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Abstract. The ever-increasing demand to use and store data in perpe-
tuity is limited by storage cost, which is decreasing slowly compared to
computational power’s exponential growth. Under these circumstances,
the deliberate loss of detail in data as it ages (referred to as data decay) is
useful because it allows the cost of storing data to decrease alongside the
data’s utility. The idea of data postdiction as a data decay method uses
machine learning techniques to recover previously deleted values from
data storage. This paper proposes and evaluates a new pipeline using
clustering, outlier detection, machine learning, and accuracy tuning to
implement an effective data postdiction for archiving data. Overall, the
goal is to train a machine learning model to estimate database features,
allowing for the deletion of entire columns, which can later be recon-
structed within some threshold of accuracy using the stored models. We
evaluate the effectiveness of our postdiction pipeline in terms of storage
reduction and data recovery accuracy using a real healthcare dataset.
Our preliminary results show that the order in which outlier detection,
clustering, and machine learning methods are applied leads to different
trade-offs in terms of storage and recovery accuracy.

Keywords: Data postdiction · Data Decaying · Lossy Compression ·
Clustering · Outlier Detection

1 Introduction

Enterprises are generating data at unprecedented rates as more services are
hosted online and IoT devices are widely deployed. From government, to indus-
try, to entertainment and healthcare, all enterprises are collecting and exploit-
ing this data for business intelligence, and online decision making. For example,
the National Institutes of Health (NIH) initiated the All of Us research pro-
gram [6] with the goal of establishing one of the most diverse health databases
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Fig. 1. Example of Basic Postdiction on Medical Data

ever created for precision medicine and disease prediction. Also, telecommuni-
cation companies are collecting data that can be used from churn prediction
of subscribers, city localization, 5G network optimization and user-experience
assessment [3]. The demand to support many analytic-oriented processing sce-
narios using larger collections of data that span over a longer period of time has
led to an ever-increasing demand in storing big data in perpetuity.

The continuous storage of big data has the potential to facilitate extensive
analysis. Furthermore, the rapid growth of computational power allows such
analysis to be performed at faster rates. However, the expenses associated with
storing such a vast amount of data is increasingly becoming a constraining factor.
The storage cost is decreasing at a much slower rate compared to the exponential
growth of computational power. This is not a new challenge and significant
research has been done into lossless compression as a solution to this problem
as well as into data reduction techniques [12], e.g., sampling [11], aggregation
(OLAP) [8], dimensionality reduction (LDA, PCA) [7], synopsis (sketches) [1]
and lossy compression [9]. Only recently the focus was shifted on utilizing data
decay [4,5], i.e., the deliberate loss of detail in data as it ages, as it allows the
cost of storing data to decrease alongside the data’s usefulness.

Data postdiction [2,3] is a new way to implement data decay making a state-
ment about the past value of some tuple, which does not exist anymore as it had
to be deleted to free up disk space. Data postdiction relies on existing Machine
Learning (ML) algorithms to abstract data into compact models that can be
stored and queried when necessary [1–3]. This allows for the deletion of entire
data columns, as shown in Fig. 1, where one or more columns are saved to be
able to recover the postdicted columns using the stored models.

Postdiction currently considers the complete dataset to be decayed similar
to compression. In contrast to compression, postdiction can retrieve individual
data values without recovering the entire compressed dataset. Similar to lossy
compression, postdiction exhibits a storage-accuracy trade off. The goal of this
work is to improve storage reduction and data recovery accuracy by exploiting
data partitioning.
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Fig. 2. Data Postdiction Pipeline

This paper hypothesizes that clustering, outlier detection, and accuracy tun-
ing can be used to implement data partitioning that improves the original
postdiction effectiveness. The contribution of this paper is a novel postdiction
pipeline that explores these methods to produce the best possible data storage
reduction for a specified error tolerance, i.e., data recovery accuracy (Sect. 2).

We use our postdiction pipeline to observe the effects of various combina-
tions of clustering, outlier detection using LSTM (Long Short-Term Memory)
to generate the machine learning models, with the goal of observing how the
three strategies of clustering, outlier detection, and accuracy tuning can be used
together to create better postdiction (Sect. 3).

2 Our Approach: Postdiction Pipeline

In our approach, we extend the original postdiction methodology, which uses
only machine learning for data decay (Fig. 1), into a postdiction pipeline using
clustering, outlier detection, and accuracy tuning, as shown in Fig. 2, to achieve
improved postdiction results. The improved results take two forms: (1) the best
reduction balance between data storage and recovery error (similar to the original
postdiction), and (2) the best reduction in data storage given a specified data
recovery accuracy/error tolerance.

Workflow. In the pipeline, input data is passed first into clustering or outlier
detection. They can be run in any order: outlier detection before clustering, after
clustering, or before and after clustering. Each of the generated clusters are then
used to train a machine-learning model. At this stage the pipeline produces a
recovery table, the machine learning models and a table of outliers, represent-
ing the best achievable storage reduction and recovery accuracy, without any
specified error tolerance threshold.

Next, if the error tolerance is provided, accuracy tuning is used to predict
each value in the recovery table, pruning any results outside a designated error
threshold and placing them in the outlier table alongside the previously detected
outliers. At the end, the pipeline outputs the final table of outliers, the recovery
table, the machine learning models, and statistics relating to the number of
outliers and the recovered accuracy.
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Fig. 3. Output of Our Postdiction Pipeline

Ideally, we would like to decay the maximum number of columns using the
minimum number of features. An ideal sample output of the pipeline including
the recovery table, machine learning models, and outlier tables is shown in Fig. 3.
The example assumes that Weight best predicts all other fields/columns of the
original table (shown in Fig. 1) and that each field can be partitioned into two
clusters, possibly using different clustering methods, each of which could be
compacted into a single model using different ML algorithms.

Rationale. The underlying reasons for each of the four component of our post-
diction pipeline are:

– Outlier detection: Given that a dataset’s distribution is unknown a priori,
outlier detection is important for postdiction for a couple of reasons. Machine
learning models typically struggle to predict outliers, but their very presence
in the dataset deteriorates model performance. Therefore, if the outliers are
removed and stored before running the machine-learning model in postdiction,
users will be able to recover outliers with one hundred percent accuracy and
have a better model for recovering the rest of the data. However, storing the
outliers is a trade-off from traditional postdiction. On one hand, more storage
space is required to maintain the outliers, but storing them means that more
data can be recovered accurately.

– Clustering: Clustering algorithms group data in such a way that the data
in each group are more similar to each other than to data in other groups.
Clustering is important for postdiction because it can make machine learning
models perform better. Having data that are all similar and close together
makes it easier to recover later at a higher accuracy. Furthermore, if the algo-
rithm finds multiple clear and distinct clusters of data, the model will have
clear decision thresholds, which will allow for more accurate recovery. Recov-
ering the data, however, will now require storing a model for each cluster,
which can increase storage costs.

– Machine Learning: Any machine learning algorithm can be used in our
pipeline to generate the compact ML models, for example, any type of recur-
rent neural network or logistic regression. The choice could be determined by
the type of the data.
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– Accuracy Tuning: As the final step in the pipeline, accuracy tuning is used to
guarantee an error boundary. Accuracy tuning allows the user to set an error
threshold, specifying the exact amount of error they are willing to tolerate.
Continuous variable predictions beyond the error threshold are added to the
outlier table, alongside incorrect categorical variable classifications. This is
a very powerful tool because it gives the user more control over how the
data decays. Without this accuracy tuning, users have no guarantee as to the
accuracy of any individual recovered data point.

3 Experimental Evaluation

In our experimental evaluation, we compare the results from combinations of
outlier detection algorithms, clustering algorithms and postdiction workflows.

3.1 Experimental Setup

Algorithms. We selected a representative sample of outlier detection and clus-
tering algorithms, which worked in fundamentally different ways, as described
below, to observe their effectiveness in the postdiction pipeline. These were
implemented using the scikit-learn library in Python.

– Outlier Detection: The methods of outlier detection chosen for experimenta-
tion were Z-score and Isolation Forest. Z-score is a basic statistics measurement
describing how many standard deviations a single point in the data is above
or below the mean of the data. Z-score outlier detection was chosen for its
simple and consistent results. Any data point greater than three times the
standard deviations from the mean is considered an outlier. Isolation For-
est outlier detection was chosen because of its ability to be applied to very
large data sets. Rather than profiling all data points to calculate the outliers
(as in Z-score), Isolation Forest is based on the principle of detecting only
anomalies. This makes it faster than Z-score on large datasets.

– Clustering: The clustering methods chosen for experimentation were K-
means, Density-based spatial clustering (DBSCAN), and Gaussian Mixture
Modelling (GMM). These are some of the de facto methods of clustering,
which is one of the main reasons for choosing them. Additionally, all of these
methods work in different ways and can lead to different results. This is delib-
erate in order to maximize the chance of getting results that are not dependent
on which clustering algorithm is chosen. Something important to note is that
DBSCAN does not take in as input the number of clusters desired for output.

– Machine Learning: We experimented with LSTMs as they are capable of
processing both single data points and sequences of data. While the dataset
used by this paper does not contain sequential data, postdiction was originally
concocted as a method of reducing the size of time-series telecommunication
data [3]. The LSTM models were built using the Keras library with default
configuration.
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Table 1. Clustering Algorithm Comparisons

Pipeline Clustering Outliers Recovered
Method Accuracy

Control - No Clustering / Outlier Detection N/A 0 18.7425

Clustering Only
K-means 0 30.97082
DBSCAN 0 20.25868

Distribution 0 20.07547

Outlier Detection Before Clustering
K-means 14301 47.43767
DBSCAN 14301 37.87043

Distribution 14301 38.00366

Outlier Detection After Clustering
K-means 28602 38.10119
DBSCAN 14301 38.60343

Distribution 28602 38.00964

Outlier Detection Before & After Clustering
K-means 19294 52.53579
DBSCAN 23050 48.80418

Distribution 14738 38.64695

Clustering + Accuracy Tuning
K-means 18036 100.0000
DBSCAN 40104 100.0000

Distribution 19557 100.0000

Outlier Detection Before & After Clustering + Tuning
K-means 28064 100.0000
DBSCAN 39921 100.0000

Distribution 26273 100.0000

Dataset. The data we used for experimentation is a healthcare dataset [10]
containing age, gender, height, weight, ap_hi, ap_lo, cholesterol, gluc, smoke,
alco, active, and cardio. The columns are broken down into two types. age,
height, weight, ap_hi, and ap_lo are continuous and the rest are categorical.
The categorical data has two or three options. The table contains 70,000 rows.

3.2 Experiment 1: Cluster and Outlier Detection Impact

For each combination of continuous variables (age, height, weight, ap_hi, ap_lo)
predicting all other fields, we ran every combination of outlier detection, clus-
tering, and pipeline workflow and output both the number of outliers (repre-
sentative of the storage costs of the outlier table) and the recovered accuracy.
The recovered accuracy is the percentage of the recovered data that is within a
guaranteed error threshold (we used 5%) of the original data. Table 1 shows the
outcome for height predicting weight.

We compared the results of our postdiction pipeline to the control, which
used only machine learning to represent original postdiction with same accuracy
of 5%. In all cases, outlier detection and clustering improved the accuracy of
original postdiction, though these accuracy benefits must be weighed against
the additional storage costs. Thus, the aim was to reduce these additional stor-
age costs by storing the minimal number of outliers while maintaining a high
recovered accuracy.

Outlier Detection Algorithm Comparison. We used the default settings
for both outlier detection methods and found that they both performed similarly
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well. In their default settings, Isolation Forest’s lower threshold causes it to store
more outliers than Z-score, but both methods allow for adjustments using their
hyperparameters. We used Z-score outlier detection as the basis of comparison
moving forward because of its straight-forward and reproducible methodology
and its lower outlier storage costs at the default values.

Clustering Algorithm Comparison. We found that K-means and GMM
performed the best on our dataset, with 36% of columns performing best using
a K-means clustering algorithm, and 72% of columns performing best using
GMM (including ties, which bring the sum to greater than 100%). The differ-
ences among columns indicate that there is no ideal single clustering algorithm
applicable for the entire dataset, and rather each column must be evaluated to
determine the most suitable clustering algorithm.

We concluded that DBSCAN is not an effective algorithm for our dataset
because DBSCAN removes points that it considers outliers from the clus-
ter/clusters and saves them as their own cluster. For our dataset, DBSCAN’s
optimal value of epsilon often leads to one very poor cluster containing only
outliers. Therefore, we had to choose a value of epsilon (we used 15) optimized
for our dataset to create more meaningful clusters. Even so, DB-Scan only per-
formed best in 4% of the cases, all of which were tied with another algorithm.

Pipeline Comparison. Looking at the control, which had no outlier detection
or clustering performed on the data, we observed very low accuracy, but no
outliers had to be saved. Conversely, performing outliers detection before training
the model and then accuracy tuning after training the model resulted in very
high accuracy with many outliers stored. This is another example of the tradeoff
between outlier storage and recovered accuracy.

While accuracy tuning can guarantee that 100% of the recovered data satisfies
the 5% error threshold, it will always require storing the same or many more
outliers as without accuracy tuning. This tradeoff can be further manipulated by
setting a higher or lower error tolerance, with a higher error tolerance requiring
storing fewer outliers but guaranteeing a lower recovered accuracy.

Finally, we hypothesized that running outlier detection before and after clus-
tering would improve the machine learning models, meaning that the accuracy
tuning would need to pick fewer additional outliers. However, we found that
the best pipeline configuration for this dataset was to use K-Means Clustering
and Accuracy Tuning without Outlier Detection as it had the fewest number of
outliers while maintaining the error threshold.

3.3 Experiment 2: Optimizing Multi-Column Storage Performance

While some algorithms/workflows generally performed better, overall the ideal
combination of outlier detection, clustering, and workflow was unique to each
combination of fields. As mentioned earlier, ideally, we would like to decay the
maximum number of columns using the minimum number of features. To that
end, we used each continuous variable to predict all the other features in the
dataset with every combination of the above variables for each. Then, we chose
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Table 2. Minimum Percentage Outliers when Column predicts Row

age height weight ap_hi ap_lo
age (16 bits) 20.33286 20.35571 20.29857 20.34857
height (16 bits) 10.45571 25.76429 20.40714 19.71429
weight (32 bits) 28.36571 25.76571 37.81571 38.19286
ap_hi (16 bits) 28.26857 36.17571 38.32857 33.55857
ap_lo (16 bits) 31.25143 31.29429 38.18143 31.24857
cholesterol (2 bits) 25.6028571 25.8171429 25.9528571 26.2242857 26.0557143
gluc (2 bits) 20.43 20.43 20.43 20.43 21.18857
smoke (1 bit) 3.131429 3.365714 3.047143 0 5.97
alco(1 bit) 1.757143 1.76 1.75 0 0
active (1 bit) 0 0 0 0 0
cardio (1 bit) 14.37 17.43429 16.30286 31.58571 31.54
Total Outliers 28100 33779 33427 33660 35646
Percentage Outliers 40.14% 48.26% 47.75% 48.08% 50.92%

the minimum percentage outliers that can recover 100% of the data and guaran-
tee a 5% error threshold. The minimum percentage outliers are shown in Table 2.

This table shows the percent of data that would have to be saved as the
outlier table if that column was used to recover the row based on a 5% error
tolerance. For example, looking at the age column, it is observed that if age
was used to recover height, then 10.46% of the data would have to be saved as
outliers. If age were used to recover weight 28.37% of the data would need to be
saved as outliers, etc. We used bold text to highlight any value we considered
promising which stored under a quarter of the original data as outliers.

Next, we calculated the storage saved using two predictors: age and ap_hi.
We used age to predict the bold rows (height, gluc, smoke, alco, active, and
cardio) because age had the lowest percentage outliers at 40%. We chose ap_hi
because, while it had a higher percentage of outliers, it predicted two different
16 bit integer fields (age and height) rather than just one. Finally, we considered
whether using ap_hi to predict only age and height, rather than the additional
low-bit fields, would save memory by reducing the number of outliers.

We used the size of the fields to calculate the table storage costs. The original
table had 70,000 rows, with each row needing 120 bits to store, so the table cost
1,050 kilobytes in storage. To calculate the storage costs of the postdiction output
tables, we calculated the costs to store the outliers table plus the recovery table
of non-outliers, stored without the columns which can be reconstructed using
the saved machine learning models. Overall, the total storage size was:

outlier_table_size = 120× num_outliers
recovery_table = (120−recoverable_column_size)×(70, 000−num_outliers)

total_size = outlier_table_size+ recovery_table

Postdiction using age found 28,100 outliers, and the outlier and recovery
tables were 89.03% the size of the original table. Postdiction using ap_hi found
33,660 outliers, and the outlier and recovery tables were 83.99% the size of the
original table. Finally, postdiction using ap_hi to estimate only age and height
found 24,290 outliers, with the outlier and recovery tables at 82.59% the size of
the original table. Using ap_hi to predict only age and height therefore performed
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Table 3. Data storage size with and without postdiction

Size/Dataset (KB) Healthcare Dataset Healthcare Dataset × 10 Healthcare Dataset × 20

Original Table Size 1050 10500 21000
Outlier Table Size 364.35 5081.025 10197.96
Recovery Table Size 502.81 3973.915 7921.496
Total Size 867.16 9054.94 18119.456
Size with Models 1779.16 9966.94 19031.456
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Fig. 4. Data storage size with and without the postdiction pipeline on the healthcare
dataset, the dataset copied 10 times, and the dataset copied 20 times

the best. In this case it is better to predict only high-value fields like integers in
order to keep outliers low, rather than predicting many binary fields which do
not lead to many storage savings in the recovery table.

The above calculations do not take into account the cost of storing the trained
LSTM models. LSTMs are robust models with significant storage costs (each
model is 228 KB), and a model is created not just for each recoverable field,
but for each cluster. Using ap_hi to recover age and height requires four LSTM
models, totaling 912 KB. Assuming the proportion of outliers stays the same and
postdiction can reduce the output table size by 17.41%, the original table would
have to be approximately 5,238 KB in order for storage benefits to outweigh
the costs of the LSTM. This clearly indicates postdicton’s applicability to files
of certain size and above (large files/big data). This is also shown in Table 3
where postdiction saved 533.06 KB or 5% on the original dataset expanded 10
times (10,500 KB) and 1968.544 KB or 10% on the original dataset expanded 20
times (21,000 KB). It should be noted that the proportion of outliers remains
relatively constant when the dataset is doubled from 10,500 to 21,000 KB and
after the crossover point in Fig. 4, the gap between the original size and the total
size produced by the postdiction pipeline increases with the size of the dataset,
reflecting the gains in savings.

Finally, we can adjust the storage-accuracy tradeoff by changing the error
threshold. Selecting an error threshold of 5%, the default of this paper, yielded
24,296 outliers. A higher error threshold yields significant benefits; 10% reduces
the number of outliers over 80% to 4,447 outliers. At an error threshold of around
20% there are little benefits for further tolerance, as the number of outliers is
now less than 0.1% of the original database.
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4 Conclusion

Postdiction is a powerful new concept that gives users the ability to have more
control over the storage of their data. In this paper, we proposed the first post-
diction pipeline utilizing clustering, outlier detection, and accuracy tuning to
increase the accuracy of the original postdiction. We showed how this pipeline
could be applied to decay a healthcare dataset and demonstrated the potential
that at a large scale, the pipeline will create storage savings.

In this paper, we have only illustrated the potential of our proposed post-
diction pipeline and its capabilities as a general postdiction framework. Addi-
tional research could observe how our pipeline functions with different and
larger amounts of data, including sequential data. Further experimentation
could involve different machine-learning, outlier detection, and clustering algo-
rithms, or implement more complex multi-column table reduction using multiple
attributes to predict another, or chaining predicted columns together to increase
the number of deletable columns. Finally, data postdiction could be combined
with traditional methods of lossless compression to increase storage benefits,
though this introduces a new trade-off between storage and the inconvenience of
decompression for single-value queries.
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