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Abstract—Reproducibility is a core component of any scien-
tific discovery. A step towards reproducibility within the IPIN
community is the contribution of this paper, our software-based
testbed, called RETSINA (Reproducibility and Experimentation
Testbed for Signal-strength Indoor Near Analysis). RETSINA
enables the repeatability, reproducibility and comparison of
approaches that use machine learning to detect proximity.
We demonstrate RETSINA’s functionality by repeating and
extending the findings of a recent case study on Wi-Fi signal
strength based contact tracing accuracy. Furthermore, we lever-
age RETSINA to experimentally compare the results for detecting
close encounters produced by the original Wi-Fi signal strength
readings study and our study using Bluetooth signal strength
readings.

Index Terms—Reproducibility, Repeatability, Contact Tracing,
Proximity Detection, Indoor Localization, Machine Learning

I. INTRODUCTION

Soon after the outbreak of the COVID-19 pandemic, Digital
Contact Tracing (DCT) solutions were rapidly developed and
deployed nation-wide to alleviate the cumbersome task of
conventional contact tracing. The vast majority of DCT solu-
tions leverage smartphone mobile apps that rely on Bluetooth
scanning for power efficient and privacy-preserving proxim-
ity sensing [1]. Despite the evidence-based effectiveness of
Bluetooth DCT apps [2], their behavior in complex indoor
environments is not well studied yet, while the limited ex-
perimental setups are hard to replicate in order to reproduce
the tracing accuracy results. Alternative technologies that are
readily available on modern smartphones are already being ex-
plored to infer close contacts indoors in next generation DCT
apps. For instance, uncertain positioning data were recently
used for indoor contact tracing [3]; however, using location
information as a proxy to determine the distance between
users and detect proximity raises privacy concerns. To address
this limitation, authors in [4] consider Wi-Fi signal strength
fingerprints to detect proximity through Machine Learning
(ML), thus removing the need to estimate user locations. While
promising results are reported, they need to be validated by
further studies and reproduced to compare against current
solutions based on Bluetooth.

Research reproducibility is attracting increasing attention
due to the need for more transparent, useful, and trustworthy
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scientific publications. Several computer science and engi-
neering research communities and professional organizations,
including ACM and IEEE, have identified the gap long
ago and initiated targeted awareness raising activities [5]-
[8]. Reproducibility is thereafter recognized as an essential
scientific skill [9] and there is a limited number of publications
addressing this issue across different areas, including Jupyter
notebooks [10], ML platforms [11], signal processing [12],
and computing research [13] among a few others. However,
to achieve the ultimate goal of fully reproducible publications,
it seems that improvements are still needed [14]. The situation
is similar within the IPIN community including sparse related
works, e.g., a 2015 survey of experimental evaluation in indoor
localization research [15] and the offline evaluation of indoor
positioning systems in the context of the IPIN 2020 indoor
competition [16], as well as a few notable examples on repro-
ducibility such as a reproducible comparison of clustering and
optimization rules in Wi-Fi fingerprinting [17] and an effort
to benchmark the methods of dynamic accuracy estimation of
localization [18].

To the best of our knowledge, this work is the first attempt
to introduce a testbed for reproducibility and experimentation
that focuses jointly on i) digital contact tracing, rather than
user localization and ii) indoor environments with far more
challenging radio signal propagation conditions, compared to
outdoor settings. To this end, our contribution is threefold.

o We offer to the community a unique software-based
playground for research on indoor contact tracing, coined
RETSINA (Reproducibility and Experimentation Testbed
for Signal-strength based Indoor Near Analysis), which
allows not only to assess the repeatability of scientific
results reported in the literature, but importantly to extend
those results through configurable experimentation.

o We leverage RETSINA for reproducing the results pre-
sented in the recent case study [4], which relies on Wi-Fi
signal strength readings for detecting close encounters, in
terms of contact tracing accuracy.

o We go beyond the reproducibility case study and present
various extensions, including the provision of Bluetooth
signal strength data, and improvements to the ML models
attained by re-configuring the RETSINA testbed.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.



2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)

Contact Classifier Testbed

Input
P Staged Data
New Data - r ‘Geuerated Features ‘ - |Datasets ‘
Output
I - +  Model
neters | B | cerection | Ep[Dota Sumpling | mp | EEERR ||| - S
P ) Data Samplin > Statistics
Parameters reprocessing Selection ping Estimators +  Selected Features
Machine Learning Pipeline

Fig. 1. RETSINA Contact Classifier Testbed.

The rest of the paper is structured as follows. Section II
describes the RETSINA testbed and provides the details of
the various system parameters pertaining to data selection and
sampling, feature selection, ML estimators’ configuration, and
computational resources. We reproduce the results of the case
study and discuss our findings in Section III. Next, RETSINA
is used to perform extensive experimentation by re-configuring
the system parameters and we report the improved accuracy
results in Section IV. Finally, Section V, provides concluding
remarks and directions for future work.

II. TESTBED

Our RETSINA testbed! is a software experimental platform
for evaluating proximity detection methods based on signal-
strength readings through machine learning. Specifically, it
allows the reproducibility of proposed classifiers that accept
pairs of signal-strength fingerprints and a proximity distance
(e.g., 2.5m apart for COVID-19 exposure based on CDC
guidelines) and measures their contact accuracy.

y datasets should the classifier be trained on? [all, one] all
provided datasets as training data

z the testing dataset? (It is assumed that the directory exists within the datasets directory) 10-JUIndoorioc
aset under the datasets/ directory.

#+*iiciting RETSINA updates to log files under /output_figs/*.log***

Fig. 2. The RETSINA interface for gathering configuration parameters.

A. Architecture

Our testbed pipeline consists of five components, as shown
in Figure 1: Generated Features, Preprocessing, Feature Se-
lection, Data Sampling and Ensemble Estimator. It takes as
input fingerprint datasets for training/testing and configuration
parameters as shown in Figure 2 and outputs a trained classifier
and relevant statistics regarding the classifier’s performance
on each testing dataset (accuracy, “close” accuracy, “far”
accuracy, balanced accuracy, precision, and recall). It also

'RETSINA is publicly available at https://doi.org/10.5281/zenodo.8143917.

outputs the features selected through feature selection to be
used by the classifier.

The testbed also provides staged datasets to be used as
additional data for reproducibility and experimentation. These
staged datasets for training/testing are from Miskolc [19], JUI-
IndoorLoc [20], UJIIndoorLoc [21], and IPIN-Tutorial [21].

The input fingerprints data is expected to be of the following
tabular form and stored in CSV files:

< APs, lon, lat, FLOOR, BUILDINGID, SPACEID,
RELATIVEPOSITION, USERID, PHONEID, TIMESTAMP >

where all access points (APs) appear before the longitude
(lon) and latitude (lat). The relative position (RELATIVE-
POSITION) is a binary attribute that has value one if the
fingerprint was recorded inside the corresponding space and
zero if captured outside (in front of the door in our case) of
the space.

Each sample in the generated data represents a combination
of two fingerprints from the original datasets. Features for the
generated data can be placed into several categories shown in
Table I as described by Hyfe et al. [4], with the addition of a
new category G. AP Detection Features which is described in
Section IV-D.

TABLE I
FEATURE CATEGORIES FOR GENERATED DATA

[ Feature Category ]
A. AP Detection-Based Features

B. Basic RSSI Value-Based Features

C. Redpin Score-Based Features

D. Correlation-Based Features

E. Difference-Based Features

F. Device Heterogeneity Mitigation Features
G. AP Detection Features

Preprocessing on the generated data includes normalization
and filtering samples to remove samples outside the designated
range for distance. Next, features are selected using minimum
Redundancy Maximum Relevance (mRMR) feature selection,
as in Hyfe et al. [4]. The data is sampled to train/test according
to the designated sampling balance of close/far. Finally, the
testbed trains an attribute bagging classifier with multiple
options for the base estimator.
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B. Configuration Parameters

Tuning the testbed parameters will affect the performance
of the classifier. There are four categories of configuration
parameters:

1) Data Selection and Sampling Parameters:

e Training Datasets: indicates which dataset/datasets
to use in training.

e Testing Datasets: indicates which dataset/datasets to
use in testing.

o Number of samples: indicates the total number of
samples to consider from each dataset.

e Percentage Close: indicates the percentage of the
samples that should be in close proximity (to tune
the close/far balance of the sampled data) for the
training data.

e Excluded middle range: designates a range of dis-
tances to exclude from the training/testing data (e.g.,
ignore samples which are 2-2.5m apart).

e Max range: designate a maximum distance apart for
the model to consider (e.g., ignore samples greater
than 20m apart).

2) Feature Selection Parameters:

o Number of pymRMR features: designates the number
of features selected during feature selection.

o Add num_aps (boolean): if true, uses the features
specifying the number of access points in each
fingerprint, alongside the features generated through
feature selection.

3) Machine Learning Parameters:

e Base Estimator: specifies options for the base es-
timators (Nearest Neighbors, Decision Tree, Neural
Network, and AdaBoost). These were chosen to rep-
resent diverse methodologies in machine learning.

e Bagging Tree Depth: indicates the number of fea-
tures per base estimator in the bagging classifier.

o Number of Bagging Tree Estimators: indicates the
number of base estimators in the bagging classifier.

4) Control Parameters:

e Number of processes: indicates the number of pro-
cesses to use for parallelization.

C. Implementation

RETSINA was implemented with Python 3.10 using the
scikit-learn 0.22.1 library for generating the Bagging Classi-
fier and the base estimators (e.g., Decision Tree, Adaboost,
KNeighbors, and MLP) as discussed further in Section IV as
well as for standard feature scaling during preprocessing steps.

We utilized versions 1.24.1 and 1.5.3 of the numpy and
pandas Python packages for processing and evaluating all data
used by RETSINA and performing class rebalancing through
the pandas DataFrame sample method.

We used version 0.1.11 of the pymRMR Python package to
select the top features with the “mutual information difference”
(MID) selection method.

Lastly, to facilitate the parallel computation of experiments,
data processing, and data generation, we utilized version
2023.5.0 of the dask Python package and Python’s standard
multiprocessing package. The dask Python package was used
to convert datasets of generated features to Parquet files,
allowing for parallel processing on input data, which performs
significantly faster than the standard Pandas method for read-
ing CSV files and processing data.

III. REPRODUCIBILITY CASE STUDY

As mentioned in Section I, our testbed was produced to get
a better insight to the findings of Hyfe et al. [4]. In this section,
we share these insights of reproducing the aforementioned
findings. Hyfe et al. train and compare the results of a generic
classifier and a series of specialized classifiers. Specifically,
the generic classifier is trained on all available data, that is,
trained using data aggregated from all datasets, while the
specialized classifiers are trained on data grouped by the
average number of access points in each dataset.

A. Generic Classifier

The first experiment for the reproducibility case study
focuses on the generic classifier trained using data aggregated
from all staged datasets. The parameters for the generic
classifier which mimic the original paper’s classifier training
include: 53% “close” samples, decision tree base estimator, 8
pymRMR features, bagging tree depth of 3, 300 bagging tree
estimators, 17,000 samples per dataset, an excluded middle
range of 2.25-3.25 meters, a maximum range of 20 meters,
and use all the available datasets to test, and all datasets but
JUIndoorLoc to train.

Using these parameters, our testbed yielded higher balanced
accuracies for each dataset from the generic classifier of Hyfe
et al. [4], as displayed in Table II. Some changes that may have
affected the replication of the data include using fewer datasets
(we implemented only four of the six publicly available
datasets, and had no access to data collected in-house by the
original paper) and our decision to filter all samples which
had no shared access points (as these could automatically
be labeled as “Far”). Both of these changes could increase
the accuracy of the generic classifier. Additionally, we were
unclear as to the use of feature reduction in the generic
classifiers, and so chose to use only 8 features selected by
the mRMR algorithm to reduce runtime and overfitting. It is
possible that these changes caused a higher balanced accuracy
as we observed a higher balanced accuracy for each dataset
in comparison to the original paper.

B. Specialized Classifiers

We had initially assumed that Hyfe et al. [4] trained and
tested a specialized classifier for each collection of datasets,
grouped by access point density. While they did divide the
datasets into high, medium, and low density access point
groups, rather than training a classifier on each group, they
trained a classifier on one dataset of the group and tested it
on another. They found that training a classifier on a single
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TABLE 11
GENERIC CLASSIFIER REPRODUCTION

Original Testbed
Dataset Name Balanced | Balanced

Accuracy | Accuracy
Miskolc [19] 59.11% 73.69%
JUIndoorLoc [20] 52.34% 55.43%
UllndoorLoc [21] 61.06% 73.24%
IPIN 2016 Tutorial [21] 55.46% 65.00%
Average 56.99% 66.84%

dataset and testing the classifier on a different dataset with
a similar number of access points yielded a higher balanced
accuracy (average of 71% as opposed to 56.99%). This serves
as a proof of concept that a trained classifier can yield good
results on completely unfamiliar data, provided that the test
data has a similar number of access points.

While much of the data to test this claim was not publicly
available, we found that we could test this hypothesis by
training a classifier on the Miskolc data (median 10 APs per
fingerprint) and testing on the JUIndoorLoc data (median 15
APs per fingerprint). Both would be within what the original
paper considered a “low AP density” of 10-15 mean access
points per fingerprint. This resulted in a balanced accuracy of
55.46%, around the accuracy of the average balanced accuracy
of the generic classifier, which does not support the original
paper’s hypothesis. This indicates that while grouping by
access point density may improve performance, it is not a
guarantee.

IV. EXPERIMENTAL EVALUATION CASE STUDY

In addition to reproducing the results of Hyfe et al. [4] in
a publicly available testbed, this paper extended their results
through experimentation. Beyond training/testing on new data,
the testbed allows users to change parameters relating to sam-
pling, preprocessing, and machine learning hyperparameters.

Specifically, first we manually tuned the bagging classifier
estimator, the close/far balance, and the number of features
of the original generic classifier (Section IV-A). Next, we
observed whether additional features describing the number
of access points in each fingerprint improve the accuracy
of the classifier (Sections IV-B, IV-C and IV-D). Finally,
we compared our resulting model statistics to the tradi-
tional Bluetooth-based contact classifiers to explore whether
fingerprint-based comparison represents an improvement (Sec-
tion IV-E).

A. Base Estimator Comparison

To begin, we trained a generic classifier for each possible
base estimator. Beyond changing the base estimator of the
bagging classifier, we used the original parameters of the
generic classifier. However, Hyfe et al. [4] chose to drop the
cases where fingerprints are collected 2.25-3.25 meters and
greater than 20 meters away from each other. We did not
include a middle range or maximum distance to be dropped
for the IPIN 2016 Tutorial’s evaluation dataset, because this

80.00%
69.27%  69.62%  gg.26%
6 6684%  gg o0

30%/70% 40%/60% 50%/50% 53%/47% 60% /40%

Ratio of Close to Far Samples (Close / Far)

70.00%
9
60.00% 58.01%
50.00%
40.00%
30.00%

20.00%

Average Balanced Accuracy

10.00%

0.00%
70% / 30%

Close/Far | Average | Average | Average | Average
Split Precision | Recall FPR FNR

30% / 70% 0.9082 0.7041 0.5234 0.2958
40% / 60% 0.9161 0.6476 0.2552 0.3524
50% / 50% 0.9236 0.6385 0.1235 0.5113
53% I 47% 0.9239 0.4451 0.2905 0.5549
60% / 40% 0.9237 0.3581 0.0638 0.6419
70% / 30% 0.9317 0.1826 0.0224 0.8174

Fig. 3. (top) A spectrum of close/far balances measuring the average balanced
accuracy from a generic Decision Tree estimator, (bottom) The average
precision, average recall, average false positive rate (FPR), and average false
negative rate (FNR) of the close/far balances from the generic Decision Tree.

resulted in the removal of all samples labeled as “Far,” which
would produce a dataset where the target label is always
“Close.” Table III shows that the Decision Tree performs best
as the base estimator for the bagging tree classifier, with the
highest balanced accuracy averaged across all test data.

TABLE III
BASE ESTIMATOR COMPARISON

Base Estimator

| Balanced Accuracy |

Nearest Neighbors 66.52%
Decision Tree 66.84%
Neural Network 66.65%
AdaBoost 63.47%

B. Close/Far Tuning

Next, we trained a generic classifier using a Decision Tree
as the base estimator for a spectrum of close/far balances,
ranging from 30% close to 70% close. The results, shown in
Figure 3, indicate that a 40% close, 60% far split provides the
best results in terms of balanced accuracy.

An interesting observation from this experiment is that the
close/far splits with at least 50% close performed with a lower
average balanced accuracy than the splits where less than half
of the samples were close. One potential reason for this trend
is the class imbalance present in all of the testing data which
included: a 5% / 95% split for the Miskolc dataset, a 38% /
62% split for the JUI dataset, a 4% / 96% split for the UJILoc
dataset, and a 2% / 98% split for the IPIN dataset.

As shown in Figure 3 (bottom) close/far balances with at
least 50% of the samples labeled “Close” had a marginally
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Fig. 4. The results of measuring the average balanced accuracy from a generic
Decision Tree estimator using 3 to 15 features.

Average Balanced Accuracy

higher average precision but significantly lower average recalls
that rapidly declined as the percentage of far labels in the
split decreased. Furthermore, the figure shows a tradeoff as
the percentage of close labels increases, the average false
positive rate (FPR) decreases while the average false negative
rate (FNR) increases.

C. Number of Features Tuning

We trained a generic classifier using a Decision Tree as
a base estimator and 40% close using a variable number of
features. We had the mRMR algorithm select 3-15 features
during feature selection. The 15 most relevant features from
the generic classifier’s aggregated training dataset, as identified
by the pymRMR package, are: (1) Pearson coefficient of the
shared AP pair ratio vectors (Double-fingerprint least squares),
(2) Non-shared APs count, (3) Percent of APs shared within
15dB (No transformation), (4) Shared AP pair difference vec-
tor standard deviation (Single-fingerprint 50% least squares),
(5) Top APs shared within 13dB (No transformation), (6) Same
Device Model, (7) Pearson Coefficient of the Rank vector
(No transformation), (8) Jaccard ratio, (9) Percent of APs
shared within 9dB (No transformation), (10) Shared AP pair
difference vector standard deviation (No transformation), (11)
Shared top 4 APs (No transformation), (12) Pearson coefficient
of shared AP vector (No transformation), (13) Shared top 6
APs (Single-fingerprint 50% least squares), (14) Percent of
APs shared within 1dB (Single-fingerprint least squares), and
(15) Percent of APs shared within 13dB (No transformation).

The results, shown in Figure 4 indicate selecting 12 features
yields the highest balanced accuracy. In the cases of features
13, 14, and 15, it’s possible that the average balanced accuracy
was lower (despite the increase in features) due to overlapping
with similar features that were already chosen by mRMR
and introducing bias towards the same correlated feature. For
instance, feature 13 is a stricter variant of feature 11 as it
checks if the fingerprints share the same top 6 APs rather
than the top 4 APs. Features 14 and 15 have narrower RSSI
ranges of 1dB and 13dB compared to feature 3 which finds
the percentage of APs that are shared within a range of 15dB.

D. Adding Number of Access Points

Hyfe et al. [4] demonstrated that grouping the data by
average number of access points significantly increases the
accuracy of the models. Even if we found that this is not
always the case, it is still evident that grouping by access
point density can significantly improve performance.

However, grouping by access point density disregards the
main benefit of fingerprint comparison. Fingerprint compar-
ison is useful because it can estimate distance without any
required context about the location. Using the average number
of access points in the area to determine which classifier to
use would require context about the area, and so the classifiers
could not be deployed in new, unfamiliar locations.

TABLE IV
GENERIC CLASSIFIER WITH NUMBER OF ACCESS POINTS COMPARISON
Without APs | With APs
Dataset Name Balanced Balanced
Accuracy Accuracy
Miskolc 77.47% 76.60%
JUIndoorLoc 56.16% 57.54%
UlJIndoorLoc 81.68% 81.74%
IPIN 2016 Tutorial 68.98% 68.65%
Average 71.07 % 71.13%

Therefore, we decided to generate two additional features
describing the number of access points in each fingerprint,
in the hopes that their addition would improve the accuracy
of the generic classifier. In this experiment, we found that
including the number of access points of each fingerprint to the
above generic classifier, in addition to the 12 selected features,
yielded 71.13% balanced accuracy as shown in Table IV,
which is a mild improvement over the above classifier. In
addition, this new generated feature could in future works
be used to cluster the fingerprint comparisons before training
specialized classifiers, which would once again allow the
generic classifier to be location unaware.

E. Bluetooth Comparison

Finally, we compared our best model to classifiers generated
using only Bluetooth signal strength to predict close or far.
In order to generate our Bluetooth models, we used an
open-source Bluetooth range-estimation dataset deliberately
collected in a complex office environment by Pascacio et.
al [22]. We split the dataset into training and testing, using
30% of the original data as testing data and undersampling the
training data to create a balanced class. We trained classifiers
using the same machine learning algorithms that formed the
base estimators for the generic classifier: Nearest Neighbors,
Decision Tree, Neural Network, and AdaBoost, with the
addition of Naive Bayes, QDA, Linear SVM, and RBF SVM.
The Decision Tree had the highest balanced accuracy. Next,
we manually tuned the depth and minimum number of samples
per leaf, finding that the best parameters were a max depth of 6
and a minimum sample value of 2. In Table V we compare the
tuned Decision Tree Bluetooth classifier to our best performing
testbed classifier.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 18:56:27 UTC from IEEE Xplore. Restrictions apply.



2023 13th International Conference on Indoor Positioning and Indoor Navigation (IPIN)

TABLE V
BLUETOOTH COMPARISON

[ Metrics [ Contact Classifier Model | Bluetooth Model |
Balanced Accuracy 71.13% 60.33%
Accuracy 63.74% 54.41%
Precision 92.93% 11.71%
Recall 62.32% 67.45%
F1-score 74.38% 19.96%
True Positive Percent 62.32% 67.45%
False Positive Percent 21.04% 46.79%
True Negative Percent 78.97% 53.21%
False Negative Percent 37.68% 32.55%

V. CONCLUSION

Reproducibility is an essential component that can help
facilitate further discoveries within the scientific commu-
nity such as that of IPIN. In this paper we proposed our
software-based testbed, referred to as RETSINA, to enable
the repeatability, reproducibility and comparison of approaches
that utilize machine learning techniques for the problem of
proximity detection. We demonstrated how RETSINA could
be leveraged to repeat the results presented in the recent
case study [4] and presented various extensions, including the
the provision of Bluetooth signal strength data and tuning of
machine learning, feature selection, and sampling parameters
achieved by reconfiguring the RETSINA testbed. As part of
our future work, we hope we will be able to repeat our
reproducibility case study using the two public datasets that
were not included as part of our experiments as well as the
private data that was examined by Hyfe et al.

In this paper, we have only shown the potential of our
RETSINA testbed and its capability to repeat and extend the
findings of the recent case study on Wi-Fi signal strength
based contact tracing by Hyfe et al. Additional extensions
could utilize clustering algorithms to cluster the fingerprint
comparisons based on the new AP Detection Features category
before training specialized classifiers. This clustering tech-
nique would allow classifiers to benefit from training on the
number of APs in each fingerprint as shown in Section IV-D
while remaining unaware of the recorded location, which
would allow the classifiers to be deployed in new, unfamiliar
locations. Further experimentation could involve different ma-
chine learning, feature selection, and data sampling algorithms.
Finally, Wi-Fi signal strength readings could be combined
with Bluetooth signal strength readings to improve overall
balanced accuracy, though this requires the development of
a new hybrid system that balances when to utilize classifiers
trained on Bluetooth or Wi-Fi signal strength readings.
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