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Finding allows us to avoid this sacrifice (right).

ABSTRACT

The exposure to viral airborne diseases is higher in crowded and
congested spaces, the COVID-19 pandemic has revealed the need of
pedestrian recommendation systems that can recommend less con-
gested paths which minimize exposure to infectious crowd diseases
in general. In this paper, we introduce ASTRO-C, an extension of
previous work ASTRO, which optimizes for minimum congestion.
To our knowledge, ASTRO-C is the only solution to this problem
of constraint-satisfying, indoor-outdoor, congestion-based path
finding. Our experimental evaluation using randomly generated
Indoor-Outdoor graphs with varying constraints matching various
real-world scenarios, show that ASTRO-C is able to recommend
paths with, on average a 0.62X reduction in average congestion,
while on average, total travel time increases by 1.06X and never
exceeds 1.10X compared to ASTRO.
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1 INTRODUCTION

Given the economic, environmental and quality of life impact of
traffic congestion, route/outdoor recommendation systems con-
sider traffic congestion and recommend less congested and less-
time consuming alternative routes to a given destination [10]. The
COVID-19 pandemic has revealed an analogous impact of conges-
tion and pointed out for the need of pedestrian recommendation
systems that can recommend less congested paths that minimize
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exposure to COVID-19 and infectious viral diseases in general. This
observation led us to develop ASTRO [6], to support Mobile Contact
Avoidance Navigation (MCAN) [17] by implementing CAPRIO [7, 8].

ASTRO (Accessible Spatio-Temporal Route Optimization) is a
novel constraint-satisfying indoor-outdoor pedestrian path find-
ing algorithm, which considers a number of factors including pre-
dicted congestion when finding a least-time path that satisfies a set
of user-given constraints. ASTRO was subsequently extended to
ASTRO-K [20] which finds the top-k sufficiently-distinct constraint-
satisfying indoor-outdoor paths. This extension allowed CAPRIO to
disperse congestion inadvertently created by CAPRIO route recom-
mendations, across a number of paths, thus mitigating its contribu-
tion to the congestion of any one area.

ASTRO and ASTRO-K offer a shortest path to a destination. How-
ever, this may not be the most desirable for an individual with an
underlying health condition and at high-risk for a viral infection.
Such an individual would prefer the least congested path even if
this is longer as it would help maximize the likelihood that this
high-risk user stays healthy.

In this paper, we introduce ASTRO-C, another extension of
ASTRO, which computes the minimum congestion, constraint-
satisfying Indoor-Outdoor path for a given query. This provides
CAPRIO the ability to recommend paths for those whose primary
concern is not time, but rather potential exposure to a viral in-
fection, other crowd diseases and sensory-overloading areas (e.g.,
areas with loud noise, flashing lights, and/or strong smells). ASTRO-
C selects among equally congested paths the one which is less-time
consuming.

We evaluate ASTRO-C experimentally using randomly generated
Indoor-Outdoor graphs with varying graph generation constraints
to showcase various real-world scenarios. Our experimental results
show that ASTRO-C is able to recommend paths with, an average
0.62X reduction in average congestion, and in the best case a reduc-
tion of 0.56X, while on average, total travel time increases by 1.06X
and never exceeds 1.10X compared to ASTRO. These congestion
reduction gains come at the cost of execution time. Compared to
ASTRO, ASTRO-C explores an average 7.55X more vertices (i.e.,
buildings), yet it scales well with the number of buildings while
retaining the same interactive characteristics as ASTRO.

Our main contributions in this paper are as follows:

e We introduce ASTRO-C, an extension of ASTRO which op-
timizes for minimum congestion without ignoring time. To
our knowledge, ASTRO-C is the only solution to this problem
of constraint-satisfying, indoor-outdoor, congestion-based
path finding.

o We present a random Indoor-Outdoor graph generator for
modeling various real-world scenarios.

e We perform an experimental evaluation and show that
ASTRO-C is able to return paths that significantly reduce
average congestion along a path.

The rest of the paper is structured as follows. In Section 2, we
review the necessary prior knowledge for ASTRO-C. In Section 3,
we formalize the least-congestion path finding problem as well as
present ASTRO-C in detail. In Section 4, we go in detail describing
the Random Graph Generator. In Sections 5 and 6, we describe the
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experimental methodology and results. In Section 7, we discuss
related work before finishing with our conclusions in Section 8.

2 BACKGROUND

In this section, we review the information needed to understand
ASTRO-C . This includes a description of Indoor-Outdoor graphs
(Section 2.1) which are able to represent buildings, doors and corri-
dors within buildings, an overview of the ASTRO and ASTRO-K con-
straints (Section 2.2), and finally, a review of the ASTRO algorithm
(Section 2.3).

2.1 Indoor-Outdoor Graphs

An Indoor-Outdoor Graph G(Vo, Eo, Gindoor) consists of outdoor
vertices Vo, outdoor edges E, and Indoor Graphs G;nqo0r (Vi, Ei). In-
door Graphs G400, are bidirectional weighted graphs which are
comprised of indoor vertices V;, representing only the doors allow-
ing people to enter and exit buildings, and edges E; represent the
paths between any two indoor vertices. Outdoor vertices are com-
prised of Indoor Graphs and represent buildings. Indoor-Outdoor
Graphs are bidirectional weighted graphs comprised of outdoor ver-
tices and edges represent the outdoor paths between buildings, con-
necting each of their entrances. The structure of an Indoor-Outdoor
Graph enables ASTRO, ASTRO-K and ASTRO-C to find paths seam-
lessly traversing through both indoor and outdoor spaces.

2.2 Mobility Constraints

Mobility constraints capture user preferences and abilities, by tuning
these constraints users can personalize the indoor-outdoor paths
[14] they are recommended.

Definition 2.1. Outdoor Exposure (E) — the maximum amount
of time allowed to traverse any given edge between two outdoor
vertices.

Definition 2.2. Time Limit (T) - the maximum amount of time
allowed to traverse the indoor-outdoor path.

Definition 2.3. Congestion (C) — the maximum amount of con-
gestion which can be encountered while traversing between two
indoor vertices. Congestion is measured by number of people/m?.

Definition 2.4. Accessibility (A) — a binary constraint that rep-
resents the requirement for accessible doors, floors and corridors.
For example, sufficiently wide doors (both into and out a building),
with easily accessible automatic door openers and ramps.

2.3 The ASTRO Algorithm

ASTRO is a constraint-based variant of the A* algorithm that op-
timizes for travel time. Being an optimal A* variant means that
ASTRO is guaranteed to have optimal edge selection when travers-
ing the graph [3].

Given an Indoor-Outdoor graph, ASTRO behaves like standard
A*, traversing the graph over the outdoor vertices but then at each
step also expands the current outdoor vertex v.’s Indoor Graph
Gf’; Joop (0 find the best ordered pair of indoor vertices to use as the
entry and exit for the current outdoor vertex .. Unlike standard A*
when an edge is expanded it may be pruned if it no longer meets the
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constraints IT = (E, T, C, A). Pruning edges in this manner allow us
to avoid constructing the complete Indoor-Outdoor graph, which
would be prohibitively expensive.

As mentioned above, in ASTRO, the unit of measure for both
the exact cost function g() and estimated cost heuristic h() is time
rather than distance. The exact cost g() for an outdoor vertex is
the sum of the time it takes to traverse to the current vertex, and
the heuristic cost h() is an estimate of the amount of time it will
take to reach the terminal vertex from the current vertex. This
change in unit of measure is accomplished by simply multiplying
the distance traversed by the average walking speed of a person
(1.4m/s) [13, 19].

distance

1.4m/s W

outdoor_time_segment =

For paths within between indoor vertices, congestion is also taken
into account when calculating time. This is done by also adding
the product of the distance with the predicted congestion of that
distance. Since congestion is a fraction, we use 1 + congestion to
modify distance in order to maintain the monotonic nature of the
equation.

distance * (1 + congestion)
1.4m/s

@

indoor_time_segment =

This change from distance to time although simple is critical to the
algorithm as it allows ASTRO to dynamically compute predicted
congestion based on the estimated time of arrival.

3 LEAST-CONGESTION PATH FINDING

In this section, we formalize the problem of least congestion path
finding (Section 3.1), discuss a few key assumptions we have made
about this problem (Section 3.2), and present our algorithm ASTRO-
C (Section 3.3).

3.1 Problem Definition

Definition 3.1. Given an Indoor-Outdoor graph G(Vo, Eo, Gindoor)» @
source outdoor vertex vs, a terminal outdoor vertex v, a departure
time D, and a set of constraints IT = (E, T, C, A), find the constraint-
satisfying path with the minimal summed congestion which would
be experienced by the user.

The metric for “congestion experienced by the user” is the aver-
age congestion experienced at the time the user would arrive at the
given indoor path. The path returned must still satisfy the given
maximum congestion constraint C outlined above.

3.2 Key Assumptions

Before presenting the algorithm, let us first outline two key
assumptions that are used by ASTRO-C.

Assumption 1: As long as a metric is monotonically increasing,
it can be used as the basis for a path finding cost function.

Although typically when path finding, metrics such as distance
or time are used, this does not necessarily have to be the case. Using
this assumption, our cost function can be based on the sum of any
metric within our path. This key idea is what enables ASTRO-C’s
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least-congestion path finding. By leveraging the predicted conges-
tion metrics, EpicGen [2] produces for a given indoor path and
arrival time (y, o, min, max), we can create a cost function which
ranks paths based on the sum of the average congestion along the
path as described in Equation 3.

However, the previous congestion is unable to predict future
congestion with any guarantees. Thus, the major limitation of a
cost function calculated this way is that we were unable to create a
useful path finding heuristic with any guarantees of optimally.

g(path) = Z elavg_congestion) (3)
eepath.E;
h(path) = path[total_time] + time_heuristic(path) (4)

Assumption 2: The heuristic function h() can be decoupled
from the cost function g() and thus need not use the same metrics.

The goal of a heuristic function is to allow us to reduce our
computational cost by using our knowledge of the graph to better
select edges during path finding. Although we were unable to create
a heuristic with guarantees for our congestion-based cost function,
using this assumption, we were still able to optimize our search.
ASTRO-C employs a cost-based search algorithm using heuristic
priority, where if there are choices with equivalent cost the heuristic
is able to determine priority (Algorithm 1). Using Equation 3 as the
congestion-based cost function, and the time-based cost/heuristic
functions of ASTRO as our heuristic (Equation 4), we are now able
to rank equivalent paths with priority. This is most helpful in case
such as comparing two different indoor paths of the same outdoor
vertex.

Algorithm 1: New priority queue compare function com-
patible with both ASTRO / ASTRO

Input: v;: Outdoor Vertex, vy: Outdoor Vertex,

Output: 91 < vy

1. if v1[fscore] # va[fscore] then
2 return v; [ fscore] < va[fscore]
3. else return vy [hscore] < vy[hscore]

3.3 ASTRO-C

Using the cost and heuristic functions defined in the previous
section, ASTRO-C provides a solution to the problem of least-
congestion path finding (Algorithm 2).

High-Level Idea: ASTRO-C contains a priority queue of
outdoor vertices and at each step the least-congestion, non-closed
outdoor vertex is explored. The exploration consists of constructing
the vertex’s indoor graph, finding the least congested indoor
path, adding the outdoor vertex with the information about the
outdoor/indoor path into the queue, and then setting the outdoor
vertex as closed. Each outdoor vertex is only expanded once before
being set to closed, in order to minimize expensive indoor graph
constructions. Once the terminal outdoor vertex is the head of the
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Algorithm 2: ASTRO / ASTRO-C

Algorithm 3: toAdd Vertex Initialization Macro

Input: ug: Source Outdoor Vertex, v;: Terminal Outdoor
Vertex, O: Set of Outdoor Vertices, I Set of
User-Given Constraints, toAdd Macro: Algorithm 3

Output: p: best path

1. Initialize Priority Queue OPEN and Set CLOSED

2 OPEN .push(vs)
3. while !OPEN.empty() do

4 curr < OPEN.pop()
5: if curr = v; then return p < ReconstructPath(curr)
6: else if curr ¢ CLOSED then
7 CLOSED « CLOSED U curr
8: for outdoor € {O — CLOSED} do
9 IndoorGraph « outdoor[IndoorGraph]
10: for in € IndoorGraph do
— ; .
11 sty «— Status(curr|out], in, curr[time])
12: for out € {IndoorGraph — in} do
—
13: exitTime « curr[time] + st1[time]
14: sty « Status(in, out, exitTime)
— - =
15: St « sty + sty
-
16: g < curr[g] + st[g]
17: if g < outdoor[g] and
CheckConstraints(H,?f) then
18: outdoor[g] « g
19: Initialize outdoor vertex toAdd
20: Remove any vertices with the same
outdoor vertex as toAdd from
OPEN
21: OPEN .push(toAdd)
end
end
end
end
end
end

queue, we have found the least-congestion path and terminate
path finding.

Algorithm: First, the outdoor vertex priority queue OPEN with
the source vertex vg and the empty set of outdoor vertices CLOSED
(Line 1-2) are initialized. It should be pointed out that v; is initialized
with the departure time D before being passed to ASTRO-C. From
there, ASTRO-C will continue to loop (Lines 3-19) until either the
destination has been found (Line 5) or the priority queue OPEN is
empty and the set of outdoor vertices has been exhausted, meaning
no path exists.

The loop starts by setting our outdoor vertex curr to the head

of OPEN and then pops the head from the priority queue (Line 4).

As described earlier, the current outdoor vertex is then checked
to see if it is the user’s destination (Line 5). If not, the algorithm
continues by checking if curr has already been visited (Line 6). If
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toAdd «— OutdoorVertex(status, in,cameFrom,g, h, f)
> ASTRO

OutdoorVertex(?t), in, curr, g, h(out, t), g + h)
> ASTRO-C

OutdoorVertex(?t), in, curr, g, h(out, t), g)

it has, we break out and move on to the next vertex in the queue.
If it has not been visited, ASTRO-C will proceed to construct the
outdoor vertex’s indoor graph (Line 8).

Once the edges have been populated with congestion values, a
loop between every pair of indoor vertices finds the best outdoor +
indoor path (Lines 10-19). The outdoor path is constructed using
the indoor vertex out of curr as the start and the indoor vertex in
we are currently exploring as the end (Line 11). The indoor path is
constructed using that same indoor vertex in but now as the start
and the indoor vertex out we are currently exploring as the end
(Line 13). Once the indoor path is constructed, we join this with the
outdoor path and calculate the cost (Line 15-16). The cost is then
compared to the current best path within the outdoor vertex and
the constraints (Line 17).

If the path passes this check, the current best path within the
outdoor vertex is updated (Line 18), an outdoor vertex toAdd with
the appropriate information is initialized (Line 19 / Algorithm 3),
any vertex in the queue with the same outdoor vertex as toAdd
is removed from the queue (Line 20), and toAdd is pushed to the
queue (Line 21).

4 RANDOM GRAPH GENERATOR

In order to be able to run experiments which could replicate a
wide variety of scenarios, we built a configurable Indoor-Outdoor
graph G(Vy, Eo, Gindoor) generator. The graph generator has the
following six configuration parameters that define the Outdoor
Graph (i.e., the buildings and their positions) and the level of the
congestion in the different outdoor vertices:

e N - Number of Buildings (Integer),

e P - Total Area Covered by the N Buildings (%),
e h - High Congestion Buildings (%),

e m - Medium Congestion Buildings (%),

e | - Low Congestion Buildings (%),

e constant - Constant Congestion (True/False).

The specific characteristics of each outdoor vertex’s Indoor Graph
Gindoor are randomly generated. This process, as well as the graph
generation as a whole are described in the next section.

4.1 Graph Overview

The graph we generate is built upon a 2-dimensional square grid.
Each pair of x and y coordinates is a place where an outdoor vertex
could be generated. Each outdoor vertex is randomly determined
to have between 2-5 indoor vertices, the exact location of which
is generated by adding a random polar coordinate offset (r, 8) to
the x and y of the outdoor Vertex. A Polar coordinate offset allows
us to easily set a bound on the maximum distance away from the
outdoor vertex using r, and equally partition the areas an indoor



ASTRO-C: Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time

o o o (o)

o o) o o

o 0 o ¢
o o0 o

Figure 2: Visualization of the area that a new indoor vertex
v; can be placed around a coordinate (Top Left); Example of
a generated Outdoor Vertex with 4 indoor vertices v;—, (Top
Right); Example of fully generated graph G using the graph
generation parameters N = 4, P = 0.5 (Bottom).

vertex can be placed using 6. This is important for multitude of
reasons:

(1) Setting a lower bound for r guarantees there will always be
at least some indoor time traversing a building;

(2) Setting an upper bound for r guarantees our the area the
indoor vertices can be located will never overlap between
outdoor vertices;

(3) Assigning ranges of 0 to each indoor vertex allows us to
distinctly partition the space around the outdoor vertex,
guaranteeing no overlapping indoor vertices.

A visualization of the total space indoor vertices can occupy,
an example of a fully generated outdoor vertex, including lines to
visualize the 6 partitions, and a visualization of a fully generated
random graph can be found in Figure 2. Please note the shape of the
building is not important, what is important is that the buildings
do not overlap and the doors define a possible topology.

It’s important to note that since CAPRIO is built for the real-
world coordinates, these x and y values would typically correspond
to latitudes and longitudes. This means that in our generated graph
the distance between two vertically or horizontally adjacent points
would be around 111km. To make our results more akin to what
would be typical of an urban environment, we have scaled our
experimental results down by a factor of 11100. This means, that
instead of 111km, the distance between two adjacent points is 10m.

4.2 Graph Generation Algorithm

The generation process, using the parameters we described above,
is outlined in Algorithm 4.

First, the generator initializes the new Indoor-Outdoor graph
G we are generating (Line 1) and the bounds of the graph’s 2D
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Table 1: Random Graph Generator Parameters

Symbol  Definition Default Range
N Number of Buildings 100 25,50,100,200
P Total Area Covered by N Buildings 75% 25%, 50%, 75%
h High Congestion Buildings 30% 4%, 27%, 69%
m Medium Congestion Buildings 40% 4%, 27%, 69%
I Low Congestion Buildings 30% 4%, 27%, 69%
constant  Buildings with Constant Congestion False True, False

grid are calculated in such a way that ensures there are enough
spaces for every building with the coverage parameter (Line 2-3). To
generate the locations of the outdoor vertices an array containing
all possible points in the grid is created (Line 4), and then, these
values are randomly shuffled before initializing the buildings array
using the first N values (Lines 5-6). For each value in buildings, the
coordinates x and y are calculated (i.e., if the bounds are 5, and b
is 14, then x = L%J and y = 14 mod 5) and the outdoor vertex is
added to G (Lines 8-10).

Once the outdoor vertex has been added the graph and the num-
ber of indoor vertices, doors, has been decided (Lines 10-11), the
location and congestion of the indoor vertices can then be gener-
ated. The location of the indoor vertex is determined by a Polar
offset from the outdoor vertex’s Cartesian coordinates for the rea-
sons outlined in the section above. To do this, we generate (1) a r
value with a bound of [0.1,0.4) (Line 14), and (2) a 0 value with a
bound of [0, difﬁs ). To calculate the location of the indoor vertex
using this offset, it is converted to Cartesian values, then adding to
the location of the outdoor vertex (Line 17).

The congestion for the indoor vertex is decided by retrieving a
random variable from a Gaussian distribution with a mean deter-
mined by the level of congestion the building is supposed to have
and a standard deviation of 0.2, or it is given a constant value of
1 if the constant parameter is set (Lines 18-21). The high conges-
tion buildings have a mean of 2 people/m?, the medium congestion
buildings have a mean of 1.25 people/m?, and the low congestion
buildings have a mean of 0.75 people/m?. The values were based
around the standard social distancing guidelines of 1 person/m?.
Once the indoor vertex’s congestion is generated it is added to the
outdoor vertex’s Indoor Graph (Line 22).

It’s important to note that Lines 18-21 simplify the congestion
generation into one value, however, in practice a 24-hour time-
series of 5-minute intervals is generated. The congestion used in
our generated graph is static throughout the day so the one value
populates the entire time-series, but in our real-world data sets this
is not the case. In Section 6 of this paper, we address this short-
coming with an experiment evaluating how ASTRO-C performs
with graphs simulating congestion patterns typical of various times
throughout the day.

5 EXPERIMENTAL METHODOLOGY

This section provides details regarding the algorithms, random
graph generator configurations, and metrics used for the evaluation
of ASTRO-C.

Algorithms: To our knowledge, ASTRO is the current state-of-
the-art in Indoor-Outdoor path-finding using predictive congestion.
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Algorithm 4: Graph Generation

Input: N: Buildings, P: Coverage (%), h: High Congestion
(%), m: Medium Congestion (%), I: Low Congestion
(%), constant: Constant Congestion

Output: G: Indoor-Outdoor Graph

> Step 1: Initialize Graph and Calculate the Grid’s Bounds
1: G « new IndoorOutdoorGraph
2 total_area «— N/P
3. bounds «— {W]
> Step 2: Generate Coordinates for Outdoor Vertices
4 possible_buildings < Range(0, bounds?)
5. shuf fle(possible_buildings)
6: buildings < possible_buildings[0,N — 1]
> Step 3: Generate Coordinates for Indoor Vertices
7. fori < 0;i < N;i++do
8: b « buildings|[i]
9: (bx, by) (ands’ b % bounds)
10: G.add(OutdoorVertex(id = b,x = by, y = by)

11 doors < rand(2,5)
360

12: deg_partition «

doors
13: for j « 0; j < doors; i ++ do
> Step 4: Generate Offset for Current Indoor Vertex
14: r < rand(0.1,0.4)
15: 0 «— (j = deg_partition + rand(0, angle_partition))
16: 0 «— 0% {55 /* convert to radians */
17: (dx,dy) < (bx + 1 % c0s0,by +r * sind)
> Step 5: Generate Congestion for Current Indoor
Vertex
18: if i < N X h then
‘ con « gaussian(y = 2,0 =0.2)
end
19: else if i < N(h+ m) then
‘ con « gaussian(y = 1.25,0 = 0.2)
end
20: else
| con « gaussian(p = 0.75,0 = 0.2)$;
end
21: if constant or con < 0 then con « 1
22: G[b].add(IndoorVertex(id = j,x = dx,y =
dy, congestion = con)
end
end

By comparing ASTRO-C to ASTRO, we are able to gain insight into
the different paths that may be recommended to users of CAPRIO.

Methodology: A test of ASTRO and ASTRO-C on the University
of Pittsburgh and University of Cyprus data sets using CAPRIO pro-
vided no significant insights. However, the use of generated graphs
inspired by these real-world data sets allows us to perform a through
sensitivity analysis, which would otherwise not be possible.
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In order to provide a holistic view and gain insights into the
trends, a generated a set of 10 random graphs with a given set of
parameters was used for each run of an experiment. Additionally,
we are providing the average of the results of these 10 graphs,
which illustrates the average case given a configuration, rather
than focusing only on a single case using a single configuration.

Graph Configuration: The configuration used as the default
for our graph generator is N = 100, P = 0.75, h = 0.3, m = 0.4,
I = 0.3, constant = False. The experimental range of values for the
parameters are summarized in Table 1.

Path Finding Constraints: The path finding constraints are
E =30m, T = (2 % graph_bounds = distance) /1.4, C = unbounded,
and A = False. Although, total time is typically a smaller value
and congestion is typically bound in the real-world use case, by
minimizing the number of number of paths pruned via these
constraints, our experimental results highlight only the differences
caused by ASTRO-C’s modifications to ASTRO.

Metrics: In each trial we record a number of measurements to
evaluate ASTRO and ASTRO-C. Each metric can be broken down
into one of three different categories: time, congestion, and com-
putational cost. Additionally, each metric in all three categories is
accompanied by a performance ratio (ASTRO-C / ASTRO).

e Time Metrics (in seconds):
— Total Time: time to traverse entire path.
— Indoor Time: time to traverse indoor sections of a path.
— Outdoor Time: time to traverse outdoor sections of a path.
e Congestion Metrics (in # o f people/m?):
— Average Congestion: average of all the indoor paths’ aver-
age congestion.
— Minimum Congestion: minimum indoor path average con-
gestion.
— Maximum Congestion: maximum indoor paths average
congestion.
e Computational Cost Metrics (in # of vertices manipulations):
— Outdoor Vertices Dequeued: incremented on Line 4 of
Algorithm 2.
— Outdoor Vertices Expanded:incremented on Line 8 of Al-
gorithm 2.
— Indoor Vertices Expanded: incremented on Line 10 of Al-
gorithm 2 for entrances in and on Line 12 of Algorithm 2
for exits out.

6 EXPERIMENTAL RESULTS

To evaluate ASTRO-C performance characteristics with respect to
achieved congestion reduction, computational cost, total traveling
time of the recommended path, and scalability, we carried out six
experiments. In each experiment, any non-specified graph genera-
tion or path finding constraints can be assumed to be the default
values defined in the previous section and listed in Table 1. Recall,
the path finding constraints T and C are practically unbounded as
to minimize paths pruned via these constraints, to highlight the dif-
ference in path recommendations caused by the cost and heuristic
functions.



ASTRO-C: Recommending the Least Congested Indoor-Outdoor Paths without Ignoring Time

1x10°

e Entrances Explored £ |
g Exits Explored _mzmzm |

100000

10000

1000

Time in seconds

Number of Indoor Vertices

Number of Outdoor Vertices

ASTRO  ASTRO-C ASTRO  ASTRO-C ASTRO  ASTRO-C

Outdoor Vertices Outdoor Vertices Indoor Vertices Explored

Dequeued Expanded (Entrances | Exits)
ASTRO 416.0 31101.0 121835.0 | 377448.0
ASTRO-C 2299.0 183401.0 718355.0 | 2224968.0
Performance Ratio
(ASTRO-C / ASTRO) 5.53X 5.90X 5.90X | 5.90X

Total Time (s) Indoor Time (s) Outdoor Time (s)
ASTRO 1747348.85 82472.64 1664876.21
ASTRO-C 1747348.85 82472.64 1664876.21
Perf Rati
eriormance Batio 1.0X 1.0X 1.0X

(ASTRO-C / ASTRO)

Figure 3: Comparison of ASTRO vs. ASTRO-C in Constant
Congestion Environments

The scalability experiments were designed using data sets based
on OpenStreetMaps (OSM) [18] data for the University of Pitts-
burgh and University of Cyprus campuses. As an urban campus,
the Pittsburgh campus consists of more than 100 buildings in an
area of 0.75 square miles, whereas the Cyprus campus as a suburb
campus consists of a small number of clusters of buildings/athletic
installations spread over an area of 1.25 square miles.

6.1 Experiment 1: ASTRO vs ASTRO-C Paths
with Constant Congestion

Our first experiment, shown in Figure 3, explores how ASTRO and
ASTRO-C compare in constant congestion environments. Since
ASTRO-C tiebreaks with the cost and heuristic functions of AS-
TRO the paths should be the same. As we can see in our results,
ASTRO-C continues to incur additional computational cost but does
recommend the same path.

Summary: : In constant congestion environments, ASTRO and
ASTRO-C will recommend the same paths.

6.2 Experiment 2: ASTRO vs. ASTRO-C Paths

Our second experiment, shown in Figure 4, compares the results of
ASTRO and ASTRO-C across all recorded metrics using the standard
graph generation configuration. The purpose of this experiment
is to gain insight into the behaviour of the two algorithms in the
general case.

Looking at our results we can see three major trends:

e First, we can see that ASTRO-C incurs a large computational
cost. Specifically, it explores on average 7.55X more of ver-
tices than ASTRO. This is because ASTRO-C does not have
an optimal heuristic and is not able to prune many of the
paths ASTRO is (as discussed in Section 3.2).

e Second, ASTRO-C is able to consistently recommend paths
with similar travel times as ASTRO. Specifically, the travel
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Figure 4: Comparison of ASTRO vs. ASTRO-C Paths

time increases on average by 1.06X and never exceeds 1.10X
compared to ASTRO.

e Finally, ASTRO-C is able to significantly reduce the amount
of congestion across all metrics. On average, ASTRO-C is
able to recommend paths with 0.62X less average congestion
and in the best case it achieved a reduction of 0.56X.

Summary: Consistently, ASTRO-C is able to recommend paths
with less average congestion and similar total travel time as ASTRO,
while retaining the same interactive characteristics as ASTRO.

6.3 Experiment 3: Varying the Number of
Buildings

Our third experiment, shown in Figure 5, compares the recom-
mended paths of ASTRO-C and ASTRO as the number of outdoor
vertices (buildings), N, scales while keeping P (percentage of area
coverage) constant to the default value. This should keep the num-
ber of options within the Outdoor Exposure E constraint similar
while increasing the number of buildings in the path.

Looking at our results we can see that as N increases, there
is a slight increase in the total time performance ratio but not a
decrease in the congestion performance ratio like we might expect.
This is likely due to the high congestion buildings becoming less of
a factor in the average ASTRO congestion while ASTRO-C is finding
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Figure 5: Comparison of ASTRO vs. ASTRO-C as the Number
of Buildings Scales

buildings approaching the lower bound of the possible congestion
values. As we described in Section 4.2, the mean for the congestion
assigned to low congestion outdoor vertices was 0.75 with the
default deviation of 0.2.

Summary: As N scales, ASTRO-C is able to more reliably ap-
proach the lower bound of congestion within the graph while in-
curring only a slight increase in total time.

6.4 Experiment 4: Varying the Percentage of
Area Covered by Buildings

Our fourth experiment, shown in Figure 6, we vary P, the percent-
age of the total area covered by outdoor vertices, while using the
default building values for N. Increasing this value should increase
the number of vertices within the Outdoor Exposure E constraint
at any given outdoor vertex. As P decrease we see the difference
between the paths ASTRO and ASTRO-C recommend significantly
decrease. This is because, as the number of edges satisfying the out-
door exposure constraint decreases, the more likely it is ASTRO and
ASTRO-C have to choose the same edge.

Summary: As P decreases, the differences between paths recom-
mended by ASTRO and ASTRO-C become less significant because
they are more often being forced to choose the same edges.

6.5 Experiment 5: Varying the Outdoor Time
Limit

Our fifth experiment, shown in Figure 7, varies E from 15m to
60m, the outdoor exposure constraint — 15m is the lower bound
to ensure there is always a path able to be found, while 60m is the
upper bound to ensure there is no direct path to the destination.
Similar to the last experiment, increasing this value may increase
the number of vertices within the outdoor exposure constraint at
any given outdoor vertex while keeping the number of buildings
the paths traverse through similar.

The results show at large values of E, outdoor vertices with
minimal congestion indoor paths that would typically be pruned
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Figure 7: Comparison of ASTRO vs. ASTRO-C as the Outdoor
Time Constraint Scales

due to outdoor exposure are now available. Because of this, ASTRO-

C is able to drastically reduce the user’s exposure to congestion.
Summary: As E increases, the difference in the congestion of

paths recommended by ASTRO and ASTRO-C increases as well.

6.6 Experiment 6: Simulations at Different
Times of Day

Our final experiment, shown in Figure 8, tunes the parameters of
high, medium, and low congestion buildings to simulate various
times throughout the day. The three times we choose to simulate
are 07:00, 12:00, and 20:00. The parameter values for each simulation
are loosely based on what percentage of businesses would be open
in an urban environment at that time. The parameters used for each
simulation are as follows:
e 07:00: h = 0.04, m = 0.69, ] = 0.27,
— Many business have opened but not many people
e 12:00: h=0.69,m=0.27,1 = 0.04
— All businesses are open and there are many people
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Figure 8: Comparison of ASTRO vs. ASTRO-C in Simulations
of Various Times Throughout The Day

® 20:00: — h=0.27, m = 0.04, ] = 0.69
— Most business are close but the ones that are open typically
have many people (restaurants, etc.)

In the simulations, ASTRO-C is able to find paths with 0.76X less
congestion than ASTRO, on average. Even at peak times, when only
4% of buildings have low congestion, ASTRO-C is able to find paths
with comparable times to ASTRO.

Summary: Throughout the day, ASTRO-C is consistently able
to recommend paths than maintain an average congestion under
1 person/m? while having a similar total time to ASTRO.

7 RELATED WORK

In this section we discuss work strongly related to the primary
contribution of this paper, ASTRO-C. A taxonomy of this discussion
can be found in Table 2.

While there is lots of research within the realm of pedestrian nav-
igation that use the terminology of congestion and path finding, of-
ten times these works are solving fundamentally different problems.
Primary examples being research centered around pedestrian evac-
uation systems [11, 21-23] and pedestrian simulations [5, 12, 16].
Evacuation systems although other measuring congestion in similar
ways to real-time data-dependent indoor path finding applications,
the problem of finding the best exit as opposed to path finding
enables solutions not practical for path finding applications. Simu-
lations of pedestrian behaviours tend to focus on emulating how
pedestrians react in congested spaces while traversing a path as op-
posed to recommending paths of least congestion. So as we can see,
although these topics are similar, they are not within the scope of
this paper. Congestion-aware path finding algorithms like ASTRO-
C fall into 2 categories: Real-Time Data-Driven and Predictive.

Real-Time Data Driven Congestion: Systems in this realm are
more similar to the evacuation systems and are more common in
the literature. These systems often take advantage of IoT devices /
wireless sensing technologies to localize users and then dynamically
update the congestion of the applicable areas. Recent work using
this approach include those used by Chen et al. [4] and Almari &
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Table 2: Taxonomy of Related Work

Models Indoor ~ Models Outdoor
Space Space

Yes Yes

Yes No

Yes No

Congestion  Constraint-Based ~ Cost Metric

ASTRO Predictive Time

Chen et al.

Real-Time Time

Almari & Almari Real-Time Time

amian et a " i Normalized Aggregated
Damian ct al. Yes RealTime Multi-Policy Cost

Liu et al. Predictive

ASTRO-C

Yes Congestion

Yes Predictive Congestion

Almari [1]. In both papers, the authors take advantage of the sensors
available in their user’s smartphones to interact with other nearby
devices to reason about their indoor environments. In Chen et al [4],
these other devices are Bluetooth Low Energy (BLE) devices while
in Almari & Almari, these are other users. A less IoT-based real-time
data-driven approach can be found in Damian et al. [9], which relies
upon its history of previously recommended paths to update the
environment and recommend least-congested paths. It is of note
that the work done by Damian et al. is able to find indoor-outdoor
paths and uses a multi-policy ranking systems to recommend paths,
congestion is just one of their policies, not the focus of the work.
The major limitation of all of these works being that there is no
accounting for users not using the application.

Predictive Congestion: The two main techniques recently used
for predicting congestion in the context of indoor path finding are
based on queuing theory and machine learning. Liu et al. [15] is an
example of the former. By modeling a building via the semantics of
a space, they are able to construct a graph of connected queues each
hyper-parameterized to simulate the congestion dynamics of a singe
semantic area (i.e., predicts congestion of an entire hallway using
one queue). EpicGen proposed in Chrysovalantis et al. [2] showcases
the machine learning-based approach. Using a grid-based building
model and a machine learning model trained on real-world data,
this approach is able to predict congestion for any grid cell in a
building at any time of the day (i.e., predicts congestion for a single
cell in a hallway). In ASTRO-C, we adopted the machine learning
based approach EpicGen inline with our previous work of CAPRIO.

8 CONCLUSIONS

The COVID-19 pandemic revealed the need for pedestrian recom-
mendation systems that can recommend paths which minimize
exposure to infectious diseases. This led us to define the least-
congestion path finding problem as the exposure to viral airborne
diseases is higher in crowded and congested spaces and introduce
ASTRO-C, an extension of our previous work ASTRO , which opti-
mizes for minimum congestion while still taking advantage of time
as a heuristic cost. We further developed a random Indoor-Outdoor
graph generator for modeling various real-world scenarios enabling
detailed experimentation.

Our experimental results show that on average, ASTRO-C is able
to recommend paths with a 0.62X reduction in average conges-
tion and a total travel time increase of 1.06X compared to ASTRO.
These congestion reduction gains come at the cost of increased
computation. Compared to ASTRO , ASTRO-C explores an aver-
age 7.55X more vertices (i.e., buildings), due to having no optimal
congestion path finding heuristic. Despite this it scales well in a
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number of graph simulations while retaining the same interactive
characteristics as ASTRO.

Although we were unable to construct a congestion-based heuris-
tic, we remain hopefully that it is possible and leave this as the
first major area of future work. The second area we feel has lots of
potential is within enabling the random graph generator to produce
realistic time-dependent dynamic congestion throughout the day
by leveraging EpicGen [2], our experimental platform for detailed
indoor congestion generation.
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