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Abstract
The Internet of Things (IoT) revolution has introduced sensor-rich devices to an ever 
growing landscape of smart environments. A key component in the IoT scenarios of 
the future is the requirement to utilize a shared database that allows all participants 
to operate collaboratively, transparently, immutably, correctly and with performance 
guarantees. Blockchain databases have been proposed by the community to alleviate 
these challenges, however existing blockchain architectures suffer from performance 
issues. In this paper we introduce Triabase, a novel permissioned blockchain system 
architecture that applies data decaying concepts to cope with scalability issues in 
regards to blockchain consensus and storage efficiency. For blockchain consensus, 
we propose the Proof of Federated Learning (PoFL) algorithm which exploits data 
decaying models as Proof-of-Work. For storage efficiency, we exploit federated 
learning to construct data postdiction machine learning models to minimize the 
storage of bulky data on the blockchain. We present a detailed explanation of 
our system architecture as well as the implementation in the Hyperledger fabric 
framework. We use our implementation to carry out an experimental evaluation 
with telco big data at scale showing that our framework exposes desirable qualities, 
namely efficient consensus at the blockchain layer while optimizing storage 
efficiency.

Keywords  Blockchain · Data decaying · Storage and retrieval

1  Introduction

Internet of Things (IoT) refers to a large number of physical devices being connected 
to the Internet that are able to see, hear, think, perform tasks as well as communicate 
with each other using open protocols [1–4]. IoT devices are connected to Cloud and 
Edge computing appliances through massively parallel I/O channels (e.g., 5G, Wi-Fi 
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6) with millisecond latency offering new opportunities in industrial optimization, 
human health, and well-being as well as safety. This will procreate tremendous 
opportunities for IoT applications between multiple parties, such as collaborative 
multitasking techniques [5], machine learning [6], cooperative benchmarking [7], 
and augmented reality technology [8].

A key component in the IoT scenarios of the future is the requirement to utilize 
a shared database that allows all participants to operate collaboratively with more 
functionality. The shared database can bridge the actual gap between the data 
generated from the IoT applications [9] and the rate that these are processed and 
analyzed in real-time. The objective is to enable users execute updates and queries 
on the collaborative database while preserving a consistent view among all users 
maintaining the system consistency and transparency. Moreover, it is essentially 
common to be compromised by malicious outsources. To mitigate the problem 
described, an innovative design of a shared database with high performance is 
required for all the participants, in order to collaborate among each other with trust. 
Blockchain databases have been proposed by the community to alleviate these 
challenges, however existing blockchain architectures suffer from performance 
issues measured in terms of throughput and latency. In this situation, the 
transactions are basically executed in a sequential manner and this, in conjunction 
with confidentiality issues, does not leave much space for scaling.

It is imperative to devise a database architecture that can withstand billions of 
transactions per second, as opposed to thousands transactions per second that is 
currently the case for typical blockchains due to the expensive verification cost. For 
example, the popular Bitcoin network typically supports transaction ingestion rates 
of 7 s/TX, Hyperledger Fabric: 3000 TX/s and Bitcoin Satoshi Vision (SV): 9000 
TX/s. In an IoT environment however, the ingestion rate is usually much higher 
and even more distributed, which calls for new architecture types we discuss in this 
work.

In order to motivate our description, we now explain a Web 3.0 scenario in the 
scope of Telco Big Data (TBD) [10]. A telecommunication company (telco) is 
traditionally only perceived as the entity that provides telecommunication services, 
such as telephony and data communication access to users. However, the radio and 
backbone infrastructure of such entities spanning densely most urban spaces and 
widely most rural areas, provides nowadays a unique opportunity to collect immense 
amounts of data that capture a variety of natural phenomena on an ongoing basis, 
e.g., traffic, commerce, mobility patterns and user service experience [10–12]. The 
ability to perform analytics on the generated big data within tolerable elapsed time 
and share it with key TBD enablers (e.g., municipalities, public services, startups, 
authorities, and companies), elevates the role of telcos in the realm of future smart 
cities from pure network access providers to information providers. Consider a 
TBD scenario in which telcos aim to share network health data from cell towers 
(e.g., signal strength, call drops, bandwidth measurements) with public authorities 
for monitoring and compliance (e.g., EMF-compliance). Huawei alone reports 
5 TBs/day for 10 M clients (i.e., 2 PB/year) for Shenzhen, China, for a respective 
telco big data scenario. From an architectural perspective the challenge is how to 
transparently and immutably store the collected massive velocity data at the edge 
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of each telecommunication network in order to facilitate efficient and scalable data 
sharing and access. Storing big data in a centralized way is not a preferable choice, 
because it doesn’t fulfill any of these requirements.

In this paper we propose Triabase1 (inspired from Greek “Tria”, meaning 
“three”), being a database architecture designed for the Web 3.0 era. This new 
era envisions a more decentralized and open Web with greater utility for its users, 
beyond the original Semantic Web vision being trust-less and permission-less and 
entailing Machine Learning, IoT and Artificial Intelligence. Triabase is a block-
chain datastore system that carries out machine learning on IoT feeds at the edge, 
abstracts machine learning in primitive blocks that are subsequently stored and 
retrieved from the blockchain. In a permissioned blockchain the distributed ledger 
is not publicly accessible and we use this formulation for to ease the uptake without 
hindering the uptake of permission-less counterpart trust solutions in the future. In 
Triabase, we have two types of nodes those that store the entire shared database, and 
the others that use the database for their own operations, such as sending query and 
update requests to the blockchain shared ledger. We expect the blockchain nodes to 
be synchronized under the decentralized blockchain network. The clients that use 
the blockchain only for database operations store only the appropriate block header 
in contrast with the full nodes that store the entire blockchain ledger. Triabase is 
organized in a tiered architecture (see Fig. 1) that comprises of: (i) a Storage layer, 
which includes a local document store and blockchain node used for distributed data 
retrieval; (ii) a Data Postdiction layer, which abstracts locally-ingested data into 
machine learning models using federated learning; and (iii) an Application layer that 
includes APIs and access methods to initiate the search and retrieval functions at the 
application layer.

Our proposed Triabase architecture, has a number of provisionings to cope 
with the network bottleneck for the bulk of conventional machine learning models 
available in different sectors. Typical models found on Vertex.ai might be up to 
several GB capturing a range of applications from Computer Vision, Generative AI, 
MLOps and general Data Science. Our proposed Triabase system, is agnostic of the 
model type and size, as it essentially abstracts raw data into data postdiction models. 
This provides generality as it is not bound to specific types of ML models. To cope 
with large scale models, we utilize a combination of techniques enumerated below: 

	 (i)	 we provide the possibility to transcode ML models down to lighter versions 
using fp16 (floating point 16) editions, which are typically also deployed in 
scenarios of tinyML and tensorflow lite on mobile devices. In this case, an 
original model size of 20 GB can be reduced in half or more down to 4–5 GB;

	 (ii)	 we optimize SQL queries by implementing batching principles that allow to 
minimize the communication cost in the execution of continuous queries on 
velocity data emerging from IoT scenarios. By minimizing the number of 
federated learning parameters that are communicated during the execution of 
a query, we can dramatically reduce the network load;

1  Triabase. https://​triab​ase.​cs.​ucy.​ac.​cy/.

https://triabase.cs.ucy.ac.cy/
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	 (iii)	 we implement sharding, which is a popular on-chain scalability method that 
focuses on scattering the blockchain network into more controllable, smaller 
units known as shards. The shards would then be executed concurrently by 
the network and process a fraction of the group’s transaction load; and

	 (iv)	 We use a scalable consensus algorithm that provides greater scalability 
and transaction throughput. Byzantine Fault Tolerance (BFT) consensus 
techniques have been one of the most reliable tools for dealing with the 
Byzantine Generals Problem. BFT generally refers to a distributed system 
characteristic that suggests the necessity for continual consensus, despite 
multiple antagonistic participants in the network.

For extremely large models, like proprietary GPT-4 (OpenAI) or BART (Google), 
designated data centers with high performance HPC with NVLink, SmartNIC and 
RDMA might be necessary, but these remain outside the scope of this work.

This paper builds on our previous work in [13, 14], in which we presented 
the preliminary design and results of our Triabase architecture. In this paper 

Fig. 1   The Triabase architecture layers



407

1 3

Distributed and Parallel Databases (2024) 42:403–445	

we propose several new improvements, particularly a structured and tiered 
architecture along with an extensive description of implementing the architecture 
in the Hyperledger Fabric framework (including relevant algorithms and 
techniques). Additionally, all our propositions are evaluated using real telco data 
in a prototype architecture we have developed. The overall contributions of our 
work are summarized as follows:

–	 We introduce Triabase, a platform for a permissioned blockchain datastore that 
employs data decaying principles to ingest massive amounts of IoT data swiftly;

–	 We propose a new consensus empowering collaborative mechanism namely 
PoFL to share parameters over distributed multiple parties to reduce the risk of 
data leakage and to protect federated nodes from being tampered;

–	 Triabase integrates the fabric open-source platform to provide a more realistic 
blockchain assessment using Telco Big Data.

The remainder of this paper is structured as follows. Background and related work is 
included in Sect. 2. An overview of the Triabase architecture is presented in Sect. 3, 
where we discuss the specific internal techniques of each layer in our architecture. 
Section 4 presents our prototype architecture and its user interfaces. In Sect. 5, we 
describe our experimental methodology, the datasets, and evaluation metrics while 
Sect.  6 presents our experimental results. Finally, we summarize our conclusions 
and future work in Sect. 7.

2 � Background and related work

In this section we overview the background and related work with a focus on: (i) 
federated learning; (ii) blockchain data management; and (iii) data decaying, both of 
which are instrumental in the design of our architecture.

2.1 � Federated learning

Federated learning [15] is a machine learning approach that protects privacy by 
training models on several devices using local data samples without needing to send 
the whole model to the aggregators but instead only an updated version. Federated 
learning presents a number of difficult challenges, including coordinating member 
actions, adjudicating participant rewards, and aggregating models. The majority 
of systems now in use have a centralized approach, requiring coordination from a 
reliable central authority. Such a strategy has a number of drawbacks, such as assault 
susceptibility, lack of trust, and challenges in estimating incentives [16].

To properly protect the privacy of companies and customers, several federated 
learning issues must be addressed. The authors of [17] categorize existing system 
models into three classes: decoupled, coupled, and overlapped, according to how 
the federated learning and blockchain functions are integrated. Then, they compare 
the advantages and disadvantages of these three system models, especially focusing 



408	 Distributed and Parallel Databases (2024) 42:403–445

1 3

on the challenges issues on BlockFed, and investigate corresponding solutions. 
Finally, they identify and discuss the future directions, including open problems in 
BlockFed. In another survey, authors of [18] explained the rationale behind MEC 
(Mobile Edge Computing) and discussed how Federated Learning may be used 
as an enabling technology for group model training at mobile edge networks. The 
foundations of DNN model training, Federated Learning, and system architecture 
for Federated Learning at scale are then discussed. They also provide thorough 
assessments, analyses, and comparisons of various implementation strategies for 
new implementation difficulties in Federated Learning. Costs associated with 
communication, resource allocation, data privacy, and data security are among the 
problems. Additionally, the authors talk about how Federated Learning may be used 
for privacy-preserving mobile edge network optimization. Finally, they talk about 
problems and potential future study areas. In addition in article [19] the authors of 
this article build FedIoT platform that includes the FedDetect algorithm for detecting 
anomalous data on-device and a system architecture for federated learning on IoT 
devices. Furthermore, the authors are building FedDetect learning framework, 
which boosts performance by employing a cross-round learning rate scheduler and 
a local adaptive optimizer (such as Adam). They analyze the model and system 
performance of the FedIoT platform and the FedDetect algorithm. The results show 
that federated learning is effective in identifying a greater variety of attack types that 
happened at numerous devices. According to the system efficiency study, end-to-end 
training time and memory costs are reasonable and show promise for IoT devices 
with limited resources.

The authors of [20], remediate this problem by introducing the concept of 
proof-of-learning in ML. Inspired by research on both proof-of-work and verified 
computations, they observe how a seminal training algorithm, stochastic gradient 
descent, accumulates secret information due to its stochasticity. This produces 
a natural construction for a proof-of-learning which demonstrates that a party 
has expended the compute require to obtain a set of model parameters correctly. 
In particular, their analyses and experiments show that an adversary seeking to 
illegitimately manufacture a proof-of-learning needs to perform at least as much 
work as is needed for gradient descent itself. They also instantiate a concrete proof-
of-learning mechanism in both of the scenarios described above. In model ownership 
resolution, it protects the intellectual property of models released publicly. However, 
the authors lack the novelty of how the distributed process happens and how the 
nodes reach agreement or decide to commit blocks and how we can protect the 
privacy of the data. Furthermore, they are not targeting IoT devices and finally, there 
is a condition to adjust a lot of parameters.

Since federated learning is advocated as a solution to the issue of privacy data 
protection in machine learning, we must make sure that the training model in 
federated learning does not divulge users’ personal data [21]. In a dispersed context, 
the quantity of data on each mobile device is insufficient, while a big amount of 
data is needed to train a model with high performance in classical machine learning 
[22]. On the other side, centralizing data collection might result in significant costs. 
For that reason, federated learning mandates that each device utilize local data to 
train the local model, which is subsequently aggregated into a global model on the 
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server. In the federal environment, there are many edge devices, and the data stored 
on these devices may not be independent and identically distributed (Non-IID).

2.2 � Blockchain data management

The main usage of the blockchain architecture is to keep records on an immutable 
chain of blocks, so later on, nodes agree on the shared state across a network of 
untrusted participants. Thus, it forms the blockchain platform that can be viewed 
as a distributed (transaction-log or) database system. The blocks are agreed by the 
majority of validators according to the consensus protocols that tolerate Byzantine 
faults. The most well-known platforms include Capera [23], Hyperledger [24], 
Monoxide [25]. This design does not require a centralized server and operates 
in untrusted environments of arbitrary nodes. The state of the art and technical 
emphasis on the most recent developments in the underpinnings of blockchain 
systems are first presented in this book [26]. It addresses hot topics in blockchains 
from a theoretical perspective, including cryptographic primitives, consensus, 
formalization of blockchain properties, game theory applied to blockchains, 
and economic issues. It is a collaborative work between experts in cryptography, 
distributed systems, formal languages, and economics.

The authors of [23] introduce a system named Caper, a permission blockchain 
architecture based on an acyclic graph and on three consensus protocols to support 
internal and all cross-application transactions. Moreover, [27] introduces a novel 
framework, called vChain, which is able to improve the storage and computing costs 
of the user and employs verifiable queries to ensure the system integrity. The design 
of a privacy-preserving contact tracing framework to ensure the integrity of the 
tracing procedure has not been sufficiently studied and remains a challenge. In paper 
[28], the authors propose P2B-Trace, a privacy-preserving contact tracing initiative 
based on blockchain and privacy-preserving principles are a future direction of our 
proposed architecture.

Artificial intelligence along with the integration of blockchain technology 
is a great promise to solve various resource optimization problems. For instance, 
the merit of the two technologies is proposed in [29] providing a secure resource 
sharing scheme by developing a caching mechanism with the usage of DRL 
(Deep Reinforcement Learning). Reyna et al. [30] introduced how blockchain may 
potentially improve the IoT environments and how blockchain can protect from 
IoT security problems. However, AI algorithms, which are vulnerable to security 
threats depend much on centralization approaches, a fact that has a negative impact 
on improving efficiency, because it consumes a large number of communication 
resources.

Moreover, a considerable interest in the blockchain field is the scalability and 
performance characteristics of blockchain networks. Algorand [31] and RandHound 
[32] achieve high scalability by randomly selecting a subset of validators to 
participate in the consensus, while they maintain and guarantee the same security 
level with other blockchain infrastructure. Other works [33] use directed acyclic 
graphs instead of a blockchain structure and they ensure that the average amount 
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of time for each transaction is reduced. Blockbench [34] was the first to look for 
permissioned blockchain in the context of benchmarking. They present an approach 
for comparing the performance of different platforms including Ethereum Parity, and 
Hyperledger Fabric by using a set of micro and macro benchmarks. Furthermore, 
[24] introduces the architecture of fabcoin which presents the performance of bitcoin 
in Fabric. The research [35, 36] presents Adrestus which describes what techniques 
cryptocurrencies should adopt to build a scalable cryptocurrency with enhanced 
security.

Ghost protocol [37] is a well-prominent work paper that leverages existing 
problems on PoW algorithms, in order to prevent malicious attackers to create 
forks in the network by following selfish mining attacks. Moreover, some other 
recommendations come next to improve the scalability of blockchain. Bitcoin-NG 
[38] is a distributed fault tolerant protocol designed to scale the blockchain 
architecture, which claimed the same trust model as Bitcoin. Although Bitcoin-NG 
increases the overall throughput, it is still vulnerable to these kinds of attacks [39, 
40]. However, it goes beyond the state of the art and can be seen as an enhancement 
of the existing models, improving the performance and focusing on the achievement 
of better security, scalability, and robustness.

2.3 � Compacting data

There are a variety of techniques to compact data, ranging from compression 
algorithms [11] to data synopsis and data decaying ideas, described in this section.

2.3.1 � Data decaying

This refers to the progressive loss of detail in information as data ages with time 
until it has completely disappeared. Kersten refers to the existence of data fungus in 
[41] with a decaying operator coined “Evict Grouped Individuals (EGI)”. The given 
EGI operator performs biased random decaying, resembling the rotting process in 
nature (e.g., in fruits with fungus). In our previous work [12], we used the First-In-
First-Out (FIFO) data fungus, i.e., “Evict Oldest Individuals”, which retains full 
resolution for recent data but abstracts older data into compact aggregation models. 
Both EGI and FIFO do not retain full resolution for important instances that occurred 
in the past. Consequently, data would have been rotted and purged either randomly 
or based on its timestamp. We call this the long-term dependency problem. In [12], 
we chose a radically new decaying technique that could be termed as LSTM data 
fungus, which is explicitly designed to avoid the long-term dependency problem. 
Particularly, the TBD-DP operator replaces the data with abstract LSTM models, 
which capture the essence of the past, i.e., both recent data and important old data is 
retained at the highest possible resolution. There are a variety of amnesia functions, 
namely FIFO amnesia, UNIFORM amnesia, SPATIAL amnesia and query-based 
amnesia that differ in the predicate used for amnesia function.
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2.3.2 � Compressing incremental archives

Scientific simulation floating point data [42–45], spatiotemporal climate data 
[43], text document collections [42], and data streams, are all frequently use 
domain-specific compression algorithms. The trade-off between compression 
ratio and decompression times for incremental archive data has also been studied 
using differential compression algorithms in a number of research investigations 
[46, 47]. However, none of these earlier studies have ever suggested a 
method for addressing data decay in distributed systems that are special to 
telecommunications companies.

2.3.3 � Data synopsis

This is the procedure of picking a subset of data pieces at random from a sizable 
dataset. Using probabilities and statistics, sophisticated approaches like Bernoulli 
and Poisson sampling select data items. Stratified sampling was suggested by 
Chaudhuri et al. [48] when the likelihood of the selection was biased. Zeng et al. 
[49] implemented G-OLA, a model that generalizes online aggregation in order 
to accommodate general OLAP queries using delta maintenance techniques, in 
order to deal with the huge data sampling problem. In particular, BlinkDB [50] 
uses dynamic sampling methods to let users select the error bounds and query 
response times. A system called SciBORQ [51] enables users to select the level 
of the query result’s quality based on a variety of intriguing data samples known 
as impressions.

3 � The Triabase architecture

In this section, we present the tiered architecture of Triabase, which comprises of 
a Storage Layer, Processing/Indexing Layer and the Application Layer.

3.1 � Storage layer

We introduce the proposed Storage Layer of Triabase, and discuss its two internal 
routines, namely: (i) Proof of Federated Learning (PoFL) routine, which trains 
in a distributed manner a global model for the ingested data; and (ii) Blockchain 
Consensus routine, which commits this generated model data on permissioned 
blockchain datastore. The core functionality of our proposition is illustrated at a 
high level in Algorithm 1. The first routine of Triabase is the PoFL, which utilizes 
a convolution network loss function to train the local models across multiple 
decentralized edge nodes holding local data samples, without exchanging them. 
The final goal is to compute an average model and to converge fast with high 
learning accuracy. The second routine of Triabase is the blockchain process that 
is triggered after a respective leader election process takes place. The blockchain 
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process is responsible to collaboratively maintain the blockchain structure, 
endorse new transactions from blockchain nodes, and is partially responsible for 
the 2-step consensus protocol.

(A)	 Triabase storage: The Bitcoin protocol uses a PoW (Proof-of-Work) consensus 
mechanism to validate users’ transactions in the blockchain. This is associated 
with an extremely high energy consumption bill, which is unnecessary in a 
private (permissioned) blockchain where contributing nodes are of higher trust. 
Yet, provisioning a consensus mechanism is still necessary in order to provide 
an incentive to participating nodes to contribute to the transaction verification 
process. To this end, in this work we propose such a consensus mechanism that 
relies on Federating Learning, as such, is coined Proof of Federated Learning 
(PoFL).

Algorithm 1   Triabase: proof of federated learning blockchain consensus

	   Particularly, our system ingests model weights (constructed from raw data 
D which will be described in the next section), and generates a global model 
M every t epochs with weights Wt in a distributed manner through federated 
learning. This procedure has two usages: (i) it contributes to the transaction 
verification process at the blockchain layer; and (ii) it helps in the reduction 
of space at the storage layer, as our framework stores now only Wt on disk as 
opposed to the raw data D. The storage layer is complemented with a local 
datastore for caching and handling of intermittent network connectivity, which 
however does not affect the overall philosophy of the system architecture where 
all data blocks have to eventually be committed to the blockchain layer. To 
improve performance in Triabase, we minimize the amount of data committed 
to the blockchain layer through data decaying principles, namely through the 



413

1 3

Distributed and Parallel Databases (2024) 42:403–445	

storage of a data postdiction model that allows for the retrieval of stored data 
through abstract models trained through federated learning.

	   In this section, we focus on the Triabase Storage Consensus algorithm (i.e., 
Proof of Federated Learning (PoFL)), which entails the first contribution of 
this work. Particularly, in Algorithm 1, we show the overall execution of the 
blockchain consensus routine. The process starts in lines 1–2 with a leader 
election routine followed by a view_number routine, both of which take as input 
the blockchain network N and the epoch t. The former yields the leader l while 
the later infers the fabric consensus round, which helps in the convergence of 
the consensus process and guarantees the liveness of the consensus protocol. 
Subsequently, in line 3 the transaction is bootstrapped and passes through two 
stages: the PRE-PREPARE stage (lines 5–12) and the LEDGER-UPDATE 
stage (lines 13–18). The PRE-PREPARE stage starts out by having the leader 
l computing the blockchain difficulty, which is derived based on the length of 
the blockchain ( alpha = bcdepth(t-1) ). Particularly, longer chains are expected to 
be more difficult compared to shorter chains. Based on the above a Triabase 
data block is constructed and broadcasted in the network for storage (i.e., lines 
8–11). The LEDGER-UPDATE stage basically wraps up the communication by 
carrying out a final commit broadcast (lines 13–18).

	   Blockchains require to be versatile to different type of storage technologies. 
For this reason, our system architecture deploys pluggable local document 
stores. We have assessed two different types of NoSQL stores in our design, 
namely a CouchDB (default for Hyperledger Fabric) and LevelDB and provide 
experimental evidence for the utility of each of these storage layers and the 
impact they have on our overall system architecture.

(B)	 Triabase Consensus Workflow: The overall scheme of Triabase is shown in 
Fig. 2. The process starts with the local training of the model on user’s data. 
After that, the communication process takes place where all users broadcast and 
upload the appropriately trained models to the blockchain nodes and store them 
as transactions to the distributed ledger. The blockchain node that was the winner 

Fig. 2   Triabase blockchain consensus workflow
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from the previous round (depends on the blockchain difficulty) is responsible 
for initiating a 2-step consensus protocol and construct the blocks with all the 
cached transactions that are not validated yet. In addition, the winner node is in 
charge of aggregating the local model of clients and producing a shared model 
by putting it as the first transaction in the block, so later on, the federated learn-
ing nodes can access it in the next round r + 1. Our PoFL consensus protocol 
contemplates that users who participate in the blockchain process get rewarded 
with training coins for their contribution in the whole algorithm (e.g, system 
usage coins contributed by participating parties). The coins of each user are 
awarded according to the performance in the training process. Particularly, feder-
ated nodes converging faster and achieving more accuracy are rewarded higher. 
The node that receives highest accuracy considering the difficulty of the block 
is recognized as the winner of round r. Furthermore, in every training round the 
coins will be adjusted to the users depending on their work.

	   Nevertheless, to secure our protocol and ensure that every user will obey the 
protocol, we introduce a new hierarchy of nodes that we called peacemaker 
entity. This entity is responsible to observe the correctness of the protocol 
followed by all the federating nodes. For example, users that refuse to cooperate 
with the protocol will get no payment for their work. Moreover, users that will try 
to get more rewards and try to counterfeit the correctness of the whole process 
will not be rewarded by the peacemaker entity. The peacemaker will then claim 
the adjusted coins as it’s own reward for it’s effort in the protocol correctness. 
Initial coins will be delivered to all participants as rewards after every epoch, 
it will also be available to claim after each block creation to those who prove 
correctness with the digital signatures. We set a minimum of 30 coins as the 
default setting, like Bitcoin used to have at the early stages generated for every 
block and spread it to validators.

(C)	 (C) Consensus Protocol: The two steps of the consensus protocol, summarized 
in Algorithm 1, include the execution of the PBFT [52, 53] algorithm and 
the notation of the detector. The orderer collects all the received transactions 
along with some endorsement proposals, constructs a new block, and initiates 
the 2-step phase by sending the proposal block to all blockchain nodes for 
verification.

	   In particular, the orderer broadcasts a pre-specified message to all fabric nodes 
to initiate the protocol. The message contains the proposed block Bid, the current 
epoch t, the current leader l based on the view number u (used for the PBFT [52] 
participation) and the block difficulty f that relies on the height of the blockchain. 
Then all fabric nodes n ∈ N echo the same message until the majority of them 
receive at least a quorum of 3f + 1 valid messages. Each blockchain node checks 
the validity of all transactions that exist in a block, by analyzing the endorsement 
policy from the assigned peers.

	   The detector is responsible for supervising that all the appropriate nodes 
comply with the endorsement policy and only the applicable peers join the 
process. The latter ensures that the client is not compromised and does not 
incorporate invalid results that may cause erroneous behavior to the Triabase 
blockchain.
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(D)	 Ledger Update: After the fulfilment of the consensus protocol, the invoking 
process is called in which: (i) each client updates its copy of the ledger; and 
(ii) each client is notified about the ledger updates. In the proposed Triabase 
algorithm, the learning process is executed locally, i.e., trains machine learning 
models locally. Furthermore at the edge division, all local models are aggregated 
iteratively (in multiple rounds) to construct the final models, which are then 
stored in the blockchain (during the invoking process). We assume that all edge 
server nodes have enough computing and caching resources for completing 
complex calculations and maintaining the blockchain, in order to store the 
federated learning parameters collected from the users.

3.2 � Data postdiction layer

The major objective of this layer is to reduce the query response time and keeping 
the storage capacity low by using data decaying concept.

The core idea of the layer is to deploy Data Postdiction (DP), which is a 
technique that attempts to restore historical data from tuples that have been 
deleted in order to free up disk space [11, 12, 54]. Unlike data prediction, which 
aims to make a statement about the future value of some tuple, data postdiction 
aims to make a statement about the past value of some tuple, which does not exist 
anymore as it had to be deleted to free up disk space. Application send a query 
to compact models that can be stored and queried when necessary and with the 
notation of DP we recreate the past value of some tuple, which has been deleted 
to reduce the storage requirements, using a ML model from the compacted model. 
The DP operator has been modified to employ federated learning to transform IoT 
and telecommunications data into machine learning models that can be saved and 
retrieved on a blockchain network as needed. The DP operator utilizes an index to 
obtain the transactions found in the Blockchain after the successful completion of 
the federated learning and stores them to the temporal base index for quick retrieval.

In Fig. 3 we describe an ordinary ML training pipeline. Training set Dtrain and 
test set Dtest are created from the data D that is streaming to Triabase. Cache values 
received then batch and shuffle data and prepare for processing. A training algorithm 
� that makes use of a regularizer Γ may be used to enhance the training data �  after 

Fig. 3   Triabase converts raw data coming from TBD into dataset to be passed on federated nodes. If the 
parameters are approved, they could either be made public or used in a prediction service
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which parameters are generated. The test set is used to validate the output param-
eters, which are then approved or refused (in which case an error is output). If the 
parameters � are approved, they could either be made public or used in a prediction 
service that the federated node has input/output access to (black-box model). The 
pipeline segments pass trained data with test data to keras model wrapper. Tensor-
Flow Federated (TFF) is an open-source framework for machine learning and other 
computations on decentralized data. TFF can properly instantiate the model for the 
data that will actually be present on client devices are indicated by the dashed box 
defines the sequence for better performance. Federated nodes initialize the mode 
and pass the state to the federated process builder and send the results to federated 
server. Server collects results from all clients aggregates them and send the result 
back to federated nodes to process on next round. Federated nodes also remove the 
values that are not needed anymore to free up disk space. Server then sends the 
aggregated model to the Blockchain nodes in an asynchronous manner.

Additionally, we keep a global model M for a period p and its pointers, which 
lead to a list of transactions kept on the blockchain under the Triabase of the 
algorithm. With nodes that are the same size as disk blocks, the index is a 
B+ tree that minimizes the number of disk visits. The overall number of disk 
accesses for the majority of the activities are greatly decreased because the B+ 
tree’s height is low. According to this, leaf nodes replicate all values related to 
non-leaf nodes. The B+ tree data structure is more difficult to use for Block-
chain indexing since it contains both a key and a value attached to it. A pointer 
to the underlying data record is contained in this value. The payload is the result 
of the union of the key and the value. Each node’s data in the B+ tree structure 
is stored in ascending order. Each of these keys contains two pointers that go to 
two further child nodes. There are fewer keys on the left side of the child node 
than there are now, whereas there are more keys on the right side. The maximum 
number of child nodes is n + 1 if a single node contains k keys. The DP operator 

Fig. 4   Triabase reverse process indexing layer that show how the datasets given as input to the LSTM 
and produce the output layer to generate the model. The reverse operation is also happening to transform 
machine-learning models back to past values
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works in two conceptual phases:(i) offline phase, where it uses LSTM-based fed-
erated learning to build a tree of models M over time and space; and (ii) online 
phase, when it applies the tree M to retrieve data with a specific level of accu-
racy (Fig. 4).

Algorithm  2 shows the pseudocode for the Retrieve Data algorithm. The 
loading phase, in summary, loads the database sequence file in parallel such that 
federated node Pi gets approximately the ith N

p
 byte chunk of the file. It’s 

important to read sequences near the edges thoroughly, in order to improve the 
accuracy of future predictions. This phase guarantees that the database 
sequences are distributed evenly among the federated nodes. The query file is 
read in the same way, so each Pi gets around m

p
 queries. The queries are then 

processed across p iterations in the following phase. Processor Pi checks all of 
its queries against Dj at any step s, where j = (i + s) mod p. A non-blocking 
request to obtain the database part for the next iteration is sent before the queries 
are executed. The communication is accomplished via the Triabase Get() one-
sided communication primitive, which ensures that the distant CPU is not 
disturbed. Pi also maintains a separate running list of the highest results for each 
query in Qi at each iteration phase. This list is printed after the program ends.

Algorithm 2   Retrieve data algorithm
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3.3 � Application layer

An application that controls how a network system functions is part of the 
application layer. Users interact with the network, download data, and send data to 
other users of the network. They also utilize tools to access and share information 
at each other. Additionally, this layer is the highest level of our system, providing 
services directly to the underlying processes. The application layer contains the 
querying module and the user interface. In our example, the Triabase query module 
receives a data exploration question Q(a, b, w) and uses the index to recover the data 
and respond to the query based on a, b, and w parameters. Finally, Triabase includes 
an RestFull API that hides the system’s complexity while yet allowing access to all 
Triabase functionality.

It further allows smart devices coming from the TBD infrastructure to connect 
with one or more remote peers in the other layers and query information and get 
their results back as the whole data is saved in the blockchain and can be queried 
and verified very fast. In addition, users can query machine learning models and 
with the notation of DP model they can convert this model to raw data and take the 
result past for further processing.

At the application layer, the transfer of all operational data from mobile devices 
to edge servers required to create distributed models leads to a massive amount of 
communication burden and making the system susceptible to user privacy issues. 
In our proposed architecture, the learning process is carried out locally, allowing 
for the training of machine learning models on data from a range of users. The 
permissioned blockchain is maintained and the federated learning parameters 
collected from IoT devices are stored by the base station, which are computational 
and caching nodes. The base station aggregate the parameters in order to update 
the distributed model. Each BS implements the permissioned blockchain consensus 
process in order to maintain the consistency of the distributed model.

Due to the sensitive nature of the majority of the data and the amount of data to 
be processed, storing it on the Triabase limited storage space is a time-consuming 
and potentially dangerous operation. As a consequence, we use blockchain to get 
access to data, while the original data remains in the consumers’ hands. When a new 
data provider joins, the blockchain records the data provider’s unique identification 
(ID) together with other data attributes stored as a transaction. Each user’s data 
account will be recorded in the form of transactions, which will be confirmed using 
the Merkle tree [55]. Each material distribution event is also logged as a transaction 
on the Triabase.
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4 � The Triabase prototype system

In this section, we describe our prototype system developed in the Hyperledger 
Fabric framework. We particularly overview the GUI and protocol of the framework 
as well as its evaluation and setup. Our prototype realizes the Triabase architecture 
using the DP, Blockchain and federated learning subsystems we described earlier.

4.1 � Overview

Our server-side code2 is written in Golang 13.8 node.js 10.23.0 and consists of around 
8500 lines of code. In particular our server-code uses 5000 LOC its open source and 
you can fully retrieved from GitHub and runs over docker containers and Ubuntu 
Linux. The server side also includes CouchDB database and utilizes the Triabase pack-
age for drawing the docker images. A cross-platform, open-source runtime environment 
called NodeJS is used to create server-side web applications. The event-driven design 
of NodeJS also supports asynchronous I/O. NodeJS implements an event-driven, non-
blocking I/O mechanism, which contributes to its efficiency and portability. NPM is a 
package module that aids in efficiently loading dependencies for javascript developers.

Our client-side code uses has around 2000 lines of code its written in python and 
can easily be integrated and handled with PyPi. It has a size of 2GB excel elements 
with datasets from Telco Big data. In order to run successfully run the code, you 
need to have Python 3.7–3.10, pip version 19.0 or higher for Linux and Windows. 
pip version 20.3 or higher for macOS. Because we use NVIDIA cuda cores in our 
testbed, the following NVIDIA software is required for GPU support: NVIDIA® 
GPU drivers version 450.80.02 or higher. CUDA® Toolkit 11.2. cuDNN SDK 8.1.0. 
(Optional) TensorRT to improve latency and throughput for inference.

4.2 � Setup

The below commands bring up the REST server and execute the following from the 
project’s app directory:

The last command can be adapted to suit the user’s requirements as follows: max-
old-space-size sets the server’s max heap size (in bytes). The server (optionally) 
uses data compression to reduce the volume of the data sent to Layer 2. The options 
are none, compress-json, compressed-json, jsonpack, and zipson. The server uses 

2  Triabase. https://​triab​ase.​cs.​ucy.​ac.​cy/.

https://triabase.cs.ucy.ac.cy/
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paging in order to be able to handle big data volumes more efficiently. The page 
size is by default set to 10 MB. The value false deactivates console prints that can 
be used for debugging. Set to true to activate the debugging prints, which prints the 
average model submission latency of the N first model submission requests received.

4.3 � Graphical user interface

Our system’s Graphical User Interface gives users a basic interface via which 
they may inquire about the community’s active users (the details of the protocol 
are presented in the next paragraph). Triabase provides the following distributed 
algorithms for storage and retrieval: (i) Storage Algorithm of the Triabase 
Architecture, and (ii) the Retrieve Data algorithm.

4.4 � Query evaluation and processing

The Application Layer performs the basic functions of the interface between 
the Processing Layer and the Storage Layer. The usage of an intermediate level, 
inspired by the Hourglass Architecture internet-based is mainly intended to increase 
the interoperability of the Edge and Storage levels, sharing at least one function. 
Therefore, we have the maximization of the number of Federated Learning and 
Blockchain platforms/technologies that can be used in our Triabase architecture.

When scaling data across numerous nodes and dividing databases into separate 
partitions, CouchDB’s architectural design allows for great flexibility. In order to 
establish an easily managed method for balancing read and write loads during a 
database deployment, CouchDB enables both horizontal partitioning and replication. 
The Application Layer acts as an intermediate layer that hides the complexity of the 
communication with the database blockchain network. This layer includes a REST 
server that communicates with the blockchain in behalf of its clients (the smart 
devices from the Edge Layer), who just use its simple endpoints instead. As of now, 
the supported endpoints offer model submission, updates and retrieval services, as 
well as basic metadata querying options, while the aspiration is to expand on a full-
fledge datastore over the years. The ability to hide the complexity of communication 
with the storage level is another benefit of employing the intermediate level of 
application. This enables the option of manual data management of the Storage 
Layer to the authorized users of the system.

In the current version of the Triabase system at the application level there is a 
REST server, which implements two main functions. The first is the reception (from 
the Edge Layer) of the models data to be stored and their (conversion and) transmis-
sion in the form of transactions to the underlying Blockchain (in the Storage Layer). 
The second major function is to retrieve a model data from Blockchain. Specifically, 
after the successful execution of the relevant queries for their collection, the data (of 
the requested model) are returned to their original state and sent to the applicant. 
At this point, we note that the server offers exactly the same interface to both smart 
devices and authorized system users (the users don’t provide a split/authentication 
mechanism), hence the introduction of the term: “applicant”.
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Finally, an interesting point to consider is the choice of utilizing the technique 
of tokens in the system. This is done to protect the security of the data of the 
storage level, by confirming the authorization to use the services of the Application 
Layer by the applicant. In particular, further to the information identification data 
of the model for storage/retrieval purposes, requests for services must include the 
applicant’s token. The validity of this token is checked, and the execution of the 
request takes place only if it is confirmed (validity). Figure 5 shows the functionality 
of the model that stored and retrieved from the Triabase system.

In the current version of Triabase, we assume that authorized applicants have 
the ability to communicate directly with the permissioned blockchain of the Stor-
age Layer, and store in the system ledger a string claimed to be the (valid) token. 
Although not an optimal solution, the system security is not compromised by the 
aforementioned approach, as in any case, only authorized users can contact Block-
chain directly and successfully secure the token they want.

4.5 � Query exploration interfaces

This subsection analyzes the various techniques and schemes selected during the 
interface component design phase, taking into consideration the requirements and 
limitations mentioned above.

First of all, like any interface that can be used by any programmer, the interface 
component must be easy to understand and use. It must also hide the complex 
communication with the system Blockchain, providing already implemented easy-
to-use methods of interacting with it. Moving on to more technical requirements, 
the interface component must be able to handle the (possibly large and) different 
types of files of the serialized learning models that the Triabase system deals 
with. Moreover, it should be compatible with a wide range of other technologies 
that can be used by smart devices and IoT network systems. Finally, the interface 
component is called upon to ensure the integrity of the data as it is transferred from 
the application layer to the storage layer.

Fig. 5   Triabase provides an API through which ML models can be inserted to the blockchain in Base64



422	 Distributed and Parallel Databases (2024) 42:403–445

1 3

Triabase implements a full-fledge REST 2.0 API using Node.js and docu-
mented with Swagger. REST(Representational State Transfer) is the cli-
ent–server architecture standard used in modern web applications. Figure  6 
defines the available requests, as well as the response of each request. Among 
others, an important feature of a RESTful API is the provision of services 
through URL-based endpoints by a dedicated server. In the case of the inter-
face component, the REST architecture was chosen for ease of use (simple, well-
known concepts), moreover to increasing the number of smart devices capable 
of interacting with the application-level compatibility API (most devices sup-
port HTTP messaging). Additionally, regarding the implementation technol-
ogy of the REST-full API of the component, given the limited options (SDKs) 
mentioned in the previous subsection, the Node.js ecosystem was selected. This 
selection was made for performance purposes only.

Let us mention the ways in which the interface component utilizes the 
techniques of digests and data compression. Regarding the use of digests, when 
receiving data in the endpoint model, the server of the interface component 
creates the corresponding pages (data) that are forwarded for storage in the 
system blockchain. For each page, the server calculates a digest, stored it in its 
database, and attaches it before sending it for storage. When, at a later stage, 
a request for retrieval of this data is received (endpoint model), the server 
retrieves the pages of the request model, ensures the integrity of the data of each 
and, restores the data. After that, it sends them to the user. Specifically, for the 
existing version of the interface component, the use of the MD5 fragmentation 
function was chosen, mainly for saving space (MD5 digest size = 128 bits). The 
purpose of the application of compression mechanisms is to reduce the volume 
of data circulating in the network of the Blockchain system and at the same 
time to increase the speed of completion of storage and recovery operations of 
models. Noting that the data files of the machine learning models may already 
be in fairly compact/compressed form.

Fig. 6   The Triabase API definition is a file that describes all the provided functionality along with the 
necessary documentation
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4.6 � Compression

This technique is mainly responsible for reducing the amount of storage space 
needed while exerting as little pressure as possible on query response times. It makes 
sense to adopt compression methods that result in high compression ratios while 
also ensuring quick decompression duration. In this paper, the GZIP compression 
is adopted because it provides fast compression and decompression times, a high 
compression ratio, and optimal compatibility with I/O stream libraries. Additionally, 
in order to supply the decay mechanisms for the following layer, we employ the DP. 
The Triabase indexes’ (B+ trees) leaf pages are essentially the only thing the storage 
layer is in charge of; this is covered in the following layer.

With each new data snapshot received, the multi-resolution spatio-temporal index 
used by the Indexing Layer is increased on the rightmost path (i.e., every 30 min). 
Additionally, the component creates highlights-interesting event summaries-from 
the data kept in the child nodes and keeps them at the parent node. The internal 
node that covers the query’s temporal window is accessible for each data exploration 
query, and its highlights are used to provide an answer. The querying module and 
the data exploration interfaces are implemented in the application layer. These 
interfaces accept visual or declarative data exploration questions and use the index 
to compile the necessary highlights and snapshots to respond to the query.

5 � Experimental testbed and methodology

In this section, we describe our experimental methodology, which involves both a 
set of real micro-benchmarks for the Triabase system, utilized with real datasets 
from the Telco dataset, Smarty dataset and Marta dataset.

5.1 � Datasets

We make use of the following three realistic datasets in our trace-driven experiments 
to simulate regular-scale, medium-scale, and large-scale distributed machine 
learning models:

–	 Telco Dataset: We [12, 54] utilize anonymized data from a real 
telecommunications company with 1192 genuine cell towers (i.e., 3660 
cells from 2G, 3G, and LTE networks) spread across a 5896  km2 area. The 
cells are linked to a cluster of computers through a gigabit network. For the 
performance of the tower, each cell tower keeps numerous UMTS/GSM 
network logs and passes the information to the base station controller (BSC) 
or the radio network controller (RNC) to be kept. In the enterprise, a CDR 
server generates call detail records (CDRs) for incoming and outgoing calls. 
The management server and third-party application can use SFTP to get a 
CDR from the CDR server after it has been generated. The Telco can then 
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query the CDRs for call/data details and check the carrier’s outbound call/data 
fees. We utilize an anonymized dataset of telco traces comprising of 100 M 
network measurements records (NMS) and 3660 cells (CELL) coming from 
2G, 3G and LTE antennas. The data traffic is created from about 300K objects 
and has a total size of 10GB. Our dataset includes 200 snapshots from the 5GB 
anonymized and uncompressed telco dataset that comprises of 1.7M CDR and 
21 M NMS records. Our microbenchmark is performed atop an HDFS v2.5.2 
filesystem.

–	 Marta Dataset: This [56] is an anonymized dataset of IoT network data 
comprising of 93.1MB network measurements records and 102 columns from 
13 different files coming from sensors of an intelligent city. This dataset will 
showcase data collected via sensors within the system, specifically real-time 
data of trains buses and parking. It contributes to the development of practical 
solutions to issues that help improve the riding experience and boost ridership.

–	 Smarty Dataset: Sma-Rty [57] is an Italian-French startup specializing in AI 
and Machine Vision. Sma-Rty produces solutions for the integration of modern 
artificial intelligence technologies in real life through close collaboration with 
research institutes. In this context, the 5G Automotive Digital Twin (ADT) 
project intends to test and validate an innovative system for driving assistance 
and support based on 5G technology and Artificial Intelligence. The ADT 
system creates a digital depiction of the setting called a Digital Twin using 
traffic cameras and 5G infrastructure. This representation is used to replicate 
road user behavior in a virtual environment in order to predict potential risk 
situations in the real world and improve road safety. The behavioral prototypes 
of the identified entities and their visual features (for example, type, color, 
form, and speed) will be reconstructed beginning with the acquisition of video 
flows. After that, the ADT model gathers data from local and simulation units 
to deliver a proactive, non-invasive service for increasing road safety. The 
Torino City Lab experiments will thus focus on the validation of the digital 
twin model’s functions as well as the accuracy of the rebuilt model.

We also considered other types of datasets/benchmarking efforts for our 
experimental methodology as follows: TPC and YCSB focus on data management 
workloads in conventional SQL and NoSQL environments and have little 
provisionings for both IoT scenaria and Blockchain scenaria. Also our effort was 
not to investigate these systems from a clearly data management standpoint, but 
rather from the standpoint of IoT data ingestion over a distributed blockchain 
layer that made the selection of benchmarking datasets a challenge. For this 
reason we carefully chose to feed our architecture with custom datasets from 
Telco (TBD), IoT (Marta) and AI/ML (Smarty). The TPC council only recently 
issued the TPCx-IoT bechmark, which is an iot-specific benchmark but has no 
specific provisionings for blockchain operation. On the other hand, there are also 
some Blockchain-specific benchmarking efforts underway (such as BlockBench 
[34]), but unfortunately these efforts have not ripened to allow generalizability for 
the types of IoT blockchains we consider in this work.
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5.2 � Metrics

The experimental evaluation described in this section focuses on the following 
metrics that aim to assess the performance qualities of the Triabase framework. We 
break the evaluation into two sections: (i) data ingestion, storage capacity, accuracy 
in NRMSE, and data retrieval experiments; and (ii) blockchain storage layer 
experiments, which respectively feature separate performance metrics.

For data ingestion and data retrieval experiments, as part of the decaying layer, 
we employ the following metrics:

–	 Ingestion Time: This measures the wall clock time to ingest each new snapshot 
and is measured in seconds (s).

–	 Storage Capacity: This measures the total space that machine learning data 
occupy together, as a percentage of storage required by the RAW method (no 
decaying, no compression).

–	 Accuracy: This measures the error of the machine learning data using the 
Normalized Root Mean Square Error (NRMSE). A lower NRMSE value 
indicates a higher accuracy in the recovered data. 

 which is the normalized difference between the actual data (x1,  t) and the 
predicted data (x2,  t), where t is a discrete time point and ymax, ymin are the 
maximum and minimum observed differences.

–	 Retrieval Time: This measures the wall clock time to recover a data block from 
the blockchain and is measured in seconds (s).

Fabric’s major performance indicators are throughput and latency, which we 
investigate thoroughly in the subsection  6.2. In Triabase we say that the cost 
where transactions are passed the consensus and stored to the ledger is known as 
throughput. Latency is defined as the time it takes for an application to deliver a 
transaction proposal to a transaction commit. For blockchain latency, as part of the 
storage layer, we employ the following metrics:

–	 Blockchain Duration and Throughput: This measures the duration of the 
individual blockchain latency to finalize a Triabase transaction, measured in ms 
(millisecond) and tps (transactions per second).

Algorithms: The proposed Triabase framework is compared with the following 
approaches:

–	 RAW: does not apply any decaying on the whole dataset.
–	 COMPRESSION: the decayed dataset is compressed with the GZIP library, 

which has been shown in [11] to offer the best balance between compression/

(1)NRMSE =

�

1

n

∑n

t=1
(x1, t − x2, t)

2

ymax − ymin
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decompression speeds, compression ratios and compatibility with I/O stream 
libraries.

–	 SAMPLING: a sampling method that picks every second item in the input 
stream, yielding a 50% sample size.

–	 RANDOM: uniformly randomly select one record from the decayed dataset.

Note that RAW and RANDOM are the baseline approaches used to demonstrate the 
trade-off between the storage capacity and the NRMSE objectives. This project’s 
primary objective is to identify performance bottlenecks, thus we built a system 
called Triabase that spans several clients and stresses the system by constantly 
making transactions. In addition, each client sends out proposal requests at the 
same time and collects endorsements. The transactions are sent asynchronously in 
order to meet the deadline without having to wait for commitments. The benchmark 
framework, on the other hand, calculates performance and latency. All organizations 
and their colleagues participate in multi-channel trials. While various combinations 
are feasible, we believe our strategy will put the system through its paces.

5.3 � Testbed and workloads

Testbed: The DMSL VCenter IaaS cluster of computers, a private cloud, houses 5 
IBM System x3550 M3 and HP Proliant DL 360 G7 rackables, each with a single 
socket (8 cores) or twin socket (16 cores) Intel(R) Xeon(R) CPU E5620 @ 2.40GHz 
Intel(R) Xeon(R) CPU E5620 @ 2.40GHz Intel(R) Xeon(R) CPU E5620 @ 2. On 
an IBM 3512, these hosts contain a total of 300GB of main RAM, 16TB of RAID-5 
storage, and are connected through a Gigabit network. The cluster of computers is 
controlled by a VMWare vCenter Server 5.1, which is connected to the VMWare 
ESXi 5.0.0 hosts. Nodes for computing: The compute cluster, which is running on 
our VCenter IaaS, is made up of four Ubuntu 16.04 server images, each with 8GB 
of RAM and two virtual CPUs (both running at 2.40GHz). Fast local 10K RPM 
RAID-5 LSI- Logic SCSI drives formatted with VMFS 5.54 are used in the images 
(1MB block size).

Workloads:  Our experimental evaluation has been conducted based on an 
a diverse mix of federated learning, Tensorflow, blockchain, data mining, and 
Machine Learning (ML) workloads. All aforementioned workloads are driven by 
a telco-specific domain task. We particularly formulated the following five tasks 
(T1-T5). More specifically the query types supported by Triabase include standard 
queries, where only the newest database version is queried, full historical queries 
on a particular predicate, range historical queries on all updates in a specific time 
range, delta query and equality.

–	 T1. Standard queries: The main objective is to query the Triabase blockchain 
as a traditional database, where the clients send a query result and they only 
care about the result in the newest version. We require to guarantee that only the 
records that are not expired could be selected.
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–	 T2. Full historical queries: Another type of supported query in the Triabase 
blockchain is called a historical query. This type of query provides transparent 
history to database federated clients and grants them access to all of the data 
records. In a full historical query, the client wants to see all historical records that 
satisfy a specific predictor.

–	 T3. Range historical queries: Historical queries can also be executed with 
desired time ranges in mind. This can be achieved by applying additional 
conditions to the blockchain attributes (To be more specific, all records are paired 
with two extra attributes: VF (stands for ‘valid from’) and VT (stands for ‘valid 
to’). For example, let’s assume that we want to get a snapshot of the database for 
a random block b at the height h, we are able to collect the records with VF ≤ h 
and VT ≥ h ., e.g.,

–	 T4. Delta query: Triabase further guarantees transparency by supporting delta 
queries. Delta query gives the opportunity to clients to make more flexible 
queries and always be informed from the previous updates. More specifically, 
we plan to provide an interface for clients to query the changes made by the 
transactions committed at any particular block. For example, we assume a user 
u, then if we make a delta query for this user we will get as a result the records of 
his transactions that involved before and after the height of the block which we 
give as input.

–	 T5. Equality: This task aims to retrieve the download and upload bytes for a 
requested snapshot, e.g.,

6 � Experimental evaluation results

This section presents the experimental evaluation of our proposed Triabase 
system. We start out with data decaying evaluation, followed by four sets of 
benchmarks. Then, we continue with blockchain control experiments with respect 
to the throughput and latency of our blockchain system, as well as, benchmarks on 
different databases. This is followed by processing learning experiments to measure 
the learning time, NRMSE, and percentage of raw for three different ML modes. 
In addition, we measure machine learning models that have been pre-trained from 
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different Machine Learning hubs. Typical examples of such hubs are the TensorFlow 
Hub and the Hugging Face.

6.1 � Data decaying evaluation

In the first experiment, we evaluate the performance of the proposed Triabase sys-
tem against all algorithms and over all datasets (Telco, Marta, SmaRty) introduced 
in Sect.  5.1, with respect to performance (as ingestion time of the model), space 
capacity (as a percentage to the RAW data), accuracy (in terms of NRMSE on the 
federated set of data) and retrieval time with the given datasets. We configure the 
Triabase framework according to the best configuration of blockchain network 
parameters and machine learning parameters that have been inferred through the 
control experiments of Sect. 6.2 and 6.3.

Figure 7 (top-left) demonstrates the data ingestion time for the three datasets 
in our evaluation. We observe that the highest ingestion time for all five methods 
is by the RAW method, which ingest the data in its raw representation. In 
contrast, the random method achieves the lowest time as it takes only a portion of 
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the models. Sampling and compression are semi-equal with only a difference of 
10–20%. This is also reasonable, because first the decayed dataset is compressed 
with the GZIP library, to offer the best balance between compression-
decompression speeds, thus we expect less data travel through the network and 
hence less retrieval time. Triabase demonstrates that the system has optimal 
ingestion time near random or sometimes semi-equal to it due to the learning 
time required by the federated process and the time required by the sequel for 
the commitment of the models as transactions on the Fabric blockchain store.

Figure 7 (top-right) demonstrates that the RAW occupies the most disk space 
because it stores all raw data. The sampling approach is following as the second 
worst case in terms of disk space. This happens because the sampling method 
picks every second item in the input stream, yielding a 50% sample size so 
we expect the disk space to be fair and not optimal. Random and Triabase are 
placed together with a difference of 2–5%. We expect Triabase to occupy this 
disk space because there is an extra overhead from the LSTM method that we 
can’t avoid. The COMPRESSION approach, however, cannot be customized to 
achieve an even lower disk space occupancy. In comparison, the Triabase system 
can be configured, through its neurons, block size, endorser, and channels to 
accomplish a space occupancy that will fit the space budget of the application. 
This particular parameter will be investigated next in Sects. 6.2 and 6.3.

Figure 7 (bottom-left) demonstrates the trade-off between the space capacity 
S and the accuracy (NRMSE) objectives. The figure shows that the RAW 
approach obtained the worst possible S = 100% of the three datasets, and the 
lowest error NRMSE = 0% . In contrast, the RANDOM (almost all data model 
in Triabase) approach obtained the best possible S = 60% disk space of the 
whole dataset because it takes a batch size of the whole dataset, and an error 
rate of NRMSE = 30% on the decayed dataset. The proposed Triabase system, 
however, provides around 5% and 10% worst space capacity S compared to 
COMPRESSION and SAMPLING approaches, respectively. This is due to 
the fact that an additional space required by the set of LSTM models is much 
more than the sample set of SAMPLING and the compressed decayed dataset 
of COMPRESSION. The SAMPLING outperforms the Triabase approach 
by 10–30%, on average. The COMPRESSION approach provides an optimal 
NRMSE = 0% , since it does not apply any further prediction on the Blockchain 
model data but recovers it via decompression when requested.

Figure  7 (bottom-right) investigates ingestion time and we can observe that 
the RANDOM approach outperforms all the other approaches in all datasets. 
This happens because the RANDOM does not take all the dataset but instead 
takes a random batch size that is determined by the user. Hence, the retrieval 
time is less than all other approaches. After that, sampling and compression take 
place because compressed data can be retrieved more efficiently. Finally, the Tri-
abase system takes the second lowest time because it needs not much time to 
calculate the LSTM models due to the extra optimization that we make.
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6.2 � Blockchain control experiments

The storage layer of Triabase comprises of: (i) local data store used for caching 
and disconnected operation; and (ii) a fabric blockchain network. In this 
experiment we aim to evaluate the blockchain layer of the Triabase architecture, 
through a series of control experiments where various configuration parameters 
(blockchain block size, channels and endorsers) are assessed in isolation. In the 
next experiment of this section, we also present a microbenchmark where we 
assess the following incurred latency in the scope of two data store systems, 
namely CouchDB and LevelDB. Below is a breakdown of latencies incurred at 
the Blockchain layer:

–	 Endorsement Latency: The time it takes the client to collect all proposal 
answers as well as endorsements.

–	 Broadcast Latency: The time between when a client submits a request to an 
orderer and when the orderer acknowledges the request.

–	 VSCC Latency: The time it takes to check all of a block’s endorsement 
signatures against the endorsement policy.
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–	 Ledger Update Latency: The time it takes to check all of a block’s endorsement 
signatures against the endorsement policy.

–	 Commit Latency: The time it takes for a node to prove that a transaction is valid 
and save it on the blockchain.

–	 Ordering Latency: The time needed for a transaction to complete its final 
ordering.

Finally, performance metrics for the response, ingestion time, and percentage of the 
total time are also included to present detail about how Triabase behaved both on the 
machine learning process and blockchain query time.

Figure 8 shows the impact of Block size, Channels, and Endorsement latency and 
throughput.

Block Size Evaluation: Figure  8 (top-left) demonstrates a liner improvement 
in latency while the transaction arrival rate increases until the congestion point 
of around 250tps (depends on block size). In addition, it shows that close to the 
congestion point there is a significant increase of latency, which is mainly due to 
the fact that the transactions are waiting in a queue to pass the validation phase 
and consequently delay the process. Moreover, the results show that latency is also 
affected by the block size, since when the block size is high, the latency is also high 
for low arrival rates. For example, when the arrival rate is 100 tps and the block size 
is increased from 30 to 50, the latency of the transactions is also increased from 
4000 to 7000 ms. This happened because large block sizes increase the forging time 
of a block at the leader node, on average. For high arrival rates, however, and greater 
than the congestion point, the latency decreases. This is due to the fact that the time 
required to verify and store a block m is always less than the amount of time needed 
to verify and store b blocks. The major conclusion drawn from this experiment is 
that: (i) if the arrival rate of a request that represents a transaction is lesser than the 
congestion pivot, it is preferable for the application to use in most cases a lower 
block size to achieve low transaction latency. The throughput in those cases will be 
the same with the arrival rate. (ii) in cases where the arrival rate of a request is high 
and greater than the congestion point, it is preferable to use a large block size to 
achieve higher throughput and lower transaction latency.

Channel Evaluation: Figure 8 (top-right) demonstrates the Triabase throughput 
along with CPU metrics. The table below shows the number of channels and 
transaction arrival rate that were employed in this study. As indicated, all peers join 
all of the channels. Throughput increased as the number of channels increased. This 
is reasonable because more transactions happened parallel via the new channels 
as the throughput scales linearly. The negative fact of that is that as per channel 
increased the time to sync between nodes and channels increased dramatically 
because the network needs more hops to reach all endorsers and come to a consensus 
thus having all synced blocks on the network consumes enough time. Figure 8 (top-
right) shows how resource use, such as CPU, increases.
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Parameters Values

Number of channels 8
Number of endorsers 3
Transaction complexity 1 KV write ( 1 − w ) of size 20 bytes
SatateDB database GoLeve1DB
Peer resources 32 vCPUs, 3 Gbps link
Endorsement Policy AND/OR OR [AND(a, b, c), AND(a, b, c), 

AND(b, c, d), AND(a, c, d)]
Block size 30 transactions per block
Neurons 16x16
Model LSTM

Endorser Evaluation: Endorsers are nodes that exhibit leadership behavior and 
are in charge of starting the consensus process. As we can see in Fig. 8 (bottom-
left) with 4 endorsers, which is the default setting and most ideal, we are able to 
obtain 700 tps. Figure 8 (bottom-right) also shows that as the number of endorsers 
grows, the number of throughput scales linearly. It is also important to note that if 
the number of endorsers is increased excessively, throughput will not increase but 
rather eventually be destroyed because more time will be required to sync blocks 
across channels. As a result, we can anticipate an increase in latency and additional 
overhead, but this also depends on the block size. For instance, when the number 
of zones was increased from 2 to 15 we observe, the performance increased from 
250 tps to 750 tps and 1200 tps (i.e., by 9.5 in the overloaded situation). This is 
due to the fact that each channel is self-contained and maintains its own blockchain. 
As a result, the validation process and the phase of updating the ledger of multiple 
blocks (one per channel) are executed with a parallel way, resulting in better CPU 
utilization and throughput.

Observation 1  It is preferable to dedicate at least one vCPU per channel in order to 
obtain good performance and reduced latency. To distribute vCPUs optimally, we 
must first evaluate the projected demand at each zone and then allocate sufficient 
vCPUs.

Observation 2  To maximize throughput and minimize delay, it is better to avoid 
heterogeneous peers, since their performance will be dominated by less powerful 
peers.

Microbenchmark: In this subsection we start out with a microbenchmark that 
evaluates the latencies incurred at the lower layers of the architecture measured in 
ms (milliseconds) as well as the generated throughput measures in tps (transac-
tions per second) for two types of local key-value store systems: GoLevelDB and 
CouchDB.3 LevelDB is a fast key-value storage library written at Google that 

3  CouchDB. https://​couch​db.​apache.​org/.

https://couchdb.apache.org/
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provides an ordered mapping from string keys to string values. CouchDB is an open-
source document-oriented NoSQL database, implemented in Erlang that uses JSON 
to store its data and MapReduce, and HTTP for an API. CouchDB is the default data 
store layer in the IBM Fabric blockchain network architecture we use to cope with 
temporary persistency and local caching.

Figure  9 demonstrates the total duration and throughput that each of the 
following latencies incurs on the system for three granularities of writes (i.e., 1, 3 
and 5 Input/Output writes). The impact of different ledger databases (i.e., LevelDB 
and CouchDB) is also investigated, in terms of average throughput and latency for 
different transaction arrival rates. The results of Fig.  9 show that the transaction 
throughput with the LevelDB is greater than with the CouchDB. The maximum 
throughput measured with LevelDB was 450 tps while the couch database achieves 
around 400 tps. The primary reason for this is because LevelDB is a database that 
is contained in another database that processes transactions, while CouchDB relies 
on REST API calls, which pass over a secure HTTP tunnel and additionally has a 
delay of ledger updates and consequently result is in a lower throughput than the 
throughput of LevelDB.
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The results of Fig. 9 also show that as the CouchDB amount of writes per trans-
action rises, the latency of ledger updates increases. This is because CouchDB 
locking schemes cost more than those of LevelDB. Particularly, during the time 
of endorsement, the transaction acquires an exclusive lock to provide consistency 
of the chain code, which negatively affects the performance, as it performs three 
responsibilities for each transaction write set. That is, it firstly needs to retrieve 
the key with the use of a receive request and search if it finds it on the database. 
Secondly, it constructs an appropriate JSON scheme and lastly updates the DB 
by registering the put request. This results in an extra delay to the methods of the 
blockchain ledger phase.

In summary, the conclusion of this experiment has suggested that in order to 
achieve better performance in the fabric open-source network, GoLevelDB should 
be the best option for the blockchain operations. CouchDB, on the other hand, 
is a better choice when the design principles for the application require fewer 
read/write numbers of keys to validate a transaction. Moreover, CouchDB with a 
special operation described in [58], will restrict the locking scheme latency and 
will empower the overall performance.
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Experiment 10 was conducted to determine the size data page to be used in 
the system. More specifically, the performance of application and storage levels 
was examined using different page sizes. The results of the experiment are sum-
marized in Fig. 10, which shows the throughput (MB/s) of the system during the 
submission/storage and retrieval of the models, respectively. We observe that, as 
expected, larger models have a smaller (submission) throughput. This is because 
they require longer process time, as they have larger number of pages (than 
smaller models) and therefore, require more transactions to be stored. In addition, 
we observe smaller page sizes resulting in higher throughput, which is due to the 
reduction in the amount of data exchanged between network peers.

However, the use of very small pages is also not recommended, as the 
transaction processing time (and not payload)—overhead—increases, and also 
reducing the throughput. Similarly in the case of data entry, we observe that 
the larger models have a lower (retrieval) throughput than the smaller ones. 
This is again due to the large number of transactions required to retrieve their 
multiple pages. Moreover, the results show that larger sizes (pages) have the 
best performance, unlike above (insertion), since the number of pages recovered 
is significantly smaller, thus reducing the overhead of data processing (and 
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increasing the throughput). This is mainly due to the fact that during the execution 
of retrieval transactions no data exchange takes place between the peers of the 
network (the consensus algorithm is not executed when reading data), which is 
emphasized by the fact that the submission throughput retrieval is higher than the 
retrieval throughput.

In addition, the Experiment 10 aims to study the system’s performance during 
the management (insertion and retrieval) of large models. Test models and 10 MB 
as the data page size were used for this evaluation. The data entry and retrieval were 
done through the client simulator, while throughput (MB/s) was used again as the 
evaluation of metric. The results in Fig. 10, are quite positive, since they saw that 
Triabase can be used for larger models without problems. Also, we observe that 
when the size of the model exceeds 400 MB the throughput of the system reduced in 
both, the submission and the retrieval of data. In both cases, however, the submission 
and retrieval throughput is fixed at approximately 3.5 and 9.4 MB, respectively.
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6.3 � Machine learning control experiment

Figure  11 examines the performance of the Triabase in terms of training time, 
NRMSE, and percentage of raw when combined with three different ML mod-
els by performing the federated process, namely, the traditional Recurrent Neu-
ral Network (RNN), the Gated Recurrent Unit (GRU), and the Long Short Term 
Memory (LSTM) which is finally adopted by our proposed approach.

The results show that Triabase maintains a similar training time for different 
models for both Telco Marta and smarty datasets, with a slight decrease (about 
5%) when the LSTM model is used. More specifically we observe that the worst-
case scenario is when we use the Recurrent Neural Network (RNN) and this is 
happened due to gradient exploding and vanishing problems. Training RNN 
is a completely difficult task because it requires slow and complex training 
procedures. It finds difficulties in processing very lengthy sequences if the usage 
of Tanh or Relu as an activation feature. In terms of NRMSE, however, the 
Triabase and LSTM combination clearly outperforms the other two combinations 
providing around 1–2% less error, on average.
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Furthermore, Fig. 12 examines how the number of neurons of the LSTM model 
influences the Triabase performance. The results support our previous observa-
tions on the scalability and efficiency of the proposed Triabase approach. The 
increase in numbers of neurons, slightly increases the required storage space of 
the Triabase system. This because the increase in the number of neurons results in 
bigger models that require more disk space to be stored. The additional required 
space, however, is almost negligible in comparison with the disk space needed to 
store the raw data before the federated process. In terms of NRMSE, the increase 
in the number of neurons does not influence the performance of the Triabase sys-
tem, since NRMSE remains almost the same while in almost all datasets.

Figure 13 illustrates, we compare the proposed approach with respect to the state-
of-the-art federated learning algorithm FedAvg [59]. This technique is also applied 
from Google in the keyboard app for better improving the user query suggestions 
[60].

Federated Setup: We use the CNN convolution layer and two dense layers. 
The first two convolutional layers have 32 and 64 filters respectively and they are 
responsible for setting the communication channels dynamically based on the width 
and the height of the image. The pool size is set dynamically (2,2) and the kernel 
size is 5. Moreover, convolution layers followed by a dropout [61] with a probability 
of 0.7. The second convolution layer has also a flatten operation. The last two dense 
layers are fully connected layers with 512 units activated by ReLu and a softmax 
output layer.

Algorithmic settings: In all experiments the algorithmic parameters were 
configured as follows: local mini-batch B = 20 , the trained local epochs E = 10 , the 
total number of clients K = 500 and the fraction of clients that performs computation 
at each round C = 0.05 . The local training process for each client proceeds with the 
SGD optimizer with a learning rate � = 0.001 and no weight decay.

Figure 13 illustrates the performance of the proposed approach in terms of learn-
ing accuracy and learning loss, respectively, for various epochs over two different 
metrics. The results show that the proposed federated learning approach achieves 
high accuracy (> 95%) and low learning loss (< 10%) with a small set of iterations 
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for both CPU and GPU metrics. Moreover, the federated learning is performed faster 
when the GPU version is used and increases while the number of epochs increase. In 
particular, in the first 10 rounds, the training of the model converges faster and the 
accuracy of the model increases with the increase of the epoch. After 35 rounds, the 
accuracy is slightly reduced (by 2–4%) or remains the same, especially for the mod-
els trained with larger epoch values. This is due to the overfitting of the CNN model.

In addition from Fig. 13, we can observe that the learning loss is generally high at 
the beginning and it highly depends on the epoch value. For example, at round 5, the 
learning loss is around 0.5, which is relatively high when the epoch value is low. In 
contrast, when the epoch value is high (> 8) then the learning loss is reduced, which 
shows that the model converges. Moreover, the results show that when the epoch 
value is 32, the learning loss is reduced to almost zero, after round 10. There are 
also cases where the learning loss is high due to the overfitting but then it is reduced 
again to a close to zero value after some iterations (e.g., in round 38).

Regarding Fig.  14, the data used in this experimental evaluation are machine 
learning models, which are pre-trained on various Machine Learning hubs such as 
the TensorFlow Hub and the Hugging Face. The dataset also includes models used 
in Computer Vision. In particular, due to the valuable contribution of the sector in 
the field of IoT and given the most extensive use of machine learning techniques in 
the field of Computational Vision, this area is a typical example of the applicability 
of the Triabase system that we thoroughly discussed in previous Sections. Further-
more, the dataset models have been trained in object detection, using the well-known 
COCO dataset. In addition, it should be mentioned that the models implement dif-
ferent algorithms and/or architectures to achieve their task (object detection), such 
as YOLO, SSD Mobilenet v2.

6.3.1 � Further optimization

To further improve the performance of the proposed system and to achieve a lower 
retrieval rate and ingestion time we also propose the following configurations:

–	 Number of units in dense layer: The dense layer is a layer where every neuron 
gets input from every other neuron in the layer below, making it “densely linked.” 
Dense layers increase overall accuracy, and a reasonable starting point is 5–10 
units or nodes per layer. Therefore, the number of neuron/units given will have 
an impact on the output form of the final dense layer.

–	 Dropout: A dropout layer should be included between each LSTM layer. 
By excluding randomly chosen neurons, such a layer lessens the sensitivity to 
particular weights of the individual neurons, preventing overfitting in training. 
20% is a decent place to start, but the dropout rate should be maintained low (up 
to 50%). The ideal balance between avoiding model overfitting and maintaining 
model accuracy is generally agreed to be 20%.

–	 Decay rate: If no further weight update is planned, the weight decay may be 
added to the weight update rule that causes the weights to decline exponentially 
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to zero. The weights are multiplied after each update by a value slightly below 1, 
preventing them from becoming too large. This describes network regularization.

–	 Activation function: Technically, activation functions could be included into 
dense layers, but doing so would make it impossible to recover the density layer’s 
decreased output.

–	 Momentum: Research has been done to combine the momentum hyperparameter 
with RNN and LSTM. Momentum is a special hyperparameter that enables the 
search to be guided by the accumulation of the gradients from previous steps 
rather than just the current step’s gradient alone.

–	 Parameters setup: An effective strategy is to use the early stopping approach, 
define a high number of training epochs, and terminate training as soon as 
the model’s performance on the validation dataset stops increasing by a 
predetermined threshold. 32 is generally recognized as a fair batch size default. 
We also experiment by using multiples of 32 like 64, 128 and 256 to find the 
most optimal use case.

–	 Adaptive Setup: Adaptive optimizer like Adam are advised to manage the 
complicated training dynamics of recurrent neural networks (which a simple 
gradient descent may not solve). by multiplying the total length of the sequence 
by the loss terms added along the way. In turn, it will be simpler to reuse the 
hyperparameters across tests since this will average out the loss throughout the 
batch. Gradient spikes have the potential to screw up training parameters. To 
avoid this, plot the gradient norm first (to determine its typical range) and then 
scale down any gradients that are outside of this range.

7 � Conclusions and future work

In this paper, we introduce Triabase, a novel permissioned blockchain system 
architecture that applies data decaying concepts to cope with scalability issues in 
regards to blockchain consensus and storage efficiency. For blockchain consensus, 
we propose the PoFL algorithm which exploits data decaying models as Proof-
of-Work. For storage efficiency, we exploit federated learning to construct data 
postdiction machine learning models to minimize the storage of bulky data on 
the blockchain. We have prototyped Triabase in Hyperledger Fabric and assess 
its performance using a variety of datasets from the IoT spectrum and Telco Big 
Data Spectrum showing that the proposition can achieve superior storage capacity 
and high throughput (i.e., ingestion and retrieval of data using the proposed data 
postdiction ideas.

In the future, we aim to expand the experimental evaluation with additional 
and more diverse machine learning models from platforms like Vertex AI,4 which 
integrates processes for data engineering, data science, and machine learning 
engineering, allowing teams to work together using a single set of tools. We also 
aim to assess Triabase in a realistic TBD edge computing scenario and expand the 

4  Vertex AI. https://​cloud.​google.​com/​vertex-​ai.

https://cloud.google.com/vertex-ai
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experimental evaluation with additional and standardized benchmarking frameworks 
when these become available. Finally, we aim to devise practical application 
scenarios of federated learning and sort out the current challenges and future 
research directions of data postdiction.
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