60 - Ledger Update Latency mxzz=a q
Throughput —+—

50

40

30

Throughput (tps)
Duration (msecs)

20

1rw 3rw 5rw
Number of KV writes

Fig. 9 Microbenchmark—key value store comparison: breakdown of latencies for two local data stores

provides an ordered mapping from string keys to string values. CouchDB is an open-
source document-oriented NoSQL database, implemented in Erlang that uses JSON
to store its data and MapReduce, and HTTP for an API. CouchDB is the default data
store layer in the IBM Fabric blockchain network architecture we use to cope with
temporary persistency and local caching.

Figure 9 demonstrates the total duration and throughput that each of the
following latencies incurs on the system for three granularities of writes (i.e., 1, 3
and 5 Input/Output writes). The impact of different ledger databases (i.e., Level DB
and CouchDB) is also investigated, in terms of average throughput and latency for
different transaction arrival rates. The results of Fig. 9 show that the transaction
throughput with the LevelDB is greater than with the CouchDB. The maximum
throughput measured with LevelDB was 450 tps while the couch database achieves
around 400 tps. The primary reason for this is because LevelDB is a database that
is contained in another database that processes transactions, while CouchDB relies
on REST API calls, which pass over a secure HTTP tunnel and additionally has a
delay of ledger updates and consequently result is in a lower throughput than the
throughput of LevelDB.

@ Springer

434 Distributed and Parallel Databases (2024) 42:403-445

Transaction Arrival Rate: Performance:
Response time for different block size Transaction Arrival Rate
(endorsers=3, neurons=16x16,block size=50) Ingestion size for different block size
(endor: =3, 8, epochs=32) (endorsers=3, channels=16)
200000 L L L L : 200000 L L L L :
Block size: 10 —— (block size: 10) ——
180000 - Block size: 30 kxXxx1 180000 - (block size: 30) ExXxx1
Block size: 50 (block size: 50) ¢
7 160000 - Block size: 100 160000 - (block size: 100) s
g 140000 < 140000
E . 2
o 120000 R 2 120000 %
£ £ b 4
= 100000 K| § 100000 ::
@ 5 o =2 4
£ 80000 X2 Kt § 80000 i
I N £
@ 60000 :1 :: £ 50000 :
X “ ¢
T 40000 X bt 40000 b
N N pE:
20000 ;1 Kt 20000 .
0 NE o] : 0 : ; :
25 50 75 100 125 150 175 25 50 75 100 125 150 175
Transaction Arrival Rate (tps) Transaction Arrival Rate (tps)

Time Performance:
Precentage of time for learning
(neurons=16x16, model=LSTM)

s=3, block si)
120
Learning (block size: 10) ——
Learning (block size: 30) kxxx1
100 | Learning (block size: 50) e «
“E’ _earning (block size: 100) m—
= 80
°
T 6ol [
g i
g g
g 4o s
] *
2 i
20 :
*
0 &

25 50 75 100 125 150 175
Transaction Arrival Rate (tps)

Fig. 10 Control experiment: the effect of various block sizes on latency, response and ingestion time

The results of Fig. 9 also show that as the CouchDB amount of writes per trans-
action rises, the latency of ledger updates increases. This is because CouchDB
locking schemes cost more than those of LevelDB. Particularly, during the time
of endorsement, the transaction acquires an exclusive lock to provide consistency
of the chain code, which negatively affects the performance, as it performs three
responsibilities for each transaction write set. That is, it firstly needs to retrieve
the key with the use of a receive request and search if it finds it on the database.
Secondly, it constructs an appropriate JSON scheme and lastly updates the DB
by registering the put request. This results in an extra delay to the methods of the
blockchain ledger phase.

In summary, the conclusion of this experiment has suggested that in order to
achieve better performance in the fabric open-source network, GoLevelDB should
be the best option for the blockchain operations. CouchDB, on the other hand,
is a better choice when the design principles for the application require fewer
read/write numbers of keys to validate a transaction. Moreover, CouchDB with a
special operation described in [58], will restrict the locking scheme latency and
will empower the overall performance.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 435

Training Time: NRMSE:
Training time for the whole different datasets For varying learning network
(neurons=16x16,block size=50) (neurons=16x16,block size=50)
(endorsers=3,channels=8) (endorsers=3,channels=8)
(epochs=32) (epochs=32)
12000 : 120 L
RNN —3 RNN —3
LSTM Exxx1 LSTM Exxx1
10000 [-| CNN ez 100 | CNN e
® 8000 M M 80
£ w
= -]
2 6000 . = 60
£ =
[
= 4000 ol 40
2000 ol 20
0 * u ¥ 0 .
TelcoDS MartaDS ~ SmartyDS TelcoDS MartaDS SmartyDS
Different Datasets Different Datasets
Disk space:

Space for varying learning network
(neurons=16x16,block size=50)
(endorsers=3,channels=8)
(epochs=32)

60 |

40

XX XX XX X]
RIRRIK

X
S

20

Disk space(% RAW data)
%% % %% %%
B X
i

>

%

X >
X

o
%

TelcoDS MartaDS SmartyDS
Different Datasets

Fig. 11 Control experiment—learning models: examining the storage capacity S and NRMSE of the pro-
posed Triabase approach while combined with various ML models

Experiment 10 was conducted to determine the size data page to be used in
the system. More specifically, the performance of application and storage levels
was examined using different page sizes. The results of the experiment are sum-
marized in Fig. 10, which shows the throughput (MB/s) of the system during the
submission/storage and retrieval of the models, respectively. We observe that, as
expected, larger models have a smaller (submission) throughput. This is because
they require longer process time, as they have larger number of pages (than
smaller models) and therefore, require more transactions to be stored. In addition,
we observe smaller page sizes resulting in higher throughput, which is due to the
reduction in the amount of data exchanged between network peers.

However, the use of very small pages is also not recommended, as the
transaction processing time (and not payload)—overhead—increases, and also
reducing the throughput. Similarly in the case of data entry, we observe that
the larger models have a lower (retrieval) throughput than the smaller ones.
This is again due to the large number of transactions required to retrieve their
multiple pages. Moreover, the results show that larger sizes (pages) have the
best performance, unlike above (insertion), since the number of pages recovered
is significantly smaller, thus reducing the overhead of data processing (and

@ Springer

436

Distributed and Parallel Databases (2024) 42:403-445

Performance Metric: Disk space:
Learning time for different number of neurons Capacity for different number of neurons
(model=LSTM,block size=50) (model=LSTM,block size=50)
(endorsers=3,channels=8) (endorsers=3,channels=8)
(epochs=32) (epochs=32)
; 100 b
x4 /3 P57 —]
8000 8x8 KXXxX1
80 || 16x16 ===z
’;8\ =z 32x32 mm—
2 6000 =
- S 60
(3 o
£ g %
= 1% 1%} o4 o
2 4000 K % 1 £ . |
£ 0% o 1] %0
£ % % g 5%
g & 2 @ B
3 2000 o e 1 20 % 1
5 K &
o & %
&
0 kxS 0
TelcoDS MartaDS SmartyDS TelcoDS MartaDS SmartyDS
Different Datasets Different Datasets
Accuracy:

NRMSE

Fig. 12 Control experiments:

network configurations

NRMSE for different number of neurons
(model=LSTM,block size=50)
(endorsers=3,channels=8)
(epochs=32)

60 L L

40

20

[0
1%
0
o
o
0
o
o
o
0
o

TelcoDS MartaDS SmartyDS
Different Datasets

training time, NRMSE and disk space for varying neurons and learning

increasing the throughput). This is mainly due to the fact that during the execution
of retrieval transactions no data exchange takes place between the peers of the
network (the consensus algorithm is not executed when reading data), which is
emphasized by the fact that the submission throughput retrieval is higher than the

retrieval throughput.

In addition, the Experiment 10 aims to study the system’s performance during
the management (insertion and retrieval) of large models. Test models and 10 MB
as the data page size were used for this evaluation. The data entry and retrieval were
done through the client simulator, while throughput (MB/s) was used again as the
evaluation of metric. The results in Fig. 10, are quite positive, since they saw that
Triabase can be used for larger models without problems. Also, we observe that
when the size of the model exceeds 400 MB the throughput of the system reduced in
both, the submission and the retrieval of data. In both cases, however, the submission
and retrieval throughput is fixed at approximately 3.5 and 9.4 MB, respectively.

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 437

Federated Learning: Federated Learning:
Accuracy in CPU for different iterations Accuracy in GPU for different iterations
(model=LSTM,block size=50) (model=LSTM,block size=50)
(endorsers=3,channels=8) (endorsers=3,channels=8)
1 | | 1 5
0.9 W
. 0.8 T #ﬁ
AT Ty
> 06 > 06
S os / F g o5 /7/
Q Q
< 04 7_! < 04 Z}[
0.3 0.3
0.2 / 0.2
hs=4 —— hs=4 —+—
ot chocncs — | chocncs — |
o epoc 3732+ o epocl sr —%—
Iterations Iterations
Federated Learning: Federated Learning:
Learning Loss in CPU for different iterations Learning Loss in GPU for different iterations
(model=LSTM,block size=50) (model=LSTM,block size=50)
(endorsers=3,channels=8) (endorsers=3,channels=8)
1 4 1 4
oo [1] [e = | os [-1-] Poenes =
0.8 l Jr ‘ epochs=32 —K— 08 ‘ \ ‘ epochs=32 —%—
§ o7 \ \ & o7 \ \
€ ool | € oo |1
= osil o\ < osil |
g oall X 1 g ol br
- 0.4 o 0.4
& o3 L X * i 3 o3 | £} \) " I
g o 1 = o |
ox D% T Ve kAN) 01,mwwm* .y
o L ex X ‘
0 0
0 10 20 30 40 0 10 20 30 40
Iterations Iterations

Fig. 13 Control experiments: fedarated training time, and loss for varying learning network configura-
tions and different iterations

6.3 Machine learning control experiment

Figure 11 examines the performance of the Triabase in terms of training time,
NRMSE, and percentage of raw when combined with three different ML mod-
els by performing the federated process, namely, the traditional Recurrent Neu-
ral Network (RNN), the Gated Recurrent Unit (GRU), and the Long Short Term
Memory (LSTM) which is finally adopted by our proposed approach.

The results show that Triabase maintains a similar training time for different
models for both Telco Marta and smarty datasets, with a slight decrease (about
5%) when the LSTM model is used. More specifically we observe that the worst-
case scenario is when we use the Recurrent Neural Network (RNN) and this is
happened due to gradient exploding and vanishing problems. Training RNN
is a completely difficult task because it requires slow and complex training
procedures. It finds difficulties in processing very lengthy sequences if the usage
of Tanh or Relu as an activation feature. In terms of NRMSE, however, the
Triabase and LSTM combination clearly outperforms the other two combinations
providing around 1-2% less error, on average.

@ Springer

438 Distributed and Parallel Databases (2024) 42:403-445

Submission Throughput: Model Size:
Throughput for submitting trained models Size for Different Compresssion Modules
created by different ML systems, varying the page size (model=LSTM, neurons=16x16,block size=50)
L L L L (endorsers=3,channels=8,epochs=32)
20 Tensorflow Lite(5,80) —— 1.6 L L L
PyTorch(18,81) Exxxa none ——
17.5 H Yolo(34,51) ez 14 F Compress—json
Darknet(42,12) m— Compressed-json &
15 L Tensorflow JS(100,61) 551 12k jsonpack
- : zipson ESS1
1

0.8

06

Throughput (tps)

04

Compresssion Model Bytes Ratio

0.2

.

DN PT Yolo
Page Size(MB) Model Size

Fig. 14 Control experiments: submitting ML models on blockchain/fabric experiment

Furthermore, Fig. 12 examines how the number of neurons of the LSTM model
influences the Triabase performance. The results support our previous observa-
tions on the scalability and efficiency of the proposed Triabase approach. The
increase in numbers of neurons, slightly increases the required storage space of
the Triabase system. This because the increase in the number of neurons results in
bigger models that require more disk space to be stored. The additional required
space, however, is almost negligible in comparison with the disk space needed to
store the raw data before the federated process. In terms of NRMSE, the increase
in the number of neurons does not influence the performance of the Triabase sys-
tem, since NRMSE remains almost the same while in almost all datasets.

Figure 13 illustrates, we compare the proposed approach with respect to the state-
of-the-art federated learning algorithm FedAvg [59]. This technique is also applied
from Google in the keyboard app for better improving the user query suggestions
[60].

Federated Setup: We use the CNN convolution layer and two dense layers.
The first two convolutional layers have 32 and 64 filters respectively and they are
responsible for setting the communication channels dynamically based on the width
and the height of the image. The pool size is set dynamically (2,2) and the kernel
size is 5. Moreover, convolution layers followed by a dropout [61] with a probability
of 0.7. The second convolution layer has also a flatten operation. The last two dense
layers are fully connected layers with 512 units activated by ReLu and a softmax
output layer.

Algorithmic settings: In all experiments the algorithmic parameters were
configured as follows: local mini-batch B = 20, the trained local epochs E = 10, the
total number of clients K = 500 and the fraction of clients that performs computation
at each round C = 0.05. The local training process for each client proceeds with the
SGD optimizer with a learning rate # = 0.001 and no weight decay.

Figure 13 illustrates the performance of the proposed approach in terms of learn-
ing accuracy and learning loss, respectively, for various epochs over two different
metrics. The results show that the proposed federated learning approach achieves
high accuracy (> 95%) and low learning loss (< 10%) with a small set of iterations

@ Springer

Distributed and Parallel Databases (2024) 42:403-445 439

for both CPU and GPU metrics. Moreover, the federated learning is performed faster
when the GPU version is used and increases while the number of epochs increase. In
particular, in the first 10 rounds, the training of the model converges faster and the
accuracy of the model increases with the increase of the epoch. After 35 rounds, the
accuracy is slightly reduced (by 2—4%) or remains the same, especially for the mod-
els trained with larger epoch values. This is due to the overfitting of the CNN model.

In addition from Fig. 13, we can observe that the learning loss is generally high at
the beginning and it highly depends on the epoch value. For example, at round 5, the
learning loss is around 0.5, which is relatively high when the epoch value is low. In
contrast, when the epoch value is high (> 8) then the learning loss is reduced, which
shows that the model converges. Moreover, the results show that when the epoch
value is 32, the learning loss is reduced to almost zero, after round 10. There are
also cases where the learning loss is high due to the overfitting but then it is reduced
again to a close to zero value after some iterations (e.g., in round 38).

Regarding Fig. 14, the data used in this experimental evaluation are machine
learning models, which are pre-trained on various Machine Learning hubs such as
the TensorFlow Hub and the Hugging Face. The dataset also includes models used
in Computer Vision. In particular, due to the valuable contribution of the sector in
the field of IoT and given the most extensive use of machine learning techniques in
the field of Computational Vision, this area is a typical example of the applicability
of the Triabase system that we thoroughly discussed in previous Sections. Further-
more, the dataset models have been trained in object detection, using the well-known
COCO dataset. In addition, it should be mentioned that the models implement dif-
ferent algorithms and/or architectures to achieve their task (object detection), such
as YOLO, SSD Mobilenet v2.

6.3.1 Further optimization

To further improve the performance of the proposed system and to achieve a lower
retrieval rate and ingestion time we also propose the following configurations:

— Number of units in dense layer: The dense layer is a layer where every neuron
gets input from every other neuron in the layer below, making it “densely linked.”
Dense layers increase overall accuracy, and a reasonable starting point is 5—10
units or nodes per layer. Therefore, the number of neuron/units given will have
an impact on the output form of the final dense layer.

— Dropout: A dropout layer should be included between each LSTM layer.
By excluding randomly chosen neurons, such a layer lessens the sensitivity to
particular weights of the individual neurons, preventing overfitting in training.
20% is a decent place to start, but the dropout rate should be maintained low (up
to 50%). The ideal balance between avoiding model overfitting and maintaining
model accuracy is generally agreed to be 20%.

— Decay rate: If no further weight update is planned, the weight decay may be
added to the weight update rule that causes the weights to decline exponentially

@ Springer

440 Distributed and Parallel Databases (2024) 42:403-445

to zero. The weights are multiplied after each update by a value slightly below 1,
preventing them from becoming too large. This describes network regularization.

— Activation function: Technically, activation functions could be included into
dense layers, but doing so would make it impossible to recover the density layer’s
decreased output.

— Momentum: Research has been done to combine the momentum hyperparameter
with RNN and LSTM. Momentum is a special hyperparameter that enables the
search to be guided by the accumulation of the gradients from previous steps
rather than just the current step’s gradient alone.

— Parameters setup: An effective strategy is to use the early stopping approach,
define a high number of training epochs, and terminate training as soon as
the model’s performance on the validation dataset stops increasing by a
predetermined threshold. 32 is generally recognized as a fair batch size default.
We also experiment by using multiples of 32 like 64, 128 and 256 to find the
most optimal use case.

— Adaptive Setup: Adaptive optimizer like Adam are advised to manage the
complicated training dynamics of recurrent neural networks (which a simple
gradient descent may not solve). by multiplying the total length of the sequence
by the loss terms added along the way. In turn, it will be simpler to reuse the
hyperparameters across tests since this will average out the loss throughout the
batch. Gradient spikes have the potential to screw up training parameters. To
avoid this, plot the gradient norm first (to determine its typical range) and then
scale down any gradients that are outside of this range.

7 Conclusions and future work

In this paper, we introduce Triabase, a novel permissioned blockchain system
architecture that applies data decaying concepts to cope with scalability issues in
regards to blockchain consensus and storage efficiency. For blockchain consensus,
we propose the PoFL algorithm which exploits data decaying models as Proof-
of-Work. For storage efficiency, we exploit federated learning to construct data
postdiction machine learning models to minimize the storage of bulky data on
the blockchain. We have prototyped Triabase in Hyperledger Fabric and assess
its performance using a variety of datasets from the IoT spectrum and Telco Big
Data Spectrum showing that the proposition can achieve superior storage capacity
and high throughput (i.e., ingestion and retrieval of data using the proposed data
postdiction ideas.

In the future, we aim to expand the experimental evaluation with additional
and more diverse machine learning models from platforms like Vertex AIL* which
integrates processes for data engineering, data science, and machine learning
engineering, allowing teams to work together using a single set of tools. We also
aim to assess Triabase in a realistic TBD edge computing scenario and expand the

4 Vertex AL https://cloud.google.com/vertex-ai.

@ Springer

https://cloud.google.com/vertex-ai

Distributed and Parallel Databases (2024) 42:403-445 441

experimental evaluation with additional and standardized benchmarking frameworks
when these become available. Finally, we aim to devise practical application
scenarios of federated learning and sort out the current challenges and future
research directions of data postdiction.

Author contributions A.B.C.E wrote the main manuscript text and A.B. prepared the experimental
evaluation results. All authors reviewed the manuscript.

Funding The authors did not receive support from any organization for the submitted work.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose. The pre-
last author is a Special Issue Coordinator of the Distributed and Parallel Databases journal. The last author
is on the Editorial Board of the Distributed and Parallel Databases journal.

References

1. Yao, L., Sheng, Q.Z., Dustdar, S.: Web-based management of the Internet of Things. IEEE Internet
Comput. 19(4), 60-67 (2015)

2. Fuqgaha, A.A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of Things: a sur-
vey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347-
2376 (2015)

3. Li, S., Xu, L.D., Zhao, S.: The Internet of Things: a survey. Inf. Syst. Front. 17(2), 243-259 (2015)

4. Atzori, L., Iera, A., Morabito, G.: The Internet of Things: a survey. Comput. Netw. 54(15), 2787—
2805 (2010)

5. Du, W., Atallah, M.J.: Privacy-preserving cooperative scientific computations. In: Proceedings of
14th IEEE Computer Security Foundations Workshop, pp. 273-282 (2001). https://doi.org/10.1109/
CSFW.2001.930152

6. Billsus, D., Pazzani, M.J.: Learning Collaborative Information Filters. In: Proceedings of the 15th
International Conference on Machine Learning. ICML °98, pp. 46-54. Morgan Kaufmann Publish-
ers, San Francisco (1998)

7. Atallah, M., Bykova, M., Li, J., Frikken, K., Topkara, M.: Private collaborative forecasting and
benchmarking. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society.
WPES ’04, pp. 103-114. Association for Computing Machinery, New York (2004). https://doi.org/
10.1145/1029179.1029204

8. Li, J., Wang, C., Kang, X., Zhao, Q.: Camera localization for augmented reality and indoor position-
ing: a vision-based 3D feature database approach. Int. J. Digit. Earth 13(6), 727-741 (2020). https://
doi.org/10.1080/17538947.2018.1564379

9. Chen, S., Xu, H., Liu, D., Hu, B., Wang, H.: A vision of IoT: applications, challenges, and opportu-
nities with china perspective. IEEE Internet Things J. 1(4), 349-359 (2014). https://doi.org/10.1109/
JIOT.2014.2337336

10. Costa, C., Zeinalipour-Yazti, D.: Telco big data research and open problems. In: Proceedings of the
35th IEEE International Conference on Data Engineering. ICDE19, pp. 2056-2059. IEEE Com-
puter Society, 8-12 April 2019, Macau SAR, China (2019). https://doi.org/10.1109/ICDE.2019.
00238

11. Costa, C., Chatzimilioudis, G., Zeinalipour-Yazti, D., Mokbel, M.F.: Efficient Exploration of Telco
big data with compression and decaying. In: 2017 IEEE 33rd International Conference on Data
Engineering (ICDE), pp. 1332-1343 (2017). https://doi.org/10.1109/ICDE.2017.175.2375-026X

12. Costa, C., Konstantinidis, A., Charalampous, A., Zeinalipour-Yazti, D., Mokbel, M.F.: Continuous
decaying of telco big data with data postdiction. Geolnformatica 23(4), 533-557 (2019)

@ Springer

https://doi.org/10.1109/CSFW.2001.930152
https://doi.org/10.1109/CSFW.2001.930152
https://doi.org/10.1145/1029179.1029204
https://doi.org/10.1145/1029179.1029204
https://doi.org/10.1080/17538947.2018.1564379
https://doi.org/10.1080/17538947.2018.1564379
https://doi.org/10.1109/JIOT.2014.2337336
https://doi.org/10.1109/JIOT.2014.2337336
https://doi.org/10.1109/ICDE.2019.00238
https://doi.org/10.1109/ICDE.2019.00238
https://doi.org/10.1109/ICDE.2017.175.2375-026X

442

Distributed and Parallel Databases (2024) 42:403-445

13.

15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Drakatos, P., Demetriou, E., Koumou, S., Konstantinidis, A., Zeinalipour-Yazti, D.: Triastore: A
Web 3.0 blockchain datastore for massive IoT workloads. In: 2021 22nd IEEE International Confer-
ence on Mobile Data Management (MDM), pp. 187-192 (2021). https://doi.org/10.1109/MDM52
706.2021.00038

Drakatos, P., Demetriou, E., Koumou, S., Konstantinidis, A., Zeinalipour-Yazti, D.: Towards a
blockchain database for massive IoT workloads. In: 2021 IEEE 37th International Conference on
Data Engineering Workshops (ICDEW), pp. 76-79 (2021). https://doi.org/10.1109/ICDEW53142.
2021.00021

Li, L., Fan, Y., Tse, M., Lin, K.-Y.: A review of applications in federated learning. Comput. Ind.
Eng. 149, 106854 (2020). https://doi.org/10.1016/j.cie.2020.106854

Mammen, P.M.: Federated learning: opportunities and challenges. arXiv Preprint (2021). arXiv.
arXiv:2101.05428 [cs]. https://doi.org/10.48550/arXiv.2101.05428. Accessed 17 Aug 2023

Zhu, J., Cao, J., Saxena, D., Jiang, S., Ferradi, H.: Blockchain-empowered federated learning: chal-
lenges, solutions, and future directions. ACM Comput. Surv. 55(11), 240-124031 (2023). https://
doi.org/10.1145/3570953

Lim, W.Y.B., Luong, N.C., Hoang, D.T., Jiao, Y., Liang, Y.-C., Yang, Q., Niyato, D., Miao, C.:
Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv. Tutor.
22(3), 2031-2063 (2020). https://doi.org/10.1109/COMST.2020.2986024

Khan, L.U., Saad, W., Han, Z., Hossain, E., Hong, C.S.: Federated learning for Internet of Things:
recent advances, taxonomy, and open challenges. IEEE Commun. Surv. Tutor. 23(3), 1759-1799
(2021). https://doi.org/10.1109/COMST.2021.3090430

Bravo-Marquez, F., Reeves, S., Ugarte, M.: Proof-of-learning: a blockchain consensus mechanism
based on machine learning competitions. In: 2019 IEEE International Conference on Decentralized
Applications and Infrastructures (DAPPCON), pp. 119-124 (2019). https://doi.org/10.1109/DAPPC
ON.2019.00023

Truex, S., Baracaldo, N., Anwar, A., Steinke, T., Ludwig, H., Zhang, R., Zhou, Y.: A hybrid
approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM Workshop on
Artificial Intelligence and Security. AlSec’19, pp. 1-11. Association for Computing Machinery,
New York (2019). https://doi.org/10.1145/3338501.3357370. Accessed 17 Aug 2023

Yang, Q., Liu, Y., Chen, T., Tong, Y.: Federated machine learning: concept and applications. ACM
Trans. Intell. Syst. Technol. 10(2), 12-11219 (2019). https://doi.org/10.1145/3298981

Amiri, M.J., Agrawal, D., Abbadi, A.E.: CAPER: a cross-application permissioned blockchain.
Proc. VLDB Endow. 12(11), 1385-1398 (2019). https://doi.org/10.14778/3342263.3342275
Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Fer-
ris, C., Laventman, G., Manevich, Y., Muralidharan, S., Murthy, C., Nguyen, B., Sethi, M., Singh,
G., Smith, K., Sorniotti, A., Stathakopoulou, C., Vukoli¢, M., Cocco, S.W., Yellick, J.: Hyperledger
fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the 13th
EuroSys Conference. EuroSys ’18, pp. 1-15. Association for Computing Machinery, New York
(2018). https://doi.org/10.1145/3190508.3190538

Wang, J., Wang, H.: Monoxide: scale out blockchains with asynchronous consensus zones. In: Pro-
ceedings of 16th USENIX Symp. Netw. Syst. Des. Implement. (NSDI), pp. 95-112 (2019)
Fernandez Anta, A., Georgiou, C., Herlihy, M., Potop-Butucaru, M.: Principles of Blockchain Sys-
tems. Synthesis Lectures on Computer Science, vol. 9(2), pp. 1-213 Springer, Cham (2021). https://
doi.org/10.2200/S01102ED1V01Y202105CSL014

Xu, C., Zhang, C., Xu, J.: vChain: enabling verifiable Boolean range queries over blockchain data-
bases. In: Proceedings of the 2019 International Conference on Management of Data. SIGMOD, pp.
141-158 (2019). https://doi.org/10.1145/3299869.3300083

Peng, Z., Xu, C., Wang, H., Huang, J., Xu, J., Chu, X.: P?B-Trace: privacy-preserving blockchain-
based contact tracing to combat pandemics. In: Proceedings of the 2021 ACM SIGMOD Interna-
tional Conference on Management of Data (2021). https://doi.org/10.1145/3448016.3459237

Dai, Y., Xu, D., Maharjan, S., Chen, Z., He, Q., Zhang, Y.: Blockchain and deep reinforcement
learning empowered intelligent 5G beyond. IEEE Netw. 33(3), 10-17 (2019). https://doi.org/10.
1109/MNET.2019.1800376

Reyna, A., Martin, C., Chen, J., Soler, E., Diaz, M.: On blockchain and its integration with IoT.
Challenges and opportunities. Future Gen. Comput. Syst. 88, 173—-190 (2018). https://doi.org/10.
1016/j.future.2018.05.046

Springer

https://doi.org/10.1109/MDM52706.2021.00038
https://doi.org/10.1109/MDM52706.2021.00038
https://doi.org/10.1109/ICDEW53142.2021.00021
https://doi.org/10.1109/ICDEW53142.2021.00021
https://doi.org/10.1016/j.cie.2020.106854
http://arxiv.org/abs/2101.05428
http://arxiv.org/abs/2101.05428
https://doi.org/10.48550/arXiv.2101.05428
https://doi.org/10.1145/3570953
https://doi.org/10.1145/3570953
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1109/COMST.2021.3090430
https://doi.org/10.1109/DAPPCON.2019.00023
https://doi.org/10.1109/DAPPCON.2019.00023
https://doi.org/10.1145/3338501.3357370
https://doi.org/10.1145/3298981
https://doi.org/10.14778/3342263.3342275
https://doi.org/10.1145/3190508.3190538
https://doi.org/10.2200/S01102ED1V01Y202105CSL014
https://doi.org/10.2200/S01102ED1V01Y202105CSL014
https://doi.org/10.1145/3299869.3300083
https://doi.org/10.1145/3448016.3459237
https://doi.org/10.1109/MNET.2019.1800376
https://doi.org/10.1109/MNET.2019.1800376
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1016/j.future.2018.05.046

Distributed and Parallel Databases (2024) 42:403-445 443

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: Scaling byzantine agree-
ments for cryptocurrencies. In: Proceedings of the 26th Symposium on Operating Systems Princi-
ples. SOSP, pp. 51-68 (2017). https://doi.org/10.1145/3132747.3132757

Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, L., Fischer, M.J., Ford, B.: Scala-
ble bias-resistant distributed randomness. In: 2017 IEEE Symposium on Security and Privacy (SP),
pp. 444-460 (2017). https://doi.org/10.1109/SP.2017.45

Li, C, Li, P,, Zhou, D., Xu, W., Long, F., Yao, A.: Scaling Nakamoto consensus to thousands of
transactions per second. arXiv Preprint (2018). arXiv:1805.03870 [cs]

Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.-L.: Blockbench: a framework for ana-
lyzing private blockchains. In: Proceedings of the 2017 ACM International Conference on Man-
agement of Data. SIGMOD 17, pp. 1085-1100. Association for Computing Machinery, New York
(2017). https://doi.org/10.1145/3035918.3064033

Drakatos, P., Koutrouli, E., Tsalgatidou, A.: Rapid blockchain scaling with efficient transaction
assignment. In: 2021 6th South-East Europe Design Automation, Computer Engineering, Computer
Networks and Social Media Conference (SEEDA-CECNSM), pp. 1-9 (2021). https://doi.org/10.
1109/SEEDA-CECNSM53056.2021.9566222

Drakatos, P., Koutrouli, E., Tsalgatidou, A.: Adrestus: secure, scalable blockchain technology in a
decentralized ledger via zones. Blockchain Res. Appl. (2022). https://doi.org/10.1016/j.bcra.2022.
100093

Sompolinsky, Y., Zohar, A.: Accelerating bitcoin’s transaction processing. Fast money grows on
trees, not chains. Citeseer (2013)

Eyal, L., Gencer, A.E., Sirer, E.G., Renesse, R.v.: Bitcoin-NG: a scalable blockchain protocol. In:
Proceedings of the 13th USENIX Symposium on Networked Systems Design and Implementation
(NSDI ’16), pp. 45-59 (2016)

Apostolaki, M., Zohar, A., Vanbever, L.: Hijacking bitcoin: routing attacks on cryptocurrencies. In:
2017 IEEE Symposium on Security and Privacy (SP), pp. 375-392 (2017). https://doi.org/10.1109/
SP.2017.29

Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery of blocks and
transactions in bitcoin. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. CCS ’15, pp. 692-705. Association for Computing Machinery, Denver
(2015). https://doi.org/10.1145/2810103.2813655. Accessed 6 June 2020

Kersten, M.L.: Big data space fungus. In: CIDR 2015, 7th Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, 4-7 January 2015, Online Proceedings (2015)

Yan, H., Ding, S., Suel, T.: Inverted index compression and query processing with optimized docu-
ment ordering. In: Proceedings of the 18th International Conference on World Wide Web. WWW
’09, pp. 401-410. Association for Computing Machinery, New York (2009). https://doi.org/10.1145/
1526709.1526764. Accessed 26 Sept 2022

Soroush, E., Balazinska, M.: Time travel in a scientific array database. In: 2013 IEEE 29th Interna-
tional Conference on Data Engineering (ICDE), pp. 98—109 (2013). https://doi.org/10.1109/ICDE.
2013.6544817

Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N.F.:
Compressing the incompressible with ISABELA.: in-situ reduction of spatio-temporal data. In: Jean-
not, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011 Parallel Processing. Lecture Notes in Computer
Science, pp. 366-379. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-23400-2_34
Bhattacherjee, S., Deshpande, A., Sussman, A.: PStore: an efficient storage framework for manag-
ing scientific data. In: Proceedings of the 26th International Conference on Scientific and Statistical
Database Management. SSDBM 14, pp. 1-12. Association for Computing Machinery, New York
(2014).https://doi.org/10.1145/2618243.2618268. Accessed 26 Sept 2022

You, L.L., Pollack, K.T., Long, D.D.E., Gopinath, K.: PRESIDIO: a framework for efficient archival
data storage. ACM Trans. Stor. 7(2), 6-1660 (2011). https://doi.org/10.1145/1970348.1970351
Bhattacherjee, S., Chavan, A., Huang, S., Deshpande, A., Parameswaran, A.: Principles of data-
set versioning: exploring the recreation/storage tradeoff. In: Proceedings of the VLDB Endowment.
International Conference on Very Large Data Bases, vol. 8(12), pp. 1346-1357 (2015). https://doi.
org/10.14778/2824032.2824035. Accessed 05 Apr 2021

Chaudhuri, S., Das, G., Narasayya, V.: Optimized stratified sampling for approximate query pro-
cessing. ACM Trans. Database Syst. 32(2), 9 (2007). https://doi.org/10.1145/1242524.1242526
Zeng, K., Agarwal, S., Dave, A., Armbrust, M., Stoica, I.: G-OLA: generalized on-line aggrega-
tion for interactive analysis on big data. In: Proceedings of the 2015 ACM SIGMOD International

@ Springer

https://doi.org/10.1145/3132747.3132757
https://doi.org/10.1109/SP.2017.45
http://arxiv.org/abs/1805.03870
https://doi.org/10.1145/3035918.3064033
https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566222
https://doi.org/10.1109/SEEDA-CECNSM53056.2021.9566222
https://doi.org/10.1016/j.bcra.2022.100093
https://doi.org/10.1016/j.bcra.2022.100093
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1109/SP.2017.29
https://doi.org/10.1145/2810103.2813655
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.1145/1526709.1526764
https://doi.org/10.1109/ICDE.2013.6544817
https://doi.org/10.1109/ICDE.2013.6544817
https://doi.org/10.1007/978-3-642-23400-2_34
https://doi.org/10.1145/2618243.2618268
https://doi.org/10.1145/1970348.1970351
https://doi.org/10.14778/2824032.2824035
https://doi.org/10.14778/2824032.2824035
https://doi.org/10.1145/1242524.1242526

444

Distributed and Parallel Databases (2024) 42:403-445

50.

S1.

52.

53.

54.

55.

56.

57.

58.
59.

60.

61.

Conference on Management of Data. SIGMOD °15, pp. 913-918. Association for Computing
Machinery, New York (2015). https://doi.org/10.1145/2723372.2735381. Accessed 26 Sept 2022
Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: queries with
bounded errors and bounded response times on very large data. In: Proceedings of the 8th ACM
European Conference on Computer Systems. EuroSys *13, pp. 29-42. Association for Computing
Machinery, New York (2013). https://doi.org/10.1145/2465351.2465355. Accessed 2022-09-26
Sidirourgos, L., Kersten, M., Boncz, P.: SciBORQ: scientific data management with bounds on runt-
ime and quality. In: Proceedings of the biennial Conference on Innovative Data Systems Research
(2011)

Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the 3rd Symposium
on Operating Systems Design and Implementation. OSDI *99, pp. 173-186. USENIX Association,
Berkeley (1999)

Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang.
Syst. 4(3), 382-401 (1982). https://doi.org/10.1145/357172.357176

Costa, C., Charalampous, A., Konstantinidis, A., Zeinalipour-Yazti, D., Mokbel, M.F.: Decaying
Telco big data with data postdiction. In: 2018 19th IEEE International Conference on Mobile Data
Management (MDM), pp. 106—-115 (2018)

Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: The blockchain model of cryptog-
raphy and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy
(SP), pp. 839-858 (2016). https://doi.org/10.1109/SP.2016.55

MARTA hackathon—dataset by brentbrewington. https://data.world/brentbrewington/marta-hacka
thon Accessed 15 Dec 2022

Sma-RTy—SMArt systems & aRTificial intelligence. https://sma-rty.com/ Accessed 15 Dec 2022
Apache CouchDB: https://couchdb.apache.org/. Accessed 15 Dec 2022

McMabhan, B., Moore, E., Ramage, D., Hampson, S., Arcas, B.A.y.: Communication-efficient learn-
ing of deep networks from decentralized data. In: Artificial Intelligence and Statistics, pp. 1273—
1282. PMLR (2017)

Yang, T., Andrew, G., Eichner, H., Sun, H., Li, W., Kong, N., Ramage, D., Beaufays, F.: Applied
federated learning: improving Google keyboard query suggestions (2018). arXiv:1812.02903 [cs,
stat]

Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using
DropConnect. In: International Conference on Machine Learning, pp. 1058—-1066. PMLR (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

https://doi.org/10.1145/2723372.2735381
https://doi.org/10.1145/2465351.2465355
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/SP.2016.55
https://data.world/brentbrewington/marta-hackathon
https://data.world/brentbrewington/marta-hackathon
https://sma-rty.com/
https://couchdb.apache.org/
http://arxiv.org/abs/1812.02903

Distributed and Parallel Databases (2024) 42:403-445 445

Authors and Affiliations

Panagiotis Drakatos' - Constantinos Costa'> - Andreas Konstantinidis'? -
Panos K. Chrysanthis'? - Demetrios Zeinalipour-Yazti'

P4 Demetrios Zeinalipour-Yazti
dzeina@ucy.ac.cy

Panagiotis Drakatos
pdraka01@ucy.ac.cy

Constantinos Costa
costa.c@cs.pitt.edu

Andreas Konstantinidis
com.ca@frederick.ac.cy

Panos K. Chrysanthis

panos @pitt.edu

Department of Computer Science, University of Cyprus, 2109 Nicosia, Cyprus
Department of Computer Science, Frederick University, 1036 Nicosia, Cyprus

Department of Computer Science, University of Pittsburgh, Pittsburgh 15260, USA

@ Springer

	A blockchain datastore for scalable IoT workloads using data decaying
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Federated learning
	2.2 Blockchain data management
	2.3 Compacting data
	2.3.1 Data decaying
	2.3.2 Compressing incremental archives
	2.3.3 Data synopsis

	3 The Triabase architecture
	3.1 Storage layer
	3.2 Data postdiction layer
	3.3 Application layer

	4 The Triabase prototype system
	4.1 Overview
	4.2 Setup
	4.3 Graphical user interface
	4.4 Query evaluation and processing
	4.5 Query exploration interfaces
	4.6 Compression

	5 Experimental testbed and methodology
	5.1 Datasets
	5.2 Metrics
	5.3 Testbed and workloads

	6 Experimental evaluation results
	6.1 Data decaying evaluation
	6.2 Blockchain control experiments
	6.3 Machine learning control experiment
	6.3.1 Further optimization

	7 Conclusions and future work
	References

