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Abstract—Energy efficiency has become a primary optimiza-
tion objective due to the global energy crisis and high levels of
CO2 emissions. Climate and energy targets have been leading
to a growing utilization of solar photovoltaic power genera-
tion in residential buildings. As the number of IoT devices
drastically increases, their automation through an intelligent
home energy management system can provide energy and peak
demand savings. The planning optimization of devices can be
very challenging due to the unsophisticated user-defined prefer-
ence rules. Existing solutions face convergence difficulties due
to the management of multiple IoT devices tackling multi-
objective problems. In this paper, we propose an innovative
IoT data system, coined GreenCap, which utilizes a Green
Planning evolutionary algorithm for load shifting of IoT-enabled
devices, considering the integration of renewable energy sources,
multiple constraints, peak-demand times, and dynamic pricing.
We have implemented a complete prototype system available
on Raspberry Pi and linked with openHAB framework. Our
experimental evaluation with extensive real traces shows that the
GreenCap prototype system efficiently generates a sustainable
plan obtaining high levels of user comfort 92-99% along with
≈52% of self-consumption, while reducing ≈35% of the imported
energy from the grid and ≈40% of CO2 emissions.

Keywords-Green Planning, Rule Automation, Renewable Self-
Consumption, Internet-of-Things, Load Shifting.

I. INTRODUCTION

Home Energy Management Systems (HEMS) make a res-

idence act as the end-use node by allowing flexible energy

demand, thus advancing the utilization of Renewable En-

ergy Sources (RES) and assisting in the mitigation process

of climate change [1]. Considering distributed and weather-

dependent RES, the time of day people consume energy

becomes significantly important in reducing CO2 emissions

(see Figure 1). Residential loads account for a large amount

of the utility’s load demand, and this number drastically

grows along with various involved applications [2]. The global

HEMS market has increased from USD 864.2 million in 2015

to USD 3.15 billion by 2022 [3].

Green Planning refers to computational approaches that

aim to make rapid progress towards sustainability through

load shifting considering peak demand reduction [4]. A key

driver for controlling the energy usage and CO2 emissions is

the uptake of Internet of Things (IoT) infrastructure, which

Fig. 1. An energy demand example during a day along with user preference
rules and solar energy production. The red dashed lines around the appliances
represent the energy used from the grid, and the green dashed lines illustrate
the self-consumption of the generated energy from renewable sources.

connects every single intelligent gadget in the world able to

perform various operations, as well as communicate using

open protocols [5]. Further, the self-consumption of renew-

able sources remains complementary to present and future

requirement for a cleaner environment, as it could be much

more beneficial than energy storage batteries where 17% of the

energy is lost in AC/DC conversion losses and heat dissipation

[6], [7]. Consequently, minimizing the CO2 pollution in areas

where humans are active and spend 80-90% of their time, can

impact the environment in a positive way [8], [9].

Through our previous publications, we have presented En-
ergy Planner (EP) and Green Planner (GP), integrated in

a system called IMCF+ [10], [11]. Both, EP and GP ,

adapted off-the-shelf AI algorithms (hill climbing and simu-

lated annealing), and focus on “long-term” planning, meaning

that they would compute a whole year plan by doing less

complex daily computations. For example, IMCF+ generates

a residential plan while considering the family’s configured

annual energy budget (e.g., 11500 kWh) and Rule Automation

Workflow (RAW) pipelines. The high-level system’s objective

is to identify the rules that must be dropped so that users stay

within the desired annual energy budget. On the other hand,

the system proposed in this study, coined GreenCap1, refers to

“daily” planning as it attempts to find the best combination for

1GreenCap, URL: https://greencap.cs.ucy.ac.cy/
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Fig. 2. GreenCap gets as an input the devices’ operations and returns as an
output a green scheduling plan.

allocating and shifting appliances during a day by minimizing

the imported energy from the grid, while considering high

demand and energy production times. This could have been

perceived as a much simpler case considering our prior work,

however, the given problem is NP-complete, calling for an

intelligent algorithm that can approach the optimal solution in

a computable time.

To illustrate the complexity of the GreenCap problem, let

us now for ease of exposition provide a realistic example.

Consider 10 hours of solar radiation on a given day x 60

minutes = 600 time slots on the x-axis. A residential solar

system is 10kWp at most in most places, thus, let us assume

this peak production during around noon time, as indicated

in the graph of Figure 2. We can approximate the curve by

2 triangles of size: height = 10kWp / 1kW = 10 and base =

5x60 = 300 minutes, meaning that we have a rectangle (height

x base) of 3000 cells to plan each day (see Figure 2). The

challenge is how to fill these cells with device operations, as

retrieved from Query 1 result-set, considering their maximum

energy bounds, e.g., a washing machine 2 hours (≈1kW),

a water heater (≈3kW), etc. GreenCap acts as an energy

planning framework and generates a sustainable plan for an

output, while incorporating the input data from Query 1. The

particular problem is an adaptation of the Bin Packing problem

[12] that is NP-hard (i.e., the 2D packing). This means that

there is no polynomial time algorithm for providing a quick

solution. The brute force solution (doing back-tracking) would

compute the optimal solution, yet requires a lot of time, but

more importantly be infeasible on low-end computing nodes

(such as Raspberry Pi - 1.5GHz CPU). The complexity of the

problem enforces us to use some sort of randomized algorithm

to yield a good approximation.

Query 1 - Device operations retrieved from database
SELECT device_id,start_time,end_time,power
FROM JOBS
WITH GreenCap
EPOCH DURATION 1 day

Further, the planning optimization of devices in smart

environments is a very difficult task due to the unsophisticated

user-defined preference rules. Most existing solutions confront

convergence difficulties as they cannot efficiently manage a

large number of IoT devices neither complex multi-objective

problems [13]. Particularly, the goal of this study, is to

compute in real-time a sustainable operating schedule that

satisfies the daily operation intervals of the listed devices in

the solar production curve, while considering peak-demand

times, Residential Consumption Record (RCR) history, and

user comfort levels.

Due to the high complexity of the problem’s decision space,

we utilize an evolutionary algorithm to generate a high-quality

solution to a particular search problem by relying on bio-

inspired operators such as mutation, crossover and selection.

Additionally, the hybridization of a genetic algorithm with

domain-specific local search heuristics, which results in a

memetic algorithm (MA), can further improve users’ fitness

and provide high convergence by reducing the likelihood of

trapping in local optima. The proposed Green Planning MA

algorithm has been integrated into our GreenCap system,

linked with openHAB framework and evaluated in a variety

of datasets with approximately 527.000 readings (408 MB in

total). The extensive experimental evaluation shows that the

intelligent self-consumption of renewable energy idea, inte-

grated in our prototype system, generates an energy-efficient

plan, which achieves up to 52% self-consumption and ≈96%

user comfort, while reducing ≈35% of the imported energy

from the grid and ≈40% of CO2 emissions. In summary, in

this paper we make the following contributions:

• We present GreenCap, a comprehensive IoT data system

acting as an energy planning framework, designed and

incorporated in openHAB.

• We propose a memetic algorithm to manage user comfort

preferences and reduce the imported energy from the grid

by considering costs, and CO2 emissions.

• We evaluate our system through an extensive experi-

mental series on real datasets with measurements from

a residential house that comprises of a variety of IoT

devices, peak electricity demand and solar panel data,

showing that GreenCap can be suitable for sustainability-

aware smart actuations in the future.

The remainder of the article is organized as follows: Sec-

tion II presents the system model. Section III describes the

proposed algorithms, and Section IV outlines the proposed

system. Our experimental methodology and findings are pre-

sented in Section V, the related work in Section VI, and the

article is concluded in Section VII.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we formalize our system model, problem

formulation, and the basic terminology used throughout this

manuscript. The main symbols and their respective definitions

are summarized in Table I.

A. System Model

We consider a residential household incorporated with a

net-metering photovoltaic (PV) system. The residence contains

numerous shiftable smart appliances D such as electric heater,

washing machine, air conditioner, lights, heat pump, etc.

We exclude specific appliances, like the refrigerator, since

it is of a high importance and should always be turned on.

Therefore, the residents can consume the energy generated

in the household EPT , and only request power from the grid

when needed (i.e., power excess is not stored). We assume that
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TABLE I
NOTATION USED THROUGHOUT THIS WORK

Notation Description
d, D IoT device d, Count of all d

Ud, Ld Upper/Lower power consumption bounds of device d
Cd Energy consumption of d
Zd CO2 emission intensity of d per country

PRd
i , PRT , N Preference Rule i for d, Set of all PRd

i , N = |PR|
t Time granularity

P t Solar power generation at a certain time
ECT Energy Consumption Table
EPT Energy Production Table
GDT Grid Demand Table
RCR Residential Consumption History Record

the building is equipped with a Home Energy Management

System (HEMS), such as GreenCap. Our HEMS takes as an

input the corresponding Query 1 result-set from database (e.g.,

operations ECT ) and schedules smart appliances to different

times or spread their operation over a longer period based on

the configured constraints. Our main intention is to optimize

an objective function to achieve a trade-off between energy

consumption, CO2 emissions, and comfort, by intelligently

planning the operation of appliances to off-peak hours.

We assume that there are D smart devices in the resi-

dential household that need to be planned sub-optimally. Let

C indicates the hourly energy consumption planning vector,

the elements of which (Cd, d ∈ [1, D]) indicate the energy

consumption of various devices in the residential building

under consideration. Further, let Z represent the hourly CO2

emission, the elements of which (Zd, d ∈ [1, D]) denote the

CO2 emissions of various devices in the house. All smart

devices have their own upper Ud and lower bounds Ld

in regards to power consumption levels. The solar energy

generation at a certain time is P t. We also assume that a user

has identified a set of preference rules PRd
i for each device

d = 1, . . . , D, and N = |PR|. N is recorded with a meta-

service, like the GreenCap system we propose in this work

and stored in a database table. GreenCap engages to regularly

execute these rules on the IoT appliances. Every PR relies

on a specific input context (e.g., location, peak-demand hours,

user-configured operation hours), which are also maintained by

our system. The proposed system ensures that green planning

does not affect to a large extend the user comfort levels,

and attempts to retain historical energy consumption levels

by considering the Residential Consumption Record (RCR).

B. Problem Formulation

Our proposed technique is optimizing the following objec-
tives: (i) Imported Energy; and (ii) User Comfort.

• Imported Energy (IE): is the energy retrieved from
the grid at a particular time-slot t so that appliances
D can complete the required operations set by residents.
It is the difference of the consumption Ci and the power
generation P , given by:

IEt = min
D∑
i=1

(Ct
i − P t)/t = 1, ...24 (1)

• User Comfort (UC): is the sum of all executed rules
defined by the user. The total set of preference rules
is defined as N . Each rule PRi=1 when successfully
adapted and consequently executed, otherwise PRi=0,
as shown in the equation below:

UC = max

N∑
i=1

(PRi)

{
1, if PRi is executed

0, otherwise
(2)

Equation 1 ensures the minimization of IE from the grid

and consequently the reduction of CO2 emissions since they

are correlated. Equation 2 maintains the UC at a high level

according to the pre-configured preference rules table PRT .
We evaluate our objective function as a weighted sum

function, where w1 represents the IE objective and w2 the

UC objective. The sum of w1 and w2 is 100%, expressing

the trade-off between IE and UC.

Weight = wIE
1 + wUC

2 (3)

Additionally, the proposed approach is also discussed with

respect to the following:

• Self-consumed Energy (SE): occurs when a household

consumes energy produced by installations of production,

such as photovoltaic panels or mini wind generators.

• CO2 Emission (Zi(IEi, k)): is the CO2 emission pro-

duced by the actuation of device d given the imported

energy consumption IEi, as well as, the CO2 emission

intensity k of a particular country.

• CPU Execution Time (Ft): is the processing time

required by the controller for running the optimization

fitness function and calculating the output.

III. THE GREENCAP ALGORITHM

In this section, an overview of our algorithmic approach

follows along with a local search heuristic we propose in our

work, presented in Algorithms 1 and 2, respectively.

A. Overview
The research goal of this work is to develop an intelligent

technique that enables users to find a sustainable allocation

plan for the operation of smart appliances, a pool of preference

rules and a tentative peak-demand history, reducing at the same

time CO2 emissions and the imported energy from the grid.
The GreenCap algorithm is composed of an innovative

Memetic Algorithm (MA) we have developed along with

a local search heuristic. The MA is based on a traditional

genetic algorithm extended by a search technique to further

improve user’s fitness that may keep high population, diversity

and reduce the likelihood premature convergence. Various

different approaches have been used in previous publications

for the scheduling and planning challenges including Linear

Programming, Mixed-Integer Linear Programming, Dynamic

Programming, etc. However, these methods face numerous

convergence difficulties and they cannot efficiently manage a

large number of devices while considering simultaneously the

optimization of IE, UC, user costs, and CO2 emissions.
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Algorithm 1 GreenCap: generates an energy-efficient plan
Input: ECT : Energy Consumption Table; EPT : Energy Production Table; GDT : Grid Demand Table; PR: Rule Table; gmax: max generation; p: population size; ev:
Evaluation Function
Output: An energy plan solution ECT∗

1: GreenCap(ECT, p, gmax, ev, PR) � GreenCap Routine
2: RCR ← getHistoricalConsumptionRecord(ECT ) � RCR: daily consumption per appliance based on historical data
3: popul ← population(ECT, p) � popul: init p random solutions
4: fitness(popul, PR) � calculate fitness for each chromosome in population
5: While (g = 0; g < gmax) do � g: current generation
6: While (i = 0; i < p) do � i: current iteration
7: (O1, O2) ← selection(popul) � O1, O2: random selected from popul
8: (O1, O2) ← crossover((O1, O2)) � crossover at a random point with 90% chance
9: (O1, O2) ← mutation((O1, O2)) � mutation at a random point with 1% chance

10: ComfortOptimizationHeuristic(O1, O2, RCR) � fix consumption of offsprings
11: (F1, F2) ← evaluate(O1, O2, EPT, ev) � F1, F2: fitness of O1, O2

12: O3 ← fittest(F1, F2) � O3: fittest offspring between O1, O2

13: F3 ← evaluate(O3, EPT, ev) � F3: fitness of O3

14: O ← fittest(F1, F2, F3) � O: fittest offspring between O1, O2, O3

15: populate(O) � populate fittest offspring to least fit in popul
16: i + + � increase iterations
17: EndWhile
18: g + + � increase generations
19: EndWhile
20: ECT∗ ← fittest(popul); � ECT∗: fittest chromosome in population
21: return (ECT∗)

B. GreenCap Memetic Algorithm (MA)

The proposed GreenCap MA, adapts an optimization ap-

proach based on a living organism’s natural genetic procedure,

where each iteration is dealing with various possible solutions.

Initially, as shown in Algorithm 1, a chromosome is adjusted

following a residential energy consumption pattern showing

the status (ON/OFF) of the smart devices, each time-slot’s

consumption, and the length of the chromosomes indicating

the total number of devices (see Figure 4). Afterwards, in line

3, a population is generated, which expresses a pool of possible

solutions presenting each device’s energy consumption state

in a specific time-slot. For every possible solution, the fitness

function is compared based on the problem’s objective metrics,

as indicated in line 4, aiming to reduce imported energy and

increase user comfort, while considering ECT , EPT, and

GDT . Consequently, this will facilitate the reduction of CO2

emissions, electricity costs, and increase the self-consumption.

In each iteration, the algorithm generates a new population

and applies the natural genetic process, crossover and muta-

tion, as shown in lines 8-9. The crossover operates based on a

configured probability, thus it is responsible to crossover two

chromosome strings and produce a new offspring O, which

differ from its parents. The GreenCap mutates the results

in order to cause some randomness in the offspring, thus

the population’s repetition is avoided. The mutation process

is based on a very low probability, and is responsible to

change one or more chromosome genes from the initial state.

Right after, there is an inspired local search function intro-

duced, and well explained in the following sub-section, coined

ComfortOptimization heuristic (line 10), which supports

the algorithm’s efficiency on retrieving better results. When

crossover, mutation, and heuristic operations are completed,

a new population is produced, where its fitness is compared

and evaluated with the previous population (lines 13-15).

Moreover, the users’ preferences are taken into consideration

during the calculation of the fitness function. The PR can

be configured through the app or web portal of the proposed

GreenCap system accordingly. Each rule adapted is consid-

ered as successfully executed, otherwise it is charged with a

proportional error cost based on the total set of PR.

C. Comfort Optimization Heuristic

The proposed local search heuristic, coined Comfort Op-

timization, aims to retain the daily total consumption to

its original state, based on the users RCR history, due to

fluctuations that may occur from the MA procedures. In case

PR settings are configured in a way that there is a conflict

with the historical record RCR, then the system prioritizes

users’ comfort by adapting the corresponding PR. The total

daily consumption per device is calculated, along with the

sorted energy production hours, as indicated in lines 4 and 5

of Algorithm 2. The consumption of the generated plan is

then compared with the RCR energy consumption history

of the devices. In cases where the consumption during the

day is less than the RCR state, an allocation (turns ON) of

operation in corresponding devices follows, considering the

power load bounds (i.e., Ud and Ld) per device and the highest

production hours (line 8). Otherwise, the heuristic deallocates

(turns OFF) corresponding devices accordingly, as shown in

line 10. The goal of this function is to retain and balance

the energy consumption levels in case too many devices are

turned on or off. Consequently, this adjustment will keep users’

comfort at high levels.

IV. THE GREENCAP SYSTEM

In this section, a description of our implemented prototype

system is presented, named GreenCap. The GreenCap has

been developed using the Laravel MVC framework along with

the Linux crontab daemon, and can be easily linked with

either open Home Automation Bus (openHAB2) or Domoticz3.

2openHAB, URL: https://www.openhab.org/
3Domoticz, URL: https://www.domoticz.com/
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Algorithm 2 ComfortOptimization: preserves consumption

to its original state
Input: ECT : Energy Consumption Table (O1 & O2); RCR: Residential
Consumption History Record; Pmax: Max power load (max bound) per appliance
Output: An energy plan solution ECT∗
1: COH(ECTO1

, ECTO2
, RCR) � Comfort Optimization Heuristic

2: For each (day in ECT ) � day: iterates daily through year
3: While (h = 0;h < 24) do � h: iterates hourly through a day

4: �cd[h] ← �cd[h] + consumptionPerDevice(h)
5: sp[h] ← sortHourlyProduction(h) � sorts production
6: EndWhile
7: If (cd < dayRCR) then � compares consumption plans
8: a ← allocate(sp, cd, Pmax) � allocates operations
9: else

10: d ← deallocate(sp, cd, Pmax) � deallocates operations
11: return (ECT∗) � returns new energy consumption plan

The GUI is incorporated directly into openHAB’s web portal

and mobile application, liable for proficient control of IoT

appliances and automated management of sustainability-aware

Preference Rules (PR) utilization.

The system architecture is composed of the following el-

ements: (i) a custom main control unit that can be linked

with either openHAB or Domoticz, acting as an intelligent

residential management application; (ii) GreenCap Controller,

a framework that contains the entire energy management logic;

and (iii) the web Graphical User Interface.

Control Unit (CU ): is a system implemented in JAVA

installed on a device, such as a Raspberry Pi, operating in

a user’s localized network. To manage IoT appliances with

respect to the configured by the users’ preference rules, the

CU will be communicating directly with them. Normally, after

the phone application is downloaded by the users, they will

be able to interactively control their appliances through CU .

For the design of the CU , one can extend Domoticz or open-

HAB framework, which are open source automation software

packages for smart residences offering a vast ecosystem of

bridges that allow users to directly communicate remotely or

locally with IoT appliances. The advantage of this is that we

can obtain the greatest level of IoT market compatibility, as

IoT integration is a big challenge. For example, consider a user

in his residence trying to configure the settings of his heating

boiler through a smart application. The manual regulation is

now undertaken by the CU that eventually interacts with the

IoT appliances.

GreenCap Controller: is an extension application to CU
we have designed to encapsulate the development of the MA

along with the GUI and required storage to enable users adapt

their preference rules and meet an energy-aware planning

solution. The settings configured by the users in a local

relational MariaDB database are passed as parameters in the

GreenCap algorithm, which has been developed as a JAVA

module. The user(s) populate the database through the mobile

application, which has been regulated to smoothly incorporate

the definition of PR via a web GUI portal (see Figure 3).

Graphical User Interface (GUI): is constructed using Laravel

MVC framework, HTML, and JavaScript, composed of 8000

lines-of-code. The web portal relies on a web-server named

NGINX, which is available on Raspberry Pi. The GUI consists

Fig. 3. GreenCap mobile application: Interfaces displaying consumption
results, algorithms’ performance, and create/edit portals for preference rules.

of the PR interface and the GreenCap planning results ob-

tained by the inspired sustainability-aware algorithm. The PR
site prompts users to configure their IoT preference settings

for any date-time-slots (see Figure 4). Information in regards

to the state of openHAB IoT appliances is obtained through a

Rest API service.

V. EXPERIMENTAL METHODOLOGY & EVALUATION

This section presents an experimental evaluation of our pro-

posed system. We start-out with the experimental methodology

and setup, followed by various experiments conducted that

expose the core benefits of our GreenCap system.

A. Methodology

This section provides details regarding the algorithms, met-

rics and datasets used for evaluating the performance of the

proposed approach.

Testbed: Our evaluation is carried out on our laboratory

VMware private datacenter. Our computing node comprises of

a Ubuntu 18.04 server image, featuring 6GB of RAM with 4

virtual CPUs (@ 2.40GHz). The image utilizes fast local 10K

RPM RAID-5 LSILogic SCSI disks, formatted with VMFS 6

(1MB block size).

Datasets: We have adopted a trace-driven experimental

methodology in which three real datasets are fed into our

simulator executed on the testbed. The first two datasets were

collected by the Laboratory for Advance System Software

in the University of Massachusetts Amherst. Particularly,

measurements were taken for the energy consumption of

various smart devices in different real residences, weather

conditions in the places where the houses are located, as

well as measurements of solar energy production from various

photovoltaic systems. Further, we utilized another set of data

to identify peak demand hours collected from the United States

Energy Information Administration, which measures the total

energy flow transmitted to the energy grid to meet the energy

needs of the country.

• Home Power Usage Dataset: The 408MB dataset

consists of 527,040 measurements per minute from

01/01/2016 until 31/12/2016. The set consists of 20

columns, where the first is the date and time and the
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Fig. 4. A daily planning representation of the standard, random, brute-force, and GreenCap methods. The GreenCap is liable to find a sustainable plan for
the operation of IoT appliances by only utilizing a Preference Rules (PR) table, a Residential Consumption Record (RCR) history, and a weather forecast.
Each IoT device is represented with a letter in the chromosomes stack of the memetic algorithm, and their state is indicated with 1 = ON or 0 = OFF.

remaining 19 columns are energy consumption measure-

ments from 19 different home appliances in kWh.

• Energy Production Dataset: The dataset used for the

production of energy by a photovoltaic system consists

of 65741 measurements per hour from 12/30/2010 to

30/16/2017. It consists of 2 columns, where the first

is the timestamp and the second column is the energy

production. The utilized PV system is 5.5 kWp, i.e., thus

the maximum output it can achieve per hour is 5.5 kWh.

• Peak Demand Dataset: The dataset utilized to find peak

hours of energy consumption in the US is 63.1MB in size

and consists of 579746 measurements per hour, collected

and combined by various energy organizations in all

US states from 01/01/2016 until 31/12/2016. For our

experimental series we preserved essential information

that consist the name of the organization, the timestamp,

and the total power consumption in kW.

Metrics: The efficiency of the proposed technique to achieve

the research goal introduced earlier, is measured by the Im-
ported Energy and User Comfort, as described in Section II.

The mean and standard deviation of the results is shown with

error bars in the experiments, based on ten repetitions. The

entire experimental series was conducted on an annual basis.

During execution, the algorithms consider various preference

rules configured by real users.

Baseline Approaches: Here we provide a concise overview

of the baseline methods optimizing IE, UC, and Ft.

• Standard Method: During the execution, the operational

bounds of each device are identified, which will be

considered later for optimization tuning. This method

ignores IE and provides maximum UC levels.

• Brute Force Method: aims to find an optimal solution

with the least IE from the grid and CO2 emissions, and

therefore to exploit as much SE as possible. Particularly,

it performs an in-depth search (Depth-First Search) to

find the best timing for the devices’ operation planning,

respecting the maximum consumption bounds of each

device. However, the UC levels are low and the execution

Ft is time consuming.

• Random Method: randomly shifts the operation of de-

vices during the day, where the number of performed

iterations can be provided as input parameter. Similarly

to the previous method, both approaches provide better

IE than the Standard method by sacrificing UC, however

Random execution Ft is much faster than Brute Force.

B. Performance Evaluation

In this experimental series, we evaluate the performance

of the proposed GreenCap algorithm against the baseline

methods, with respect to imported energy, self-consumption

of electricity and user comfort levels, as shown in Figure

5. The Standard method shows a breakdown of the data as

retrieved by the original datasets based on the aforementioned

metrics. The initial results based on our baseline approach

and before adjusting any smart planning, is 78% for the

imported energy, with the worst case of self-consumption at

21% and the best user comfort levels. The results of the

Random approach seem to be low in terms of user comfort

(≈ 35%) and self-consumption (≈ 38%), and high in regards

to the imported energy from the grid (≈ 61%). Considering

the self-consumed energy, the best result was obtained by the

Brute Force algorithm at around 67% (≈ 6248 kWh) and the

imported energy from the grid being only at ≈ 32% (≈ 3011

kWh), since it provides an optimal planning solution. However,

the user comfort achieved by Brute Force approach ranges at

only ≈ 40%, being the second worst among the other methods.

As observed, the best overall performance was obtained by the

GreenCap algorithm with a very high user comfort level at ≈
92%, an impressive self-consumption at around 52% (≈ 4818

kWh), and an imported energy at ≈ 48% (≈ 4447 kWh).

The fastest execution time is achieved by Standard method

since it simply executes an error calculation ignoring peak

demand and energy production hours. The Random approach

comes second, as there is not any time consuming pro-

cess during its execution. An impressive execution time is

achieved by GreenCap algorithm as manages to maintain

the balance between high user comfort, reasonable levels of

self-consumption and imported energy from the grid, while

avoiding peak demand hours. The worst period of execution

is achieved by Brute Force function, which is to be expected
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Fig. 5. Performance Evaluation: Evaluation in terms of Imported Energy, Self-consumed Energy, User Comfort, and CPU Execution Time.
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Fig. 6. CO2 Evaluation: Evaluation with respect to CO2 emissions in different countries based on their kg CO2 kWh factor.

as it takes much longer to find an optimal solution since it runs

through every possible combination. Brute Force is not ideal

for this type of operations since it cannot concurrently manage

as efficient as GreenCap the problem’s decision space, with

respect to load shifting, user comfort, peak-demand periods,

electricity costs, and CO2 reduction.

C. CO2 Evaluation

In the second experimental series, we evaluate the per-

formance of the algorithms with respect to CO2 emissions.

Given that energy is produced in a variety of manners (fossil,

renewable, nuclear, etc.), the impact on the environment is

typically measured in kg CO2 emitted per kWh of energy

produced 4. In countries with a high kg CO2 per kWh factor,

this effectively reduces CO2 pollution but also contributes to

the stabilization of the energy grid. The CO2 emission intensity

(kg CO2) is calculated as the ratio of CO2 emissions from

public electricity production (as a share of CO2 emissions from

public electricity and heat production related to electricity

production), and gross electricity production. In Figure 6, it

is clearly indicated that in countries with high kg CO2 per

kWh factor, the GreenCap algorithm can reduce up to ≈
40% of the carbon dioxide emissions. It seems that the Brute

Force technique obtains better results, and this is because

it exhaustively searches space for an optimal solution. The

Random method has the second worst emission levels out of

4In this work, we denote the more typical metric of kg CO2-eq(uivalent)
with only kg CO2.

all approaches. On average, we see that most countries have

still a long way for becoming CO2 neutral and that this is an

exciting problem space to seek for novel contributions.

VI. RELATED WORK

A comprehensive overview of energy monitoring and pre-

diction for smart homes is provided in this part. Gemello

[14], is a system responsible for estimating a home’s energy

breakdown by utilizing a mechanism to compare similar

households with a hardware-based disaggregation approach. A

deep latent model for energy disaggregation adapted on varia-

tional recurrent neural networks [15], is accountable to predict

energy consumption of residential devices that consume less

power and have no discernible repeating pattern. The latent

variable abstractions assist in great prediction performance on

previously unexplored data.
Storing huge amount of IoT data is challenging for efficient

execution of the corresponding smart home applications to

meet real-time demands, as a substantial amount of the data

produced may be unimportant. GradeSense [16], implements

a grading mechanism based on multimodal data fusion, in-

tegrated with an independent storage module that leverages

the grading scheme for efficient storing achieving up to 87%

data reduction on average in faster storage tier. Anomalies

and data errors are pervasive in time series data, such as IoT

sensor readings. The authors in [17], exploit active learning

algorithms to detect both temporal errors and events in a

single solution that aims at minimizing user interaction and

also repair data where possible.
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To lessen the cost of collecting and processing large scale of

energy data through smart IoT meters to perform basic analytic

tasks (i.e., time-of-use pricing in residences), various data stor-

age approaches are supported within distributed computing,

which are meant to ease the real-time data analysis process. A

smart meter data analysis system was developed in [18], uti-

lizing PostgreSQL and the MADLib machine learning toolkit.

Efficiently performing beneficial energy saving computations

still remains as an interesting challenge. A real-time stream

processing engine, named SPEAR [19], has been developed

for spatial-temporal data based on modern big data platforms,

which can fully take advantage of the big data ecosystem and

IoT cloud computing. It achieves high scalability with dynamic

Geo-Hash based spatial partitioning and high throughput with

in-memory based processing, requiring minimum latency with

the ability to seamlessly handle changing query states.

In terms of home automation strategies, smart thermostats

can significantly reduce consumers’ energy usage. The Integer

Linear Programming for Smart Scheduling (ILPSS) approach

improves the HVAC equipment duty cycle and optimizes

energy utilization, while maintaining the temperature based on

users’ comfort zone [20]. In [21], a model was developed to

keep the total consumption of each device under a configured

threshold with maximum possible benefit, while trying to

optimize each scheduled hour of a day. The ant colony

was utilized as an optimization technique to solve multiple

knapsack problems, enabling smart appliance scheduling. An

evolutionary algorithm is proposed in [22] for optimizing

the integrated usage of multiple residential energy resources

considering stationary storage systems, while focusing on the

minimization of energy cost and the end-user’s dissatisfaction.

In contrast, our work considers peak-demand periods and

emphasizes on CO2 reduction through self-consumption, as we

do not take into account storage systems for energy saving.

VII. CONCLUSION

In this work, we propose an innovative IoT data system,

coined GreenCap, which utilizes a Green Planning evolution-

ary algorithm for load shifting of IoT-enabled devices, con-

sidering the integration of renewable energy sources, multiple

constraints, peak-demand times, and dynamic pricing. Our

prototype system serves as proof of concept as it efficiently

generates a sustainability-aware plan, in a reasonable response

time, obtaining high levels of user comfort 92-99% along

with ≈52% of self-consumption, while reducing ≈35% of the

imported energy from the grid and ≈40% of CO2 emissions. In

contrast with other developments, the proposed approach does

not face convergence difficulties and can efficiently manage a

large number of smart devices, while maintaining electricity

costs and user comfort, as shown in the experimental series.

In the future we plan to extend our research based on Green

Planning solutions exposing different essential challenges that

need to be addressed, like security and privacy, scalability,

interoperability, power fluctuations, and interdisciplinarity.
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