CAPRIO with Inclusive Pedestrian Path
Recommendations

Brian T. Nixon*¥, Zhiyong Chen*¥, Sai Konduru¥, Yuxin Liuf, Constantinos Costat, Panos K. Chrysanthisi
iDept. of Computer Science, University of Pittsburgh, Pittsburgh, USA
SRinnoco Ltd, 3047 Limassol, Cyprus
nixon.b@cs.pitt.edu, {zhc79, sck42, yul287} @pitt.edu, {costa.c, panos}@cs.pitt.edu

Abstract—Accessibility and usability have been key concerns in
the design of computer interfaces through which users interact
with applications and systems. Recently, chatbots have gained
popularity with service providers for improvements in this area.
In this paper, we present our experience in designing and
implementing CAPRIO’s inclusive chatbot-based interface for
pedestrian path recommendations. Our CAPRIO system provides
inclusive usability by extracting user preferences in a non-
intrusive dialog and using them to build a more accurate model
for the user’s intent. It uses the Microsoft Bot Framework (MBF)
and NLP modeling to support text and voice dialog.

Index Terms—accessibility, diversity, inclusion, pedestrian path
recommendations, HCI, chatbot, indoor, outdoor

I. INTRODUCTION

Context-awareness in human-computer interactions is essen-
tial for the everyday activities of an individual to maximize
the utility of the computer systems and applications which the
individual interacts with. For example, a context-aware path
recommendation system can provide recommendations that are
robust to a wide range of constraints of great importance to
many user groups. For instance, during inclement weather,
such as the 2021 heatwave in the USA and the 2021 polar
vertex in Canada, pedestrians are more vulnerable to heat and
cold-related injuries and illnesses. In addition, moving crews
need to avoid paths with many steps and narrow staircases.
As the examples suggest, context is subjective and while these
systems can provide utility for many users under several sce-
narios, benefiting users from all backgrounds requires holistic
thinking about their design.

In this paper, we describe our experience in transforming
CAPRIO [1], [2], our indoor-outdoor path recommendation
system, to provide inclusive utility, i.e., providing equal ser-
vice and value to all users. To achieve inclusive utility, we
discovered that both the user interface and the path-finding
algorithm in our case, must be designed to cooperatively
support accessibility and usability, aiming to obtain the user
preferences in a non-intrusive manner. While CAPRIO consid-
ers accessibility as a mobility constraint and enables users to
personalize their recommended indoor-outdoor paths through
the collection of user-specified preferences, its initial interface
was not inclusive. As shown in Fig. 2 (left), CAPRIO provides
a traditional interface that requires users to manually provide
their preferences by adjusting sliders and buttons, which

“These authors contributed equally.

13:13 51°

CAPRIO

0940 13:13 5°

CAPRIO

Do you mind crowds in your route?
Hi, Welcome to CAPRIO!

Are you interested in Path
Recommendation?

A minute ago

Will you carry a mask that you can
Yes use during this trip?

Great!, let us proceed.

We will ask you some questions to
make your experience better. Is

Is this mask you are carrying an
that OK? Y ving

N95 mask?

A minute ago

©

ﬂ Type your message

@ Irype your message

Fig. 1. Mobile interface of the CAPRIO chatbot

creates barriers for visually impaired or blind user groups.
Furthermore, CAPRIO’s current preference collection inhibits
the usability of the system by requesting input parameters of
excessive granularity rather than inferring them. For instance,
the congestion tolerance constraint.

To improve the inclusiveness, we developed a chatbot
interface for CAPRIO, that supports both text and voice chats,
which assists in the removal of barriers faced by visually
impaired and blind user groups. Furthermore, in terms of
usability, the total time needed to collect a user’s preferences
can be reduced by presenting constraints as simple chat ques-
tions rather than confusing parameters. Lastly, unnecessary
granularity can be removed by deducing preferences from the
answers to a series of intelligent questions as shown in Fig. 1.

This demo paper focuses on our experience improving the
inclusiveness of an existing path recommendation system, in
our case CAPRIO, and not comparing path recommendation
systems. The main contribution of this paper is twofold.

o We discuss how users’ preferences can be used to express
their capabilities and how these preferences are extracted
in a non-intrusive text and voice dialog.

o We discuss our experience in developing a text-based
and voice chatbot for CAPRIO’s inclusive interface using
Microsoft Bot framework (MBF).



II. THE CAPRIO SYSTEM

CAPRIO is our path recommendation system within the
University of Pittsburgh and the University of Cyprus cam-
puses. Given a starting location and a destination location,
it recommends a path through buildings that keeps the time
outdoors and the overall travel time as low as possible and
within user-specified limits. It also considers congestion delays
as part of the travel time and accessibility constraints with
respect to entrances, exits, and corridors.

The CAPRIO architecture consists of the Data Layer,
Processing Layer, and Application Layer. The Data Layer
is responsible for managing input data from various data
sources such as local or distributed files, data streams from
IoT devices, or other external APIs.

The Processing Layer is responsible for the core func-
tionalities and services of the system such as processing
data for path recommendations, performing localization, and
providing congestion information. The Processing Layer uses
ASTRO [3], an A*-based algorithm that can recommend a path
with outdoor exposure, congestion tolerance, and accessibility
constraints while keeping the travel time low for each request
along with the corresponding source and final destination.

The Application Layer is equipped with an intuitive map-
based interface layer that abstracts the complexity of the
system and recommends routes as shown in Fig. 2.

III. INCLUSIVE DIALOG FOR PREFERENCE GATHERING

Achieving inclusivity-for-all would require a solution that
would take everyone’s needs into consideration. In our inves-
tigation, we learned that arriving at such a solution requires
identifying subgroups of users, authoring sensitive questions
to obtain user needs, abilities, and disabilities in terms of
preferences, and overcoming challenges faced during each of
these steps [4].

A. Identify Subgroups of Users

Accessibility typically focuses on supporting users with
disabilities and consequently inclusiveness is often associated
with disabilities as well. For this reason, in order to design an
inclusive system for all users, the initial step is to identify
subgroups of users based on disability to handle as many
scenarios as possible. The reasoning for this step is to po-
tentially discover and generalize the types of barriers that
users may face in accomplishing a specific task or goal, in
our case while traveling and therefore provide a more robust
path recommendation. While this step seeks to improve the
inclusivity of a system by discovering scenarios and user
groups whose preferences and requirements are not captured
by the system, it turns out to be a very complex task.
Identifying every disability and its proper spectrum is simply
not possible given the near infinite number of conditions.

Rather than focusing on the conditions that affect the
abilities of users, an alternate solution is to approach the
issue bottom up rather than top down. Instead of identifying
which subgroups users belong to, we focus more on the
environmental barriers that users face while interacting and

collaborating on a task. In the case of travelling, for instance,
instead of highlighting the fact that someone uses a wheelchair
as a result of being diagnosed with Cerebral Palsy, we concern
ourselves with the fact that they are unable to climb stairs.
By focusing on environmental barriers, users are identified
through their abilities instead of the conditions that affect
their abilities. This favors a more individualized approach that
gathers information about each user to build a more accurate
model of the type of paths or actions they wish to take.

B. Author Sensitive Questions to Obtain User Preferences

When the more individualized approach is adopted, the
challenge is determining ways to ask users questions about
their abilities in a sensitive and respectful manner. Inclusivity
intends to benefit absolutely everyone and for this reason,
in our case of context-aware path recommendation systems,
the system should focus on aspects of environments that are
commonly challenging for many people to overcome. For
example, a wheelchair user cannot take the stairs and must use
the elevator. A janitorial staff member who frequently moves
heavy equipment will also opt to use the elevator. A restaurant
caterer will need to travel with wheeled carts and once again
uses the elevator. In each of these cases, climbing stairs is not
the preferred way to navigate to different floors of a building
where an elevator is an appropriate alternative irrespective of
the circumstances surrounding the reasons for its use.

By framing questions in terms of environmental character-
istics, there is no need to ask users about their capabilities and
limitations because such information is irrelevant to identify-
ing which factors may be used to identify the shortest and
safest paths possible. Obtaining preferences (environmental
elements) rather than asking individuals about their abilities
(capacity to engage with elements) solves the issue of poten-
tially asking intrusive questions that would discourage the use
of the system and reduce its utility. For instance, asking, “do
you have difficulty climbing stairs?” is far too invasive and
personal. By contrast, asking, “do you mind using the stairs?”
as shown in the dialogue above, we are simply interested in
whether the user prefers to use stairs or not regardless of
their reasons. Perhaps their reasons relate to their ability to
overcome these barriers, but these reasons are not necessary
for improving the path-finding algorithm in our case. A sample
of an inclusive dialogue is shown in Fig. 1.

In short, inclusivity benefits everyone regardless of ability
and questions within a chatbot dialogue should be asked based
on preference instead of capability.

IV. CAPRIO’S CHATBOT INTERFACE

The first challenge in developing an inclusive interface
for CAPRIO was to select a suitable existing technology or
develop our own from scratch. Towards this, we surveyed the
existing frameworks and developed a taxonomy for determin-
ing which chatbot framework best meets our requirements.

We surveyed existing chatbot technology to determine the
best option by considering cost, conversation limits, text and
voice support, and development complexity. In order to be able



Fig. 2. (left) Manual interface for user preferences in CAPRIO, (right) Microsoft Bot Framework (MBF) chatbot interface for user preferences in CAPRIO

to maintain a free service and support future development,
we restricted our pool to only free chatbots, which eliminated
paid options (e.g., DialogFlow [5]). While free chatbot options
exist, we considered their daily or monthly message limits and
the requirements for improving the usability and accessibility
of gathering preferences for CAPRIO.

A. Text Interface

For the text-based interface, we considered different chatbot
types such as Rule-Based System, Al, and Live Chat. Although
Al was initially preferred, the lack of training data led to
the selection of a rule-based chatbot due to its flexibility in
validating input. Accessibility requirements included support
for multiple languages, multiple platforms, and voice function-
ality. Based on these requirements, AWS Lex and Microsoft
Bot Framework (MBF) were selected as suitable chatbots due
to their lack of conversation limits, language and platform
support, as well as text and voice capabilities.

We have built interfaces using both the Amazon Lex and
MBF solutions to compare them. The full architecture of
the Amazon Lex solution requires multiple AWS modules
along with the standalone client application to meet our
requirements. Also, AWS Lex has a complicated architecture,
which makes it harder to maintain. The MBF solution to
the chatbot was user-friendly and was also able to meet the
requirements of our use case. In MBF, developing a chatbot
was straightforward and intuitive. Furthermore, with MBF’s
support for voice communication using Amazon Alexa or Web
Chat, Microsoft’s chatbot is more inclusive and usable in a
larger range of scenarios. For these reasons, we found MBF
to be preferable to AWS Lex.

B. Voice Interface

After developing the text-based communication chatbot
shown in Fig. 1 and Fig. 2 (right), we focused on adding voice
capabilities, which would greatly improve the accessibility of
CAPRIO. A voice interface would provide a more natural and
convenient way for users with typing or reading difficulties to
interact with CAPRIO, thus enhancing their user experience.

MBEF allows the bot to communicate with other applications
using web channels through the Speech Services SDK. This

SDK provides a Direct Line Speech channel that enables
the connection of the bot with Microsoft Speech Cognitive
Services to facilitate Speech-to-Text and Text-to-Speech func-
tionality. In our case, we use the default trained speech model,
Microsoft Azure Speech Cognitive Services, to perform speech
recognition and synthesis functionality. While the process of
integrating voice using MBF might seem straightforward, the
integration required a human-in-the-loop approach to fine-tune
the language in a way that maximizes usability.

C. Related Problems

The addition of voice capabilities enhances the user expe-
rience and brings the chatbot closer to natural language com-
munication; however, this upgrade has introduced challenges
such as intent recognition and named entity recognition for
determining arrival and departure times.

Intent Recognition: In a conversation with a chatbot, intent
recognition is a crucial step in ensuring that the chatbot
understands the user’s request correctly. For example, in our
case shown in Fig. 1, the chatbot asks the user if they will
carry a mask that they can use during their trip. If the user
clicks on the “Yes” button, it confirms that they will carry a
mask with them. By providing users with a clear and simple
button to confirm their intent in our original text dialog, the
chatbot can avoid misunderstandings or confusion. However,
if the chatbot interacts with the user using voice, there is no
button for validating the user’s intent.

To address the problem of intent recognition, we utilize
natural language understanding models in Azure Cognitive
Services to predict the user’s overall intention. We synthesized
a labeled training dataset for intent recognition that consisted
of user responses, such as “OK”, “okidoki”, “sure”, “yup”,
etc., and a matching intent of YES or NO. The NLP model
was trained using our labeled training dataset, evaluated, and
deployed on Azure. The chatbot subsequently makes external
requests to the model to classify user intent.

Time Extraction: During the chatbot’s dialog, users will be
asked about departure and arrival times. Our original approach
was to suggest a fixed input format “hour: minute”, then
validate the user’s input and extract the time. But in a voice
environment we can not specify the format of user input.



CAPRIO Chatbot Time Extraction

During the chatbot's dialog, users will be asked about departure and arrival times.
We implement our own regular expression methods and also experimented with several NLP models, including SUTime, Spacy, and ChatGPT.

Here is the demo to compare our own method with other three NLP Model

Compare

Pitt Local Time: 4:50:57 PM

' 15 minutes after 9 Generate
Time at Input 45021 PM
Regular Expression 21:15 0r 9:15?
Open Al 9:15 in 24-hour clock format
SUTime 15 minutes after 9 —> 2023-05-23709:15

Spacy 15 minutes after

AdhancedDta Nanagement TachologesLaboratery

Fig. 3. Comparing Time Extraction Interface

We have proposed two potential solutions: regular expres-
sions and NLP models. In the English language, there are
four different ways to indicate a particular time. The first
involves expressing time in “minutes (To/Past) hour” format,
while the second uses the “hours:minutes” format. The third
simply uses the “hours” format, while the fourth is conveyed
through specific keywords such as “noon” representing 12
PM. Based on the four expressions mentioned above, we
have implemented regular expression code to extract time.
However, time expression in English may have ambiguous
cases, such as distinguishing between AM and PM. To resolve
this ambiguity when extracting arrival time, we use intent
recognition to determine whether it is AM or PM. On the
other hand, when extracting departure time, we automatically
resolve the ambiguity based on the common sense that the
departure time is earlier than the arrival time.

Before developing our own solution, we explored existing
systems that utilized voice chatbots to help drive their applica-
tions. One such example, Jarvis [6], utilized a Conversational
Unit Interface to convert user’s speech to query IoT devices.
However, our problem requires a custom solution as these
existing voice chatbots, such as Jarvis, do not translate to the
problem of extracting preferences for path recommendations.

In addition to exploring existing voice chatbots, we also
experimented with several NLP models, including SUTime [7],
Spacy [8], and ChatGPT [9]. Among them, ChatGPT has the
ability to recognize relative time. However, our study found
that neither ChatGPT nor the other two NLP models were able
to handle time ambiguity, such as distinguishing between 12-
hour and 24-hour clocks as shown in Fig. 3. Our results show
that the regular expression solution is deterministic, providing
an error message when no time information can be extracted,
whereas all three NLP models may produce incorrect time
information. We also observed that the regular expression
method’s response time is comparable to the other solutions.

In order to debug and assess the completeness of our regular
expression solution, we conducted a preliminary user study
within our department which included diverse participants in
terms of their speaking language background.

V. DEMONSTRATION

During the demonstration, attendees will have the opportu-
nity to experience the key benefits of our inclusive chatbot in-
terface, including accessibility through voice input and usabil-
ity by utilizing the chatbot to generate path recommendations.
In addition, the attendees will be shown the shortcomings of
existing voice chatbots that motivated our solutions for time
extraction and intent recognition through a special UI (Fig. 3).

A. Demo Artifact

We have extended our prototype CAPRIO system, which
consists of an interactive map using OpenStreetMap along with
several graph techniques. The back-end was developed using
the Play Framework 2.7 and MongoDB 4.4 and the CAPRIO
web interface were extended with the chatbot endpoints and
sidebar as shown in Fig. 2 (right).

Particularly, CAPRIO provides two ways to input the user’s
preferences for a path recommendation. The first way is a
query sidebar consisting of multiple UI elements such as
buttons, dropdowns, and sliders, which requires manual input
and adjustments from the user as shown in Fig. 2 (left). The
second way is a sidebar with our proposed chatbot allowing
users to express their preferences either by text or voice as
shown in Fig. 2 (right). Demonstrating both ways during the
conference will allow the attendees to understand the benefits
of expressing the user preferences in a conversational way
using our chatbot instead of manual input.

B. Demo Plan

Datasets: To generate paths within the University of Pitts-
burgh and the University of Cyprus, we will pre-load a diverse
set of real datasets obtained from both universities.

Scenarios: The chatbot is publicly available on the CAPRIO
website and conference attendees will be able to interact with
the chatbot’s web-interface through laptops, tablets, and smart-
phones and gain first-hand experience of our intent recognition
and time extraction solutions. If the device supports voice
input, attendees will also be able to experience the voice
function.

REFERENCES

[1] C. Costa, X. Ge, and P. K. Chrysanthis, “Caprio: Graph-based integration
of indoor and outdoor data for path discovery,” Proc. VLDB Endow.,
vol. 12, no. 12, p. 1878-1881, 2019.

[2] C.Costa, B. T. Nixon, S. Bhattacharjee, B. Graybill, D. Zeinalipour-Yazti,
W. Schneider, and P. K. Chrysanthis, “A context, location and preference-
aware system for safe pedestrian mobility,” in JEEE MDM, 2021, pp.
217-224.

[3] C. Anastasiou, C. Costa, P. K. Chrysanthis, C. Shahabi, and
D. Zeinalipour-Yazti, “Astro: Reducing covid-19 exposure through contact
prediction and avoidance,” ACM Trans. Spatial Algorithms Syst., vol. 8,
no. 2, 2022.

[4] L. W. Leiby, C. Costa, and P. K. Chrysanthis, “Thinking inclusively with
caprio,” in IEEE MDM, 2022, pp. 378-380.

[5] Dialogflow. [Online]. Available: https://cloud.google.com/dialogflow

[6] N.D. Huynh, M. R. Bouadjenek, A. Hassani, I. Razzak, K. Lee, C. Arora,
and A. Zaslavsky, “Jarvis: A voice-based context-as-a-service mobile tool
for a smart home environment,” in JEEE MDM, 2022, pp. 318-321.

[7] SUTime. [Online]. Available: nlp.stanford.edu/software/sutime.html

[8] Spacy. [Online]. Available: https://spacy.io/

[9] ChatGPT. [Online]. Available: https://chat.openai.com/



