o.)

Check for
updates

ASTRO: Reducing COVID-19 Exposure through Contact
Prediction and Avoidance

CHRYSOVALANTIS ANASTASIOU, University of Southern California
CONSTANTINOS COSTA and PANOS K. CHRYSANTHIS, University of Pittsburgh
CYRUS SHAHABI, University of Southern California

DEMETRIOS ZEINALIPOUR-YAZTI, University of Cyprus, Cyprus

The fight against the COVID-19 pandemic has highlighted the importance and benefits of recommending
paths that reduce the exposure to and the spread of the SARS-CoV-2 coronavirus by avoiding crowded in-
door or outdoor areas. Existing path discovery techniques are inadequate for coping with such dynamic and
heterogeneous (indoor and outdoor) environments—they typically find an optimal path assuming a homo-
geneous and/or static graph, and hence they cannot be used to support contact avoidance. In this article,
we pose the need for Mobile Contact Avoidance Navigation and propose ASTRO (Accessible Spatio-Temporal
Route Optimization), a novel graph-based path discovering algorithm that can reduce the risk of COVID-19 ex-
posure by taking into consideration the congestion in indoor spaces. ASTRO operates in an A* manner to find
the most promising path for safe movement within and across multiple buildings without constructing the full
graph. For its path finding, ASTRO requires predicting congestion in corridors and hallways. Consequently,
we propose a new grid-based partitioning scheme combined with a hash-based two-level structure to store
congestion models, called CM-Structure, which enables on-the-fly forecasting of congestion in corridors and
hallways. We demonstrate the effectiveness of ASTRO and the accuracy of CM-Structure’s congestion models
empirically with realistic datasets, showing up to one order of magnitude reduction in COVID-19 exposure.

CCS Concepts: + Information systems — Mobile information processing systems; Data mining;
Spatial-temporal systems; - Computing methodologies — Machine learning;

Additional Key Words and Phrases: Indoor, outdoor, path recommendation, graph processing, disability,
congestion forecasting

Chrysovalantis Anastasiou and Constantinos Costa contributed equally to the article.

This work was partially funded by NIH award U01HL137159, by the Pittsburgh Foundation, by NSF grants CNS-2027794
and CNS-2125530, and an unrestricted cash gift from Microsoft Research. The last author’s research has been supported
by EUs H2020-EU.3.4 LASH FIRE project, under grant agreement No 814975; EUs H2020 MSCA RISE RESPECT project,
under grant agreement No 101007673; and Cyprus Research Promotion Foundation RESTART programme, under project
EnterCY INTEGRATED/0609/0020.

Authors’ addresses: C. Anastasiou, University of Southern California, Los Angeles, California, USA, 90089; email: canas-
tas@usc.edu; C. Costa, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 15260; email: costa.c@cs.pitt.edu; P. K.
Chrysanthis, University of Pittsburgh, Pittsburgh, Pennsylvania, USA, 15260; email: panos@cs.pitt.edu; C. Shahabi, Univer-
sity of Southern California, Los Angeles, California, USA, 90089; email: shahabi@usc.edu; D. Zeinalipour-Yazti, University
of Cyprus, Nicosia, Cyprus; email: dzeina@cs.ucy.ac.cy.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2021 Copyright held by the owner/author(s).
2374-0353/2021/12-ART11
https://doi.org/10.1145/3490492

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3490492
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490492&domain=pdf&date_stamp=2021-12-30

11:2 C. Anastasious et al.

ACM Reference format:

Chrysovalantis Anastasiou, Constantinos Costa, Panos K. Chrysanthis, Cyrus Shahabi, and Demetrios
Zeinalipour-Yazti. 2021. ASTRO: Reducing COVID-19 Exposure through Contact Prediction and Avoidance.
ACM Trans. Spatial Algorithms Syst. 8, 2, Article 11 (December 2021), 31 pages.
https://doi.org/10.1145/3490492

1 INTRODUCTION

The COVID-19 pandemic dramatically impacted the mobility behavior of people, from indoor and
outdoor pedestrian movement to public transportation and ridesharing [22]. COVID-19 is highly
contagious and a high percentage of infected people do not initially exhibit symptoms, making
Contact Tracing (CT) a crucial task [4]. The biggest problem with human-based CT is that it is
relatively slow (i.e., high latency) and cannot cope with the speed at which the virus spreads un-
der loose distancing measures [18]. Thus, governments showed interest in building computerized
systems and applications that can automate the contact tracing process and address the challenges
of the high latency tracing procedure and massive human effort. However, the so-called Mobile
Contact Tracing Applications (MCTAs) [18, 52] are not producing the expected results because
of low participation rates and a lack of user trust due to privacy concerns [37, 51]. Furthermore,
MCTAs only focus on detecting the spread of the SARS-CoV-2 coronavirus, but not on reducing
the risk of COVID-19 exposure of individuals.

We clearly need preventive measures to reduce the risk of COVID-19 exposure to people. The
exposure risk can be reduced by observing social distancing, avoiding public transportation and
ridesharing, and as long as weather conditions permit, by walking through outdoor paths. How-
ever, during winter, with subfreezing temperatures (as seen in Figure 1 - right), and during summer,
with extreme heat and poor air quality (as seen in Figure 1 - left), minimizing the outdoor exposure
is a necessity and indoor paths are desirable. Thus, indoor paths are desirable, if not unavoidable,
and moving indoors through congested pathways dramatically increases the risk of exposure to
airborne viruses® (as seen in Figure 1 - center). According to the US Centers for Disease Con-
trol and Prevention (CDC), human coronaviruses and influenza, like any other crowd disease,
most commonly spread from an infected person to others through the air by coughs, sneezes,
and close personal contact, such as touching or shaking hands. That is, walking along congested
pathways remains one of the most common ways for a person to contract the SARS-CoV-2 coron-
avirus. This clearly highlights the importance of contact avoidance, besides contact tracing, in the
fight against the COVID-19 pandemic, and the need for Mobile Contact Avoidance Navigation
(MCAN) solutions that avoid crowded indoor hallways and indoor spaces. Posing the need for
MCAN constitutes the broader impact of this article.

MCAN solutions must satisfy the following four criteria to be effective and efficient: (i) be inclu-
sive (i.e., consider with mobility barriers); (ii) be context-aware (i.e., adapt its recommendation at
any given time based on the current situation); (iii) be location-aware (i.e., deal with the congestion
in specific locations); and (iv) be practical (i.e., provide a holistic/end-to-end path.)

As these four criteria are not conflicting requirements, multi-objective navigation solutions are
not applicable. Furthermore, for most current navigation solutions, these criteria focus on indoor
or outdoor routing. Only a handful of the state-of-the-art solutions consider indoor-outdoor seam-
less transition techniques [34], but not a unified model that can support end-to-end path search [23].
Moreover, existing indoor solutions cannot support contact avoidance and reduce the risk of

ICenters for Disease Control and Prevention: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-
covid-spreads.html.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

https://doi.org/10.1145/3490492
https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html

ASTRO: COVID-19 Contact Prediction and Avoidance 11:3

Fig. 1. (left) The public is being advised to take every precaution to avoid the extreme heat in Japan (BBC
2018); (center) US airports experienced their highest passenger numbers during Thanksgiving holiday since
March 2020 (BBC 2020); (right) An elementary school closed due to cold weather in Des Moines, lowa (CNN
2019).

COVID-19 exposure by being oblivious to the congestion and movement directionality in corri-
dors and hallways [41]. These solutions typically find an optimal path by assuming a homoge-
neous and/or static graph and cannot operate over time-varying dynamic graphs [20], which are
inherent in the presence of congestion that changes over time.

Dynamically constructing a graph for path discovery with multiple constraints is very expensive,
especially when the graph is complete (fully connected), which should be expected in MCAN
solutions. Considering a real scenario where all outdoor vertices V, (i.e., buildings) are connected
using all indoor vertices V; (i.e., doors) the complexity for the construction is O(|V;|?), while the
maximum number of edges are |E| = w = O(IV,~|2). The complexity for finding the path
with a well-known algorithm such as Dijkstra is O(|V; 12+ |V;| = log|V;|). Whereas, the complexity of
the state-of-the-art temporal path discovery algorithm in a dynamic graph described in Reference
[54] is O(|V;| + |Vi|? * log|V;]). To the best of our knowledge, none of the existing path-finding
algorithms can efficiently discover optimal paths with constraints in an indoor-outdoor complete
graph to meet MCAN requirements. Therefore, in this work, we address the problem of fast and
incremental temporal path discovery for an indoor-outdoor graph.

In this article, we propose ASTRO (Accessible Spatio-Temporal Route Optimization) for
fast and incremental temporal path discovery for an indoor-outdoor graph. ASTRO1s a novel graph-
based path-finding algorithm that takes into consideration indoor congested spaces and can reduce
the risk of COVID-19 exposure. ASTRO can operate over time-varying dynamic graphs without
constructing the complete graph. It integrates outdoor nodes (i.e., buildings) with indoor nodes
(e.g., doors, stairs, escalators, elevators) to efficiently provide a personalized contact-avoidance
path satisfying a user-specified set of constraints (i.e., accessibility requirements, congestion toler-
ance, arrival time, and outdoor exposure). ASTRO uses time to innovatively unify indoor congestion
and travel distance in an A* search with a complexity of O(|V;|*). However, our experiments over
real datasets verify that the worst-case scenario will rarely happen due to the greedy A* search re-
duction approach. The congestion of each indoor path segment is predicted based on the estimated
arrival time at a segment and converted into travel time slowdown (i.e., delay).

ASTRO’s second innovation is a new grid-based partitioning scheme, named Building Grid
Layout, combined with a multilevel access method, called Congestion Model Structure (CM-
Structure), which supports efficient retrieval of the congestion prediction models during the path
finding. CM-Structure is also used to store the trained forecasting models of each corridor and hall-
way segment. We use machine learning to build a congestion model for each indoor segment (i.e.,
corridor or hallway).

We evaluate our algorithms experimentally using two realistic datasets consisting of buildings
at the University of Pittsburgh and University of Cyprus. Our experiments show that a Fully
Connected Recurrent Neural Network (FC-RNN) is most suitable to be used for congestion

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:4 C. Anastasious et al.

prediction, since it offers very low inference time while requiring less memory than other com-
monly used models. Additionally, FC-RNN is proven to support continuous (lifelong) learning [14]
so models can be re-trained in an online fashion to keep up with the ever-changing dynamics of the
congestion. Similarly, CM-Structure with hash access method provides the most efficient storage
and retrieval of the congestion models relevant to an indoor path. Our experiments also show that
ASTRO using CM-Structure and FC-RNN can reduce congestion by up to one order of magnitude
while incurring low response time.

Towards developing the first MCAN solution, the contributions of this article are summarized
as follows:

e We propose a novel efficient routing algorithm, dubbed ASTRO, for contact avoidance in
which all combinations of all building’s entrances and exits are instantiated as separate nodes
in an incrementally created search graph.

e We propose the use of prediction models that support continuous learning to forecast con-
gestion in indoor spaces.

e We propose a novel partitioning scheme and algorithm, called Building Grid Layout, that
works in conjunction with CM-Structure, a new access method to organize the trained con-
gestion models, enabling on-the-fly congestion forecasting in hallways and corridors.

e We propose a method to generate realistic indoor congestion datasets for experimental eval-
uation when real datasets are not available.

e We measure the efficiency of ASTRO and the congestion models using two realistic datasets,
showing that ASTRO produces an optimal path in terms of both satisfying the user-provided
constraints and minimizing the travel time, while reducing COVID-19 exposure by up to one
order of magnitude.

The remainder of the article is structured as follows: Section 2 formulates the problem and
introduces our novel ASTRO algorithm. Section 3 describes the procedures we employ to accurately
forecast the congestion in corridors. Section 4 outlines the steps we employ to generate realistic
indoor congestion datasets. Section 5 presents an experimental evaluation of our proposed ASTRO
algorithm and the congestion predictive models. Section 6 discusses related work and Section 7
concludes the article and discusses future work.

2 CONTEXT-AWARE PATH RECOMMENDATION FOR CONTACT AVOIDANCE

In this section, we formulate the Mobile Contact Avoidance Navigation (MCAN) problem and
present our solution. First, we formalize our system model and underlying assumptions of our
solution (Section 2.1) and then introduce our ASTRO algorithm (Section 2.2) and its implementation
details (Section 2.3).

2.1 Problem Formulation

The objective of MCAN is to find a safe path between two locations for a given individual. Such
a safe personalized path considers the preferences or constraints of an individual, which include
any accessibility restrictions, departure and arrival time requirements, time spent outdoors at any
given period, and congestion tolerance. Congestion tolerance is the degree/level of congestion
that an individual can navigate through a crowded space with significantly reduced COVID-19
exposure risk. This risk depends on the vaccination and the masking of an individual. According
to CDC, staying over 15 minutes in an indoor, congested space dramatically increases the COVID-
19 exposure risk, depending on the quality of the mask. The median type of mask used provides a
squared protection factor of the spreader and infectee PF2 =2 (reducing infection virus inhalation
by only 51%). In contrast, the use of available higher-quality masks (KN95) produces a PF2 =400;

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:5

12

1 I:l Low congestion

10

9

8

7

6

5

1

s s 7)\ |- Path with congestion
constraint

2 e = Path with outdoor time

1 constraint
Direct Path

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Outdoor Indoor
Nodes O Nodes A Start/Goal Nodes

Fig. 2. ASTROis an algorithm that can recommend a path with the limited outdoor exposure and congestion,
while keeping the travel time low for each request along with the corresponding source and final destination.
The red solid line represents a path without any constraints, the green dashed line represents a path with
7.5 minutes outdoor exposure limit, and the dotted blue path avoids the buildings b2 and b4, which are highly
congested, marked in black color.

a reduction of 99.75% or 200x reduction in airborne infection when compared to the median cloth
mask. Consequently, an individual wearing a KN95 mask can specify high congestion tolerance.

We are assuming the typical graph representation of urban topology G(BUD, E,UE;) consisting
of outdoor vertices B representing buildings enhanced with the indoor vertices D representing
entrances or exits (e.g., doors), as shown in Figure 2. Within each building edges e; (e; € E;) are
corridors connecting entrances and exits. Each corridor is segmented into fixed area cells with
predefined maximum density (shown in color/shaded in Figure 2). The actual density of a cell on
a given date and time quantifies the cell’s congestion at that timestamp.

The constraints that defined the context of MCAN and our solution are as follows. The notation
is summarized in Table 1.

Definition 2.1. Accessibility (A) is a binary constraint that represents the requirement for
handicap-accessible doors and corridors. For example, sufficiently wide doors (both into and in
the building), with easily accessible automatic door openers and ramps.

Definition 2.2. Outdoor Exposure Limit (OE) is the duration in seconds of a path or segment
of a path that is exposed to outdoors conditions, i.e., OF € [0, 00). Specifically, if OF = 0, then only
indoor paths will be considered. In contrast, if OF = oo, then the constraint is ignored.

Definition 2.3. Congestion Tolerance Limit (CT) is the percentage of the density (i.e., number
of people in a unit of indoor space), which is acceptable to go through a hallway or a corridor. For

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:6 C. Anastasious et al.

Table 1. Summary of Notations

’ Notation \ Description
B set of all outdoor vertices (e.g., buildings) j = 1,...,n
b; an outdoor vertex b; € B
D set of all indoor vertices (e.g., door) [=1,...,m
d; indoor vertex d; € D for an outdoor vertex b
t travel time
0/OE outdoor exposure/outdoor exposure limit
c/CT congestion/congestion tolerance limit
A accessibility
0 set of constraints (A, OF, CT)
M indexed set of the models

example, a congestion tolerance limit of 50% (CT = 0.5) in 9 m? (3 X 3 m) indoor space will be 4.5,
assuming that an individual occupies 1 m?.

These three constraints are sufficient to express a wide range of preferences for pedestrians. For
example, a pedestrian can: (i) set lower outdoor exposure tolerance when there is a heatwave or
polar vortex; (ii) set higher congestion tolerance if vaccinated or wears KN95 mask; and (iii) enable
accessibility when they prefer to avoid stairs, revolving doors, and so on. Another example beyond
contact-avoidance of the generality of ASTRO with the three constraints is the use of congestion
tolerance to address social anxiety and overstimulation conditions.

Research Goal: Given a set of buildings (i.e., outdoor vertices) and their floor plans (e.g., corridors,
doors, and rooms) along with an origin and a destination point, ASTRO aims to produce a path with the
minimal total travel time from the origin to the destination that satisfies the accessibility constraint
(A), the outdoor exposure limit (OE), and the congestion tolerance limit (CT).

The effectiveness of our proposed technique in achieving the above goal is measured as follows:

Definition 2.4. Total Travel Time (T)is the total travel time of the path between the source and
the destination point. This is the sum of the total outdoor exposure time (i.e., the duration of the
path that is exposed to outdoors conditions) and the total indoor time (i.e., the duration of the path
that is indoors). The indoor time includes the slowdown (i.e., delays) in going through a congested
hallway or corridor.

Definition 2.5. Congestion Reduction (C) is the indoor congestion of the path between the
source and the destination point compared to a shortest path oblivious to congestion.

ASTRO is a single-objective (i.e., minimizing T) and multi-constrained (i.e., satisfying the set
of constraints {A, OF, CT}) path-finding algorithm. Particularly, ASTRO discovers a feasible path
(with respect to the aforementioned constraints) that is optimal path in terms of total travel time.

2.2 The ASTRO Algorithm

As mentioned above, the ASTRO algorithm behaves as an A* traversal algorithm on a time-varying
graph in which the unit of cost is time—both the distance covered g(n) (gScore) from start until
the current node n, which includes indoor congestion delays, and the heuristic function h(n) of
the remaining distance to the destination are expressed in terms of time. The time is calculated
based on the average walking speed 1.4 m/s [6, 24]. ASTRO avoids the expensive construction

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:7

of a complete graph G by pruning the edges and paths that do not satisfy the constraints 6 =
(A, OE, CT) of accessibility, outdoor exposure, and congestion tolerance limits, and incrementally
explores the constraint-satisfying search space (graph G’) to find the best path.

Specifically, the algorithm integrates the outdoor and indoor travel time contributions as a
weight on the outdoor edges (i.e., outdoor paths connecting pairs of buildings). That is, as shown
in Figure 2, the weight w; 2 3.1 of the edge from b; to b3 records the time o to reach from building
by to building bs, plus the indoor time i between the entrance door d; and exit door d in bs. In
other words, wy 35 1 is the total time from the exit door d, of b to exit door d; of bs plus any delay
due to congestion ¢ (ie., t = 0+ i+ i * ¢). ASTRO’s innovation is the time-varying exploration
of every combination of an entrance d; and an exit d; of a building b as a separate node by, 4,
in G'.

The indoor travel time i is calculated using the indoor distance provided by Anyplace [53] and
the average walking speed. As indicated above, ASTRO calculates the delay due to congestion ¢
as a percentage of the original indoor travel time. For example, if the original indoor time i = 10 s
and there is 50% congestion, then the congestion delay is 5 s. The congestion is predicted for each
segment of the indoor path using the CM-Structure described in Section 3.

At each iteration until reaching the destination, ASTRO visits all nodes by, 4, that satisfy the OE
constraint (shown with circles in Figure 2) and have d; and d; satisfying the A constraint. ASTRO
prunes out those that do not satisfy the CT constraint and selects the node with the minimum f (n)
(fScore) to expand the path. The fScore of a node n is defined as follows:

f(n) =g(n) + h(n)
where g(n) = Z wb.d;, by.d;). (1)

Vpairs by.dj,b;.d; € current path

ASTRO uses a priority queue, named OPEN, to sort the nodes based on fScore and one set,
named CLOSED, to store the visited nodes.

THEOREM 2.1. ASTRO is optimal.

PROOF. ASTRO as an A* variant is optimal [21]. ASTRO (Algorithm 2) satisfies the two criteria
of A* optimality:

(1) ASTRO expands only nodes whose f-values are less (or equal) to the optimal cost path P*
(f (n) is less-or-equal than P*).
(2) The evaluation function of a goal node along an optimal path equals P*. O

Example: To illustrate ASTRO in action, consider again the set of buildings in Figure 2 where a
user wants to travel from a source start to the destination goal. Both start and goal are outdoor
vertices with only one indoor vertex. For sake of simplicity, the outdoor vertices representing
buildings correspond to only unidirectional pairs of indoor vertices (doors) that define an indoor
path (e.g., only b141 42 is added into the queue, but not b1y, 41). Additionally, each metric unit on
Figure 2 maps to one minute.

First, the gScore and fScore are computed for the start vertex (start(g = 0, f = 16.6)) and
then start is placed into OPEN. Then ASTRO expands all neighboring nodes of start calculating
the weights, gScore, and fScore. We illustrate how the next steps change: (i) when a constraint of
450 s outdoor exposure limit is specified; and (ii) when an additional constraint of 0% congestion
tolerance limit (i.e., avoid the congested buildings) is specified. Particularly:

(i) With 450 seconds outdoor exposure limit: The OPEN queue changes to {0241 42(9 = 8, f = 18),
bl41.42(g = 6.2, f = 19.4))} and the CLOSED set to {start(g = 0, f = 16.6)}, as shown in Figure 3
(Iteration 1 - left). This happens because only the b2 and b1 satisfy the 450 seconds constraint

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:8 C. Anastasious et al.

Iteration 1: Iteration 1:

OPEN gScore fScore CLOSED OPEN gScore fScore CLOSED
b24142 8 18 start blay,a2 6.2 19.4 start
blai,a2 6.2 194

Iteration 2: Iteration 2:

OPEN gScore fScore CLOSED OPEN gScore fScore CLOSED
bda,a2 16.8 19.0 start b3d1,a2 12.7 19.7 start
blarae 6.2 194 b241,42 b3ds,da 13.2 20.5 bla,az
b3ay,a2 15.1 224

b3ds,da 16.1 23.1

Iteration 3: Iteration 3:

OPEN gScore fScore CLOSED OPEN gScore fScore CLOSED
goal 19.0 19.0 start goal 19.7 19.7 start
blara 6.2 194 b241,42 b3ds,da 13.2 20.5 bla,az
bBd1,d2 151 224 b4ar,a2 b3,z

b3as,a4 16.1 231

Fig. 3. (left) ASTRO execution example when a constraint of 450 s outdoor exposure limit is specified and
(right) when an additional constraint of 0% congestion tolerance limit is specified.

starting from the start node. In the second iteration, the first element from the OPEN queue is
dequeued, which is 241 42(9 = 8,f = 18) and the weight, gScore, and fScore for each of its
neighbor is calculated. Specifically, the gScore and fScore are calculated for b1, b3, b4, and goal
resulting in the addition only of b4 and b3 to the OPEN queue, as shown in Figure 3 (Iteration 2
- left). The goal’s outdoor time from b2 is more than 450 seconds, thus it is not enqueued. In the
third iteration, b441,42(9 = 16.8, f = 19.0) is dequeued and the weights and scores for b1, b3, and
goal are calculated. This results in an updated OPEN queue and CLOSED set as shown in Figure 3
(Iteration 3 - left). In the last iteration, goal is dequeued, the search stops (line 7), and the path is
reconstructed (shown as a green dashed line in Figure 2).

(ii) With 450 seconds outdoor exposure limit and congestion tolerance limit: The priority queue
OPEN changes to {b141,42(9 = 6.2, f = 19.4)} and the CLOSED set is {start(g = 0, f = 16.6)}, as
shown in Figure 3 (Iteration 1 - right). This happens because only the b1 satisfies the constraints
from the start node. In the second iteration, the first element from the OPEN queue is dequeued
again, which is 141 42(9 = 6.2, f = 19.4) and the weight, gScore, and fScore for each of its neigh-
bors are calculated. Specifically, the gScore and fScore are calculated for b3, and goal resulting
in the addition only of b3 to the OPEN queue, as shown in Figure 3 (Iteration 2 - right). The out-
door time from b1 to goal is more than 450 seconds, and b2 and b4 are highly congested and hence
b1,b2, and b3 are pruned out. In the third iteration, b3 41, 42(9 = 12.7, f = 19.7) is dequeued and the
weights and scores for goal are recalculated. This results in an updated OPEN queue and CLOSED
set, as shown in Figure 3 (Iteration 3 - right). In the last iteration, goal is dequeued, the search stops
(line 7), and the path is reconstructed (shown as a blue dotted line in Figure 2).

2.3 The ASTRO Implementation

This section describes the details of the implementation along with the internal data structures
used in ASTRO. To guarantee the correctness of the path, ASTRO uniquely determines an outdoor
vertex based on the building identification code and the indoor path, i.e., the pair of the indoor
vertices. For example, b; with {d;,d} is different than b; with {d;,ds}. The indoor vertices d;s encode
their geographical coordinates, i.e., longitude and latitude.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:9

ALGORITHM 1: - Calculate Status Function used in Algorithm 2

Input: in: indoor vertex; out: indoor vertex; time: travel time;
Output: $: status;

1: function CArcStaTUS(in, out, time)

2 if (in, out) in the same building then > If the path is indoors
3 congestion « PredictCongestion(CM-Structure, in, out, time)
4 indoor < Distance(in, out) + avg_velocity

5 outdoor « 0

6 else

7 congestion < 0

8 indoor « 0

9: outdoor < Distance(in, out) + avg_velocity
10: end if
11 time « outdoor + indoor + indoor * congestion
12: § « (congestion, outdoor, indoor, time)
13: return s

14: end function

The outdoor vertices b; and b; are connected using their selected indoor vertices di € b; and
d; € bj, which are the entrances or the exits of the buildings. The status of a building b; is a vector
of values, i.e., § = {c, i, 0, t}, that records the congestion ¢ (i.e., minimum, average, and maximum
congestion) in b;, the time spent indoors i in b;, the time spent outdoors o to reach b;, and the total
travel time ¢ (= i + 0 + i * ¢). Note that the status of b; implements the concept of the edge b;.dj to
bj.d; with its weight in search graph G’ described above.

The status vector is computed by the CalcStatus function, which is shown in Algorithm 1.
CalcStatus accepts as inputs a pair of indoor vertices in and out and the current total travel
time since start time. If in and out are in the same building (lines 2-5), then the indoor travel
time i is calculated by using the function Distance that retrieves the shortest indoor path in-out
from Anyplace [29, 53] and the average walking speed [6, 24]. PredictCongestion is invoked to
calculate the percentage of congestion ¢ using the CM-Structure described in Section 3. The total
time t for the pair of vertices is the sum of the indoor time plus the delay due to congestion. The
delay due to the congestion is calculated as indoor time * congestion [2] (line 11). That is, if in
and out are in the same building, then it returns the status § = {c, i, 0, t} (line 12). If the vertices
in and out belong to two different outdoor vertices (lines 6-10), then the path is outdoors and,
therefore, the indoor travel time and the congestion are set to 0, and ¢t = o. That is, the return
status s = {0, 0, 0, t}.

The ASTRO algorithm pseudocode is shown in Algorithm 2. In step 1, the priority queue OPEN
and the set of visited outdoor vertices CLOSED are initialized. In the graph construction and path
finding step (Step 2 - lines 3-36), the source outdoor vertex start is initialized and enqueued into
OPEN.

While the OPEN is not empty, the top outdoor vertex in OPEN is dequeued into current. If
current is the same with the goal, then the destination was reached and the path p is recon-
structed using the ReconstructPath function (shown in the Algorithm 3) and terminates. If
current is not in the CLOSED set, then the algorithm checks all the indoor paths (e.g., pairs of
indoor vertices) by iterating over the indoor vertices in b for all of current’s neighbors in B set
(line 13).

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:10 C. Anastasious et al.

ALGORITHM 2: - ASTRO: Graph Integrator and Path Finder

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:

28:
29:
30:
31:
32:
33:
34:
35:
36:

Input: start: source; goal: destination; B: outdoor vertices; 6: set of Constraints;
Output: Recommended path p;

> Step 1: Initialization

: OPEN < 0 > Create a priority queue
: CLOSED « 0 > Create an empty set of the visited nodes

> Step 2: Graph construction and Path Finding

. start[gScore] < 0
. start[fScore] « start[gScore] + h(b[exit], goal)
. start[camefrom] « 0
: Enqueue(OPEN, start) > The priority queue (OPEN) is based on fScore
: while OPEN not empty do
current « Dequeue(OPEN)
if current = goal then
p < ReconstructPath(current) > Stop looping and return the path
end if
if current ¢ CLOSED then
for all b € Bdo > for each neighbor of current
if current # b and b ¢ CLOSED then » Find the entrance (in) and exit (out) of b
for all in € b do
> s1 is the status of the outdoor path
s1 « CalcStatus(current|[exit], in, current[gScore])
for all out € b do
if in # out then > The entrance and exit should be different
$2 — CalcStatus(in, out, current[gScore] + s_i[total_time])
§ e sl+s2
tentative_gScore « current[gScore] + s[total_time]
if tentative_gScore < b[gScore] and checkConstraints(0,5) then
b[pPath] « (current[exit], in, out,s)
blexit] < out
b(gScore] « tentative_gScore
b[fScore] « b[gScore] + h(b[exit], goal)
blcame from] « current
> If b is already enqueued, replace it based on the b’s state
Enqueue(OPEN, b)
end if
end if
end for
end for
end if
end for
end if
end while

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:11

ALGORITHM 3: - Path Reconstruction Function Used in Algorithm 2

Input: goal: outdoor vertex;
Output: Recommended path p;

1: function REcoNsTRUCTPATH(goal)

2 pe<0 > Create an empty list
3 current « goal > Set the current node with the goal outdoor vertex
4 while current # 0 do
5: p < current Up
6 current < current[cameFrom]
7 end while
8 return p
9: end function

During the iterations, the status s1 to reach the next building b and the status 52 of the indoor
path in b are computed using the CalcStatus function as described above (lines 16 and 19). The
status 5 of b is the integration of s1and s2 and is a component of the state of b along with the partial
path (pPath), exit door (exit), gScore, fScore, and the current originating building (cameFrom)(set
in lines 23-27).

A tentative gScore is calculated using current’s gScore and the total time ¢ of the previously
computed status s (line 21). If the tentative gScore is less than b’s gScore and all the constraints 6
are satisfied, then the fScore is calculated based on a heuristic function h, and b is enqueued in
the OPEN priority queue. The OPEN priority queue prioritizes the nodes based on the fScore. In
case the node exists in the priority queue and its gScore is greater than the node to be inserted,
then the already enqueued node is replaced (line 28).

The ReconstructPath function shown in Algorithm 3 creates the found path using the
cameFrom attributes and the pPath of each one of the nodes.

3 CONGESTION FORECASTING

The goal of congestion forecasting is to predict the future flow of congestion in a hallway or
corridor in a given building at a given time. ASTRO only requires the congestion density for each
segment of the building’s indoor path (e.g., hallways or corridors) to ensure that the congestion
tolerance constraint is satisfied. In this section, we discuss the two components of the congestion
forecasting used by ASTRO (PredictCongestion() in Algorithm 1). First, we explain how the
building grid layout is constructed (Section 3.1), and then we introduce the methodology that we
employ for training and accessing the congestion models (Section 3.2).

3.1 Building Grid Layout

To improve the accuracy and efficiency of our congestion forecasting models, we divide the build-
ing corridors into smaller segments and develop a Grid Layout algorithm. The benefit of this ap-
proach is two-fold: (i) each segment can be trained and maintained separately, which allows us
to massively parallelize the training process while forecasting at a fine-grained level; and (ii) it
improves efficiency at inference time, since we only forecast the congestion at the cells of interest
and not for the entire building.

Given the floor plan in a structured format (e.g., GeoJSON), we develop a new Grid Layout
algorithm that overlays a uniform grid over the building and detects those cells that overlap with
corridors, doors, and rooms. The output is a partial grid, the Building Grid Layout, that contains

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:12 C. Anastasious et al.

OAKLAND AVENUE

T ——— — -—-—.-—-——.-.._
%m |m m|m m|m ml as ey m]m Au'us m| m L |

I I [TTT T T T T T T TTTTT]

-4

=== =]
Er] as
,Lmum ale

| ST =1 2
ns'im E‘E ANS Y : s '
_—— 0 4 = t E o 3
4 ~ LA

H

|
[N
I
l
I
1

- T

LI
I
T sl
LA
) -
=
I
PR S VR S NN

FORBES AVENUE

ff) "
Restrooms | " o
< | = e01 "
o3| 08| -
- b s—1
I [as !
T !
4 L 4
o< © |
[s
5") L ;
= 1l § rﬂlj -4
L sl o
v 2 | | e Bl |
E o © K | Elevators
‘:urlm 200 mrmr;:”zm?‘ T AT A4 s
] FiseciiomiopiCink 1 Mastroome

SOUTH BOUQUET STREET

Fig. 4. Floor plan of the Sennott Square building at the University of Pittsburgh campus (left) converted to
a Building Grid Layout (right).

only the cells that represent corridor segments, i.e., only the cells we are interested in modeling.
The Grid Layout algorithm works as follows: First, the floor plan of the building is spatially indexed,
i.e., corridors (polygons), rooms (polygons), and door locations (points) are loaded into a spatial
index, specifically an R-tree. A uniform grid that covers the entire building is generated with a
configurable cell size ¢. Next, the grid cells are loaded into a second R-tree. Finally, a join operation
between the floor plan components and the grid cells is performed using the previously constructed
spatial indexes. Cells that overlap with any floor plan components, i.e., corridors, rooms, doors, are
annotated as such whereas all other cells are discarded.

The output is a set of annotated grid cells. Figure 4 illustrates an example of such an output. On
the left, the CS Department floor plan in the Sennot Square building at the University of Pittsburgh
is depicted. The corresponding generated grid layout is shown on the right. The grid’s boundary
is displayed in the background as a gray rectangle, whereas the actual shape of the building is
shown as a thick purple line. Building doors are marked with black dots and cells that correspond
to corridor segments are colored. Other types of cells are omitted for brevity.

3.2 Congestion Prediction & Accessibility
Formally, we denote the congestion at a cell ¢ as a signal X, € R, where P is the number of
features for the cell. Let Xy) be the congestion observed at cell ¢ at timestep t. The congestion

forecasting problem aims to learn a function A(-) that maps T’ historical congestion signals to T
future congestion signals:

[x¢, L x) 2o, [x{D L xED].)

3.2.1 Training Phase. After the grid layout has been constructed, the training phase begins. For
every corridor cell in the grid, a separate model is trained on the congestion data that correspond
to that cell. To model the temporal dependencies of the congestion, we leverage Recurrent Neural
Networks (RNNs). For the multiple steps ahead forecasting, we employ the Sequence-to-Sequence
architecture [46]. Both the encoder and decoder are recurrent neural networks and as we show in

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance

S1 . S
G . Learnmg —@ Building Level M
%2 H sd8 E ss8 @ Segment Level

St TSl

. -gl'E' 'E '5-35- ° Y | E-S(J -S.é.

Model Store

11:13

1525 'S

B poors B Congestion Data *====Indoor segment %: ongestion Model

Fig. 5. The CM-Structure provides the ASTRO algorithm with improved performance. One forecasting model
is created for each segment in the building based on its historical data.

our experiments (Section 5), we tested models with both LSTM and GRU neuron units as well as
traditional fully connected RNN neurons.

During training, we feed the historical congestion time series into the encoder and use its final
states to initialize the decoder. The decoder generates predictions given previous ground truth
observations. At testing time, ground truth observations are replaced by predictions generated
by the model itself. The entire network is trained by maximizing the likelihood of generating the
target future time series using backpropagation through time.

3.2.2 Deployment and Inference Phase. As discussed earlier, at inference time the system has
to be able to quickly and efficiently load the models of interest, i.e., the models that overlap with
the indoor pathway, and make predictions. To this end, we construct a spatial index, namely, CM-
Structure, that maps cells to forecasting models. The Congestion Forecasting component maintains
the CM-Structure, shown in Figure 5, which stores the forecasting model of each corridor cell and
provides a fast Access Path. This allows ASTRO to efficiently look up the models it requires while
searching for the optimal path to the destination.

The CM-Structure Construction Algorithm is executed in an offline phase where the historical
data are utilized to initialize and train a forecasting model for each corridor cell of the building
model. Each model is inserted into the CM-Structure for faster retrievals during the last step of
Algorithm 1. For example, the congestion data records of corridor cell ¢ inside building b; are used
to train a model. Then, the trained model is inserted into the CM-Structure and becomes available
to subsequent queries for any path P that intersects cell c.

3.2.3 Continuous Learning Phase. The dynamic nature of congestion can very often render the
deployed congestion forecasting models obsolete. As the congestion dynamics change (e.g., the
class schedule updated leading to more (or less) scheduled traffic or new cafeteria opened in the
building) models need to keep adjusting to those changes [14]. To achieve that, we propose an
offline periodic phase where existing congestion models are further trained on new congestion
data collected since the last time the model was fine-tuned.

3.3 Data Collection

Obtaining indoor congestion datasets can be done in a variety of ways. Perhaps the most common
way to collect indoor congestion data is through the analysis of Wi-Fi access point logs. In particu-
lar, given the number of connected users to an access point, the signal strengths of the established

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:14 C. Anastasious et al.

connections, and the range of an access point, the expected number of pedestrians at different
distance intervals can be computed. A more accurate method is through beacons. These devices
have a shorter range and can therefore localize a device indoors with higher accuracy. Last, a re-
cent work processed video streams in real-time to count the number of pedestrians passing from
specific corridors. Unfortunately, such datasets are rarely released to the public and, therefore,
in the next section, we propose a configurable method for generating realistic indoor congestion
datasets.

4 INDOOR CONGESTION DATA GENERATOR

We design and implement a synthetic data generator due to the limited availability of indoor con-
gestion data. If the synthetic data is generated for an existing building floor plan, then we utilize
our developed Building Grid Layout algorithm. Otherwise, we first generate realistic building floor
plans before we generate the congestion of a building using parameters that we obtained from real
congestion scenarios. The generator contains two separate components, namely, the Building Mod-
eling and the Congestion Generator, that can be executed independently of each other. Sections 4.1
and 4.2 describe the internals of each component in detail, respectively.

4.1 Building Modeling

Constructing a realistic building model is a crucial prerequisite for the next step, i.e., the synthetic
congestion generator. The algorithm, which is an extension of Building Grid Layout, requires two
inputs: the location of the building’s doors and the grid cell size ¢. For our experiments in Section 5,
we set ¢ = 3 meters.

Step 1 (Grid Construction): Initially, the shape of the building is approximated using the
convex hull of the door locations. Note that an accurate representation of the building’s shape
is not required to generate a synthetic building model. The minimum bounding rectangle
(MBR) of the doors (or of the convex hull) is used as the initial boundary of the grid. Subse-
quently, our algorithm generates the grid cells. The first cell is placed at the bottom left of the
grid’s initial boundary and cells are generated until the boundary is filled. The cells on the right
and top edges may extend over the boundary and, hence, we update the grid boundary to re-
flect this. Cells that do not overlap with the building’s shape are considered irrelevant and thus
discarded.

Step 2 (Corridor Construction): Subsequently, the algorithm proceeds to generate corridors
that connect all doors with each other. Our corridor generation algorithm has two objectives: (i) to
minimize the number of direction changes, i.e., corridors must switch from horizontal to vertical
orientation as few times as possible; and (ii) to reuse previous corridor segments whenever possible,
as an architect would do in a real scenario. Satisfying both objectives leads to compact floor plans
that are not flooded with corridor cells.

Step 3 (Room Placement): Last, a number of rooms is randomly placed along the unused cells
of the grid and the corridors are extended to reach the doors of those rooms. The output is a set of
grid cells, each annotated as CORRIDOR, ROOM, or UNUSED.

Figure 6 shows two examples of generated building models in which doors are marked as black
dots, the grid’s initial boundary with a light gray rectangle, corridor and room cells with green
(dark gray in grayscale) and orange (light gray with texture in grayscale) squares, respectively.
Room doors are depicted with brown textured squares (dark gray with texture in grayscale). Cells
that remain unused after modeling are painted red (light gray in grayscale). Note that rooms are
assumed to only have one entrance and therefore can only be used either as a source or as a
destination, i.e., no path cuts through a room.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:15

Wesley W. Posvar Hall, University of Pittsburgh Barco Law Building, University of Pittsburgh

o H}Em

[Grid Boundary
[TTTIL] e Building Door
! [Corridor Cell
1 @@ Room Door
Room

Unused cell

|
T
S E

RS 1

!
|

Fig. 6. Generated building models for a building with 6 doors and 35 rooms (left) and a building with 5 doors
and 14 rooms (right) using ¢ = 3 meters.

4.2 Congestion Generator

Our real-world observations show that traffic inside academic buildings can be separated into two
main categories: scheduled and pass-through. Scheduled traffic is the traffic that follows a specific
schedule, e.g., class schedule. This means that slightly before and slightly after a class, a spike of
traffic appears in the building. Pass-through traffic is generated by people who enter the building in
one door only to exit at another. Therefore, we design and implement a congestion generator that
accounts for these two categories of traffic. To achieve this, congestion is generated in two phases.
The first phase generates the pass-through traffic (browsers), whereas the second phase generates
the scheduled traffic (commuters). Both phases require the building model as input as well as the
date range of simulation. It is important to note that the building input does not necessarily have
to come from the synthetic building modeler we introduced in the previous section. This means
that the generator can simulate traffic for any building given its model.

Phase 1 (Pass-through traffic): The rate of congestion generated by this type of traffic varies,
depending on the time of day. For example, there is almost zero traffic during nighttime but a
lot of people will pass through the building during the daytime. Hence, the generator receives
an additional input for this phase, namely, the arrival rate of people at different times of the day.
For every timestep, the generator will randomly sample the number of people that arrive at each
building door and for each person a destination exit door is selected. Then, assuming a constant
walking speed, the trajectory of each person is simulated following the shortest path that is formed
using corridor cells. The congestion of each cell is updated accordingly. It is important to highlight
that, in this phase, the source and the destination of the simulated trajectories is always a building
entrance/exit and that a trajectory will never involve a room or a room door, i.e., a simulated
trajectory will never cut through a room.

Phase 2 (Scheduled traffic): Before beginning the scheduled traffic simulation, we need to
have some sort of a schedule for every room in the building, i.e., the time classes start and end for
different days of the week as well as the audience size of each class. Hence, the generator receives
this schedule as an input for this phase. Obviously, a schedule does not exist for synthetic building
models, so we will discuss the approach we employ to generate such schedules later on in this
section. Besides the schedule, the generator requires an additional set of parameters, i.e., arrival
rate of students before the class begins, departure rate after the class ends, and probability that a
student is absent from class.

We simulate the arrival of students as a Gaussian distribution with mean p, and standard devi-
ation o, that samples the number of minutes before the start time of the class the student enters
the building. Similarly, we simulate the departure of students from class as a Gaussian distribution
with mean pi; and standard deviation o, that samples the number of minutes after the end time of

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:16 C. Anastasious et al.

the class when the students leave the classroom. Last, we simulate the absence of a student from
class as a binomial distribution with p = @, An average walking speed v is assumed.

All parameters, i.e., lg, 0g, lld, 04, @, 0, are user-defined. The scheduled traffic generator algo-
rithm iterates over every schedule item and generates the respective traffic. For every student in
the class, we first draw a sample from the absence distribution to decide if the student is attending
the class. If the student is attending, then we additionally draw a sample from the arrival distribu-
tion to decide how early that student is going to enter the building. An entrance door is selected
uniformly at random and the student’s trajectory to the respective room is generated using a con-
stant speed of v m/s. The congestion of the cells that intersect with the student’s path is updated
accordingly. A similar process is employed for the departure of students from the class. For every
student that was present, a departure time and an exit door are sampled and the student is routed
while the congestion of cells that intersect with the path is updated. In sum, for all arrival (depar-
ture) trajectories, the source is a building entrance (or room door) and the destination is a room
door (building exit). The final output is the congestion time series of every corridor cell aggregated
in five-minute intervals.

Discussion: Although we discuss (and make use of) the proposed generator in the context of
academic buildings, the process can be generalized to almost any kind of building. The only hard
requirement is the floor plan of the building. All other parameters (y,, 04, j4, 04, @, v) can be pro-
vided by the user or estimated using other datasets, such as Wi-Fi access point connection logs. For
example, at USC, access point logs are analyzed to estimate and predict the congestion in buildings
during the pandemic to reduce the spread of the virus. The logs tend to show a spike in the number
of connections a few minutes before the start of a class and a drop in the number of connected
users right after a class finishes. These spikes and drops can be correlated with the schedule to
estimate the parameters pi4, 04, lig, O4.

Schedule Generator: In the scenario that a schedule does not exist for a building, we propose a
simple method to generate one. Three input parameters are required: (i) the audience size distribu-
tion, which is assumed to be a Gaussian distribution with mean y and standard deviation oy; (ii) a
set of event durations (class, no class) along with their respective probabilities, which are modeled
as multinomial distribution; and (iii) the probability p. that an event is a class or not. Optionally,
the time of day when classes begin and end, e.g., from 7AM to 9PM, can be provided. Starting at
the time that the schedule is configured to begin, e.g., 7AM, we sample two pieces of information,
namely, the duration of the next event § and whether the next event is a class or not. If the next
event is a class, then the size of the audience is also sampled.

Figure 7 plots the generated congestion of two corridor cells during the first week of April 2019.
On the top, the congestion of a corridor cell at the building’s entrance is shown while on the
bottom the congestion of an intersection cell is shown. Both cells follow a realistic distribution in
the sense that during the nighttime only a very small number of pedestrians is observed, whereas
the number of pedestrians increases during the day and peaks around the beginning and ending
of classes. As expected, the congestion at the intersection is much higher than at the entrance.
This happens because pedestrians are very likely to walk by the intersection irrespective of the
entrance or exit they used.

5 EXPERIMENTAL EVALUATION

This section presents an experimental evaluation of our proposed methods. We start out with
the experimental methodology and setup, followed by three experiments. The first experiment
(Section 5.2) examines the influence of machine learning models described in Section 3. The second
experiment (Section 5.3) investigates the tradeoffs of three CM-Structure implementations. Finally,

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:17

-
[$)]
o

100

Cell Congestion (flow/5 min)
(42
o

AL J..'.MHI_. i AR

Thursday Friday Saturday Sunday

450
=400
350
3300
' 250

& 200
& 150

flow/5 min

Ol

ongest

CellC

50

'y "

Thursday Friday Saturday Sunday

Fig. 7. Generated congestion for a corridor cell corresponding to Entrance 1 (top) and a corridor intersection
(bottom) of Wesley W. Posvar Hall at University of Pittsburgh.

in the third experiment (Section 5.4), the performance of ASTRO is compared against three baseline
approaches with respect to the quality of recommendation and the cost of execution.

5.1 Experimental Setup

This section provides details regarding the algorithms, metrics, and datasets used for evaluating
the performance of the proposed approach.

Testbed: Our evaluation is carried out on a dedicated Windows 10 server. The server is featuring
12 GB of RAM with 4 Cores (@ 2.90 GHz), a 500 GB SSD and a 750 GB HDD. We implement all
path search algorithms using Scala 2.13 and the three machine learning models (FC-RNN, GRU,
LSTM) utilizing Keras with Tensorflow [1] on an NVIDIA GeForce RTX 3080 GPU.

Algorithms: The proposed ASTRO algorithm (see Algorithm 2) is compared with the following
approaches:

e Dijkstra: This is a modified and optimized version of Dijkstra using a priority queue and
early termination with additional constraints similar to ASTRO.

e ASTROG: This is a greedy variant of ASTRO where the indoor path is selected based on the
minimum indoor time instead of the overall time or the heuristic.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:18 C. Anastasious et al.

50% 50%

40% 40%
g o
3 £
© ©
2 30% 2 30%
2 2
() o
s s
= =
S 20% £ 20%
% %
o [
o o
g g
Q Q
S S n

10% h 10%

AT MNV ’l b W«M/\/’“M N(
Jusmp AW ket
N o N Ny N o N o o © Ny N o N
oF o P o a® e e a® &P o P o a® ¢ e aP

Fig. 8. Datasets for the buildings in the University of Pittsburgh campus (top left) and the University of
Cyprus campus (top right) and their average congestion for one day (bottom row). The green and red stars
represent the source and destination nodes used in the experimental evaluation, and the blue box the search
space for all algorithms.

e CBFS (Closest Building First Search): This is an algorithm where the closest building is
always selected first.

Note that ASTRO is the core algorithm of the proposed solution in this article, Algorithm 2.
Datasets: We utilize the following two datasets in our evaluation:

e PITT: A realistic dataset of the University of Pittsburgh campus. It consists of 9 buildings
with each building having 2 to 6 doors (3 on average) and up to 582 corridor cells (126 on
average). The average door-to-door corridor length is 69 meters.

e UCY: A realistic dataset of the University of Cyprus campus. It consists of 9 buildings with
each building having 2 to 7 doors (4 on average) and up to 396 corridor cells (106 on average).
The average door-to-door corridor length is 48.5 meters.

We used camera analysis [15] on a two-hour session and extrapolated the congestion data using
the University of Pittsburgh Fall 2019 schedule. Then, for both PITT and UCY datasets, we generate
congestion data using the procedure we described in Section 4 using p, = 4,0, = 1, g = 1,04 =
0.2 and a walking speed of 1.4 m/s [6, 24] for a period of six months. Figure 8 shows the map of
the two campuses and the average generated congestion density (number of people over corridor
capacity) of all buildings on July 19, 2019.

Metrics: We evaluate the performance of ASTRO using the following metrics:

e Outdoor exposure (O): measures the total outdoor exposure of the recommended path in
seconds.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:19

LSTM e
N N £
RK
< 558
55
24 | 7
&3
s 395%
s
55
22 [553 T
53
- D'Q.‘
e%e%
20

A N
A\ ot [\6\\6 %(L\s?/ O

Fig. 9. Examining the effect of hidden layers and number of units on the accuracy of the congestion models
for Wesley W. Posvar Hall at University of Pittsburgh.

e Indoor Time (I): measures the total indoor time of the generated path in seconds.

e Total Time (T): measures the total travel time of the path between the source and the des-
tination point in seconds.

e Congestion Reduction (C): measures the indoor congestion of the generated path.

e Response Time: measures the execution time using the average of 100 consecutive runs in
milliseconds.

e Memory (M): measures the memory footprint of the ML model in kilobytes.

e Root Mean Squared Error (RMSE): measures the error of the model and is computed

using the formula RMSE(X, X) = \/% f\il(Xi — X;)?, where X is the ground truth and X
the prediction.

e Mean Absolute Error (MAE): measures the error of the model and is computed using the
formula MAE(X, X) = % Zfil 1X — X|.

e Query Throughput: measures the maximum number of queries that the system can sustain
within a second in Queries Per Second (QPS).

5.2 Experiment 1: Congestion Forecasting Evaluation

We conduct our experiments on two buildings of the PITT dataset, namely, Wesley W. Posvar
Hall (posvar) and Barco Law Building (barco). 70% of the data is used for training, 10% for
validation, and the remainder 20% for testing. Additionally, we apply standard normalization as a
pre-processing step to prepare the datasets for training and we include the time of day as a feature.
We compare the performance of three time series regression models (seq-to-seq encoder-decoder
architecture); (i) a fully connected RNN model (FC-RNN), (ii) a Gated Recurrent Unit RNN
model (GRU), and (iii) a Long-Short Term Memory RNN model (LSTM). All models were
trained for 30 epochs using the Adam optimizer and a learning rate of 5E—3 with a decay rate
of 0.1 every 200 steps and with a batch size of 256. During training (and inference), we provide
the last hour’s congestion in 5-minute windows as input to the model and receive the next hour’s
congestion as output, i.e., 12 timesteps as input, 12 timesteps as output.

First, we train the models using posvar’s congestion data, which has the largest number of grid
cells to tune them in terms of the number of layers and units hyperparameters. Specifically, we
performed experiments using 1 hidden layer (with 16, 32, and 64 units) and 2 hidden layers (with
16/16, 32/32, and 64/64 units). Figure 9 plots the results. On the horizontal axis, we vary the number

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:20 C. Anastasious et al.

35 35

FC-BRNN &xxx FC-BRNN &xxx
LSTM ez LSTM ez
30 GRU £ [30 GRU £ 7
25 25
w 20 (u/g 20
< =
Z 55 T
10 10
5 5
0 0
S o N o
Kt © K ©
9 o 9 @
¢ © $ §

Fig. 10. Examining the MAE (left) and RMSE (right) of the three ML models (2 hidden layers, 64 units each)
for Wesley W. Posvar Hall and Barco Law buildings at University of Pittsburgh.

600 120
FC-RNN &xxx1 FC-RNN &xxx3
LSTM ez LSTM ez
500 |- GRU =3 100 |- GRU &==x1 §
400 £ 80
m
¢ 2
2 300 [o 60
£ o
[} c
= o
200 2 40
£
100 20
0 0
Model Model

Fig. 11. Examining the memory footprint (left) and inference time (right) of the three ML models (2 hidden
layers, 64 units each).

of hidden layers and number of units combination and on the vertical axis we plot the correspond-
ing model’s MAE. We observe that the smallest error is achieved for all models when they use 2
hidden layers with 64 units each. Hence, for the remainder of the experiments, all the models were
trained using 2 hidden layers with 64 units each.

Next, we investigate three different aspects of the tuned models: (i) their accuracy, (ii) their
memory footprint, and (iii) their inference time. It is crucial that our system adopts not only a
model that is very accurate but also one that does not require a lot of memory and incurs small
inference time, since, to predict the congestion of a path, tens of models, i.e., models corresponding
to corridor cells that overlap with the path, may need to be invoked.

Figure 10 examines the accuracy of the tuned models. Specifically, the average MAE (left) and
RMSE (right) metrics of all models (corresponding to grid cells) in each building is shown. We
observe that all models are able to achieve similar accuracy for both buildings. Therefore, all models
satisfy the requirement of high prediction accuracy and are suitable candidates for ASTRO.

Figure 11 (left) examines the memory footprint of the models. As expected, due to its larger
number of parameters, LSTM requires more memory, making it a less ideal model to adopt by
our proposed approach for the reasons explained earlier. FC-RNN, however, requires much less
memory while achieving almost identical accuracy to the other models. Therefore, in terms of
memory requirements, FC-RNN and GRU are better candidates for ASTRO.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:21

l

2022202628 0 2 % % 38 40 42 44 46 48 %0
Grid x-coordinate

Fig. 12. Examining the error of every corridor cell in a building in terms of MAE for FC-RNN (left), LSTM
(middle), and GRU (right) for Wesley W. Posvar Hall at University of Pittsburgh.

120

Grid 0 Grid = Grid x| |
Hashmap Emesm 0.14 ’ § 3000 Hashmap ez
100 Rifree £5x%1 R-tree €<% R-tree ===

0.12 2500

2000

1500

°
S
8
Memory (MB)

Build Time (s
Py
3
Retrieval Time (ms)

1000

20 500

0 0 RRR el 0

Fig. 13. Examining the performance of the Congestion Model Access Methods in terms of build time (left),
retrieval time (center), and memory footprint (right).

Finally, Figure 11 (right) examines the inference time of the models. We observe that FC-RNN
incurs the smallest inference time of 40 milliseconds per cell, while GRU incurs 2.5X more time
than FC-RNN. This shows that only FC-RNN and LSTM satisfy the requirement of incurring small
inference time.

Furthermore, we investigate which corridor cells incur the greatest error. Figure 12 examines the
accuracy of every corridor cell in posvar, the largest building in the PITT dataset, in terms of MAE.
This confirms our initial observations that all models perform similarly. It is also not surprising that
corridors leading only to rooms and not exit doors, incur the highest error. The reason behind this
is that, intuitively, congestion sporadically appears at those cells slightly before and exactly after
a class. This kind of corridors only facilitate “commuters” and, hence, have almost 0 congestion
most of the time, which makes it very difficult for the model to predict how congestion is going to
change in the immediate future.

Summary: Taking all the above into consideration, we reach the conclusion that FC-RNN is the
most ideal model to be adopted by ASTRO. This is due to the fact that it manages to satisfy all three
requirements; (i) high accuracy; (ii) low memory footprint; and (iii) low inference time. Specifically,
it achieves comparable accuracy to the other two models while requiring up to 4x less memory
and incurring up to 2.5X less inference time.

5.3 [Experiment 2: Congestion Model Access Method Evaluation

It is critical for our proposed algorithm to quickly identify and retrieve all models that intersect a
corridor segment. Hence, we run experiments for three different Access Method implementations;
(i) a Grid that stores models in a 2D array; (ii) a hashmap that maps cells to models; and (iii) an
R-tree that indexes the cells based on their spatial boundaries. Figure 13 (left) illustrates the time
required to load the models of posvar and construct the respective Access Path structure. All three
structures incur relatively similar construction times. Figure 13 (center) examines the average time
it takes to retrieve all the models that intersect a corridor. R-tree incurs the highest retrieval time,
whereas the other two structures incur comparable times. Last, Figure 13 (right) investigates the

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:22

10000

1000 H|

100

Time Indoors (s)

0.1

Difkstra €80

Time Outdoors (s)

100000

10000 F|

1000

100

Difkstra £

\
\

ITT

Total Time (s)

100000

10000 F|

1000

100

C. Anastasious et al.

Difkstra &0
==

\
\
\

ucy

PITT

Fig. 14. Examining the indoor total time (left), the outdoor total time (center), and the total travel time (right)
in seconds for finding the longest path in the PITT and UCY datasets without any constraints.

memory footprint of the structures. As expected, the Grid is the most expensive, since it allocates
space for all cells in the grid even though only a portion of them corresponds to corridors, whereas
the other two only index corridor cells.

Summary: Although both Grid and Hashmap Access Methods satisfy ASTRO’s requirements, we
decide to adopt Hashmap, since it is slightly faster and requires 33% less memory than Grid.

5.4 Experiment 3: ASTRO Performance Evaluation

In the third set of experiments, we evaluate the performance of our proposed ASTRO algorithm
against three baseline solutions using the datasets described in Section 5.1. We select source and
destination nodes that maximize the search space for all algorithms, as shown in Figure 8. This
allows the algorithms to consider paths that span multiple buildings and satisfy the constraints
described in Section 2.1. We use Manhattan distance to better represent the pedestrian path and
an average walking speed of 1.4 m/s [6, 24].

5.4.1 Series 1: Absence of Constraints. In the first set of experiments, we focus solely on optimiz-
ing the total travel time, i.e., setting the constraints to A = false, OE = oo, and CT = 1.0 (100%).
The algorithms do not take into account any constraints, but the delay caused by congestion is
considered in the calculation of the total travel time.

Dijkstra, ASTRO, and ASTROG behave identically (returning identical paths), as shown in
Figure 14. All three incur 0 indoor time for PITT dataset with the path being totally outdoors,
due to the absence of the outdoor exposure limit constraint. Interestingly, all three incur the same
indoor time for UCY dataset (23 seconds) by finding a path through a building that forms a shortcut
to the destination. The total time of the path is 456 seconds for PITT and 670 seconds for UCY.

In contrast, CBFS spends more than 270 seconds indoors for PITT dataset and almost 90 seconds
for UCY dataset incurring 10% congestion. This happens because its strategy is to visit the closest
building first irrespective of the presence or absence of constraints, therefore increasing the total
travel time as shown in Figure 14 (right). The total time of the path provided by CBFS is 3X larger
than the path recommended by the other approaches.

In Figure 15, we can easily observe that ASTRO, ASTROG, and CBFS perform the same with
ASTRO being slightly faster for PITT dataset. In contrast, Dijkstra incurs 100X and 10X more time
(for UCY and PITT datasets, respectively) in finding the optimal path compared to ASTRO. This
happens because Dijkstra’s search space is much larger, especially in the UCY dataset where the
graph is very dense (i.e., the buildings are very close to each other). Dijkstra, ASTRO, ASTROG, and
CBFS report 0 average and maximum congestion. However, CBFS has an average indoor congestion
of approximately 10% and a maximum indoor congestion of 100%.

Dijkstra and ASTRO algorithms are optimal. This means that both algorithms find the path with
minimum total travel time and at the same time satisfy all the constraints. However, ASTRO out-
performs Dijkstra by up to 13X in terms of execution time.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:23

10000 - 1000 - 10000 =
Distra oo Dfista B Difsta £
ASTRO &=%1 ~ ASTRO &=%1 z ASTRO ===
& 1000 | ASTROG mzammm g ASTROG @z 2 1000 || ASTROG me=zm
2 CBFS g 100 CBFS i 5 CBFS i
- £ Z
g 100 % o § o N <
= 3 \ § 3
':‘;3 10 < § § e 10 \
Q » N B |
@ 2 \ \ : \
\ I : \
0.1 0.1 N & 0.1 \
uecy PITT PITT

Fig. 15. Examining the response time (left) in milliseconds, the average congestion (center), and the
maximum congestion (right) in percentage for finding the longest path in the PITT and UCY datasets
without any constraints.

10000 100000 100000

ngslra EXXX] ngsva EXXX] ngstra EXXX]

ASTRO E==<1 10000 L] ASTRO E==x1 10000 L] ASTRO E==x1

1000 | ASTROG ez ASTROG ez ASTROG ez
CBFS CBFS s CBF:!

\ S \ .

100 1000 Q 1000
\

\
%

PITT

100

100

Time Indoors (s)
Time Outdoors (s)
Total Time (s)

PITT

Fig. 16. Examining the indoor total time (left), the outdoor total time (center), and the total travel time (right)
in seconds for finding the longest path in the PITT and UCY datasets with outdoor exposure time limit of
300 seconds.

10000 1000 10000

Difkstra £x== Difkstra == Dijkstra Ex==)

ASTRO Exx%1 S ASTRO Exx%1 q ASTRO Exx%1

1000 F| ASTROG memm S ASTROG meeean £ 1000 H{ ASTROG ez
CBFS 100 CBFS fwwm CBFS

100 100

Execution time (ms)

Average Congestion (%)
3
Maximum Congestion (%)

0.1

0.1

ucy PITT ucy PITT

Fig. 17. Examining the response time (left) in milliseconds, the average congestion (center), and the maxi-
mum congestion (right) in percentage for finding the longest path in the PITT and UCY datasets with outdoor
exposure time limit of 300 seconds.

5.4.2 Series 2: Outdoor Exposure Constraint (300 Seconds). In the second set of experiments, we
focus on optimizing the total travel time while keeping the outdoor exposure time less than 300
seconds, i.e., setting the constraints to A = false, OE = 300, and CT = 1.0 (100%).

Figure 16 shows the effect of the 300-second outdoor exposure limit. Particularly, Dijkstra incurs
8 seconds of indoor time for UCY and 38 seconds for PITT. ASTRO and ASTROG behave identically,
i.e., they recommend the exact same path, which incurs approximately 25 and 38 seconds of indoor
time for UCY and PITT, respectively. CBFS, however, recommends the same paths as before for both
datasets. The total time for both datasets remains the same as in the previous experiment.

In Figure 17, we observe that the response time for all of the approaches is slightly decreased
in comparison to the previous experiment (shown in Figure 15). This happens because several
edges are pruned due to the outdoor exposure constraint. However, ASTRO, ASTROG, and Dijkstra
have the same average indoor congestion (7% for PITT and 0.3% for UCY). All three of them incur
35% maximum congestion for PITT and 16% for UCY. CBFS has the same average and maximum
congestion with the previous experiment shown in Figure 15 (right).

5.4.3 Series 3: Outdoor Exposure Constraint (300 Seconds) & Congestion Tolerance Limit (15%).
In the third set of experiments, we focus on optimizing the total travel time while keeping the

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:24 C. Anastasious et al.

10000 100000 100000

Dijkstra Ex==) Difkstra Exx1 Difkstra Exxx1

ASTRO =<1 ASTRO ==%1 ASTRO £==%1

1000 F| ASTROG eeme 10000 £l ASTROG ez 10000 F| ASTROG ez
CBFS o CBFS CBFS

1000 1000
100

100

100

Time Indoors (s)
Time Outdoors
Total Time (s)

PITT

Fig. 18. Examining the indoor total time (left), the outdoor total time (center), and the total travel time (right)
in seconds for finding the longest path in the PITT and UCY datasets with outdoor exposure time limit of
300 seconds and 15% congestion tolerance limit.

10000 1000 1000

ngstva EXXX] ngstla EXXX]
ASTRO E==x1 ASTRO E==x1
1000 | ASTROG ez ASTROG ez

CBFS 100 | CBFS

100

ngstra [e==3]
ASTRO ESSX

100 | CBFS mwww |

Execution time (ms)

Average Congestion (%)
3

Maximum Congestion (%)
3

N

3

Fig. 19. Examining the response time (left) in milliseconds, the average congestion (center), and the maxi-
mum congestion (right) in percentage for finding the longest path in the PITT and UCY datasets with outdoor
exposure time limit of 300 seconds and 15% congestion tolerance limit.

outdoor exposure time less than 300 seconds, and the congestion tolerance limit less than 15%, i.e.,
setting the constraints to A = false, OE = 300, and CT = 0.15 (15%).

Figure 18 shows the effect of 300 seconds outdoor exposure limit and 15% congestion tolerance
limit. Specifically, Dijkstra incurs approximately 9 seconds of indoor time for PITT and 12 seconds
for UCY. ASTRO and ASTROG behave identically recommending again the exact same path, which
incurs approximately 9 seconds of indoor time for PITT and 29 seconds for UCY. Dijkstra, ASTRO,
and ASTROG have the same total travel time of 670 seconds for UCY and 470 seconds for PITT
(14 seconds overhead from the previous experiment). CBFS incurs 97 seconds and 124 seconds for
UCY and PITT datasets, respectively.

Figure 19 shows that the congestion constraint affects the response time because additional
paths are pruned. Particularly, Dijkstra’s response time drops to 6 milliseconds from 120 millisec-
onds for UCY datset and to 4 milliseconds from 9 milliseconds for PITT dataset. Finally, the average
indoor congestion is decreased for all approaches. ASTRO, ASTROG, and Dijkstra have the same
average indoor congestion 2% for PITT dataset and 0.3% for UCY dataset. Their maximum conges-
tion is 4% and 1% for UCY and PITT datasets, respectively. CBFS reports 4% for PITT and 2% for
UCY, while the maximum congestion is 11% and 14% for UCY and PITT datasets, respectively.

Summary: Even though both Dijkstra and ASTRO guarantee finding the optimal path in terms
of satisfying the constraints and minimizing the total travel time, ASTRO is approximately one
order of magnitude faster when constraints are imposed and two orders of magnitude faster when
they are not. ASTRO reduces the maximum congestion by one order of magnitude compared to
algorithms that are oblivious to congestion while maintaining comparable response time with the
greedy approaches.

5.4.4 Series 4: Practicality of Our Solution. In this set of experiments, we are examining the
practicality of our solution by measuring the throughput for the longest path in PITT and UCY
datasets.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:25

1x108 - 1x108 — 1x108
Dijkstra Ex==) Difksira x5

100000 E| ASTRO === ASTRO £=<%1
ASTROG Ezzsss
CBFS &

Dijkstra &

ASTRO &==x1

ASTROG ez ‘
CBFS

100000 H|

100000 |

10000

10000

10000

1000

1000

1000

N
\ \
\ ' \

ITT PITT

N
\

100

100

100

.

10

10

1L

Queries per second (QPS)

Queries per second (QPS)

Queries per second (QPS)

1

0.1

Fig. 20. Examining the throughput, in queries per second (QPS), without any constraints (left), with outdoor
exposure time limit of 300 seconds (center), and with outdoor exposure time limit of 300 seconds and 15%
congestion tolerance limit (right) for finding the longest path in the PITT and UCY datasets.

1x108 - 1x10° _

= =
%) L == a L =]
g 100000 ASTROG &=z & 100000 ASTROG
2 10000 F CBFS 2 o000 F CBFS
° ©
s c
3 1000 3 1000
@ g
g 100 5 100]
3 10 8 10]
g 5
8 1 3 1]

0.1 0.1 £ X
ucy PITT PITT

Fig. 21. Examining the throughput with outdoor exposure time limit ranging from 100 to 500 seconds (left),
and with outdoor exposure time limit ranging from 100 to 500 seconds and congestion tolerance limit from
5% to 20% (right) in queries per second (QPS) for finding the longest path in the PITT and UCY datasets.

Figure 20 shows the throughput in queries per second (QPS) without any constraints, with
outdoor exposure time limit of 300 seconds, and with outdoor exposure time limit of 300 seconds
and 15% congestion tolerance limit for finding the longest path in the PITT and UCY datasets.
ASTRO, ASTROG, and CBFS outperform Dijkstra by up to two orders of magnitude for UCY dataset
and up to one order of magnitude for PITT dataset. Particularly, Dijkstra incurs 58 QPS for UCY
dataset and 127 QPS for PITT dataset on average, ASTRO incurs 757 QPS for UCY dataset and 1,757
QPS for PITT dataset on average, ASTROG incurs 835 QPS for UCY dataset and 1,780 QPS for PITT
dataset on average, and CBFS incurs 925 QPS for UCY dataset and 1,253 QPS for PITT dataset on
average.

Figure 21 shows the throughput in QPS with outdoor exposure time limit ranging from 100 to
500 seconds and congestion tolerance limit from 5% to 20% for finding the longest path in PITT
and UCY datasets. ASTRO, ASTROG, and CBFS outperform Dijkstra by up to 2X on average for both
experiments for the PITT dataset and up to one order of magnitude on average for UCY dataset.

Summary: Even though both Dijkstra and ASTRO guarantee finding the optimal path in terms
of satisfying the constraints and minimizing the total travel time, ASTRO is up to two orders of
magnitude faster in most cases. This set of experiments shows that ASTRO’s high throughput
supports route navigation incorporating congestion updates in real time. In contrast, traditional
graph-based algorithms cannot cope with the requirements of modern navigation (e.g., Google
Maps) and MCAN systems (e.g., HealthDist [11, 38]). In this setting, an initial route is recommended
and then periodically refined to account for any traffic changes in real time.

6 RELATED WORK

In this section, we present the background and related work in systems that can provide outdoor,
indoor, or combined navigation and path recommendation. We also include the related work for
the traffic prediction for completeness.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:26 C. Anastasious et al.

6.1 Outdoor Path Recommendation

Outdoor systems are well established and enhanced through a variety of data collection and pro-
cessing techniques, e.g., OpenStreetMap, Google Maps, Bing Maps, Here WeGo, TomTom, Waze.
Several systems integrate social network data or crowdsourcing data and produce enriched path
recommendation using machine learning and providing alternative navigation services using im-
mersive technologies [7]. For example, Dejavu is a path navigation system that utilizes cell-phone
sensors to provide accurate and energy-efficient outdoor localization [5]. Gervey et al. demonstrate
how an alternative outdoor path can be generated based on the safety of a route [19]. However,
there are systems that are trying to provide the fastest and simplest route for a destination [43].
Mata et al. show how social network data from a user profile may affect the outdoor path recom-
mendation [36] and enrich it using augmented reality navigation [35]. Other systems focus on the
temporal or personal preferences of the user to discover outdoor activities [40].

6.2 Indoor Path Recommendation

With people spending the 90% of their time indoors [53], indoor navigation services optimized the
shortest path search using magnetic fields for localization and a modified shortest path formula-
tion [50]. An indoor environment has many elements with unique properties that are defining the
indoor route [44]. Additionally, marking the indoor environment (e.g., Braille blocks) can assist
the visual impaired people to navigate indoors [42].

Smart home and wireless sensor networks provide the opportunity to localize and navigate
indoors with spatial awareness [26]. Indoor localization and navigation services have emerged due
to the rapid growth of new large buildings (e.g., shopping centers, campuses, building complexes).

Anyplace is an infrastructure-free indoor navigation system that uses sensing data from smart-
phones to determine the user’s location [53]. Delail et al. proposed a context-aware system that
enriches the indoor information by using augmented reality to provide indoor navigation [12].

Indoor environment and context are very important for determining the best indoor navigation
route, especially to impaired people [17, 30]. Park et al. propose an indoor pedestrian network
data model for emergency transportation services [39]. Afyouni et al. illustrate how to process
indoor continuous path queries over traditional database management systems using a hierarchi-
cal, context-aware data model [3]. Feng et al. propose keyword-aware indoor path recommenda-
tion [16]. Last, Liu et al. propose the temporal variations-aware indoor path planning that takes the
operating hours of shops into consideration [33]. However, none of the previous works consider
dynamic edge weights such as the congestion, which is of critical importance during a pandemic.

6.3 Indoor-outdoor Path Recommendation

The majority of the indoor-outdoor systems focus on the seamless transition between indoor
and outdoor navigation [34, 45]. Additionally, IODetector detects the indoor-outdoor environment
changes accurately and efficiently, allowing the development of context-aware mobile applica-
tions [31]. IONavi is a joint indoor-outdoor navigation solution that uses mobile crowdsensing to
create a collection of indoor-outdoor paths and then produces an indoor-outdoor path based on
the generated collection [48]. Similarly, CrowdNavi solves the last-mile navigation problem using
crowdsourcing and the guider-follower model [49]. Jensen et al. presented a unified model of in-
door and outdoor spaces that can provide the shortest path by exploiting the nature of buildings
and roads [23]. CAPRIO [8-10] is the latest indoor-outdoor path planning system that supports
shortest path recommendations. CAPRIO users can specify outdoor exposure tolerance similar to
ASTRO. However, these solutions are multi-objective path recommendation systems that cannot
cope with multiple constraints and do not operate over time-varying graphs.

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

ASTRO: COVID-19 Contact Prediction and Avoidance 11:27

6.4 Constraint-based Path Selection

Previous work on constraint-based path selection was mostly focused on QoS routing, and their
task is to find feasible paths while providing some guarantees. In Reference [25] the authors pro-
pose a multi-constrained optimal path (MCOP) selection algorithm that can be applied to any
number of constraints. The authors of References [27, 28] provide a complete overview of all the
proposed solutions. However, these solutions cannot be directly applied to ASTRO. These algo-
rithms attempt to either find any path that satisfies the constraints or the optimal path in terms of
anonlinear cost function that involves the constraints over a single graph. Thus, their path-finding
approaches, which are focused on QoS, cannot seamlessly integrate outdoor and indoor graphs to
recommend routes for pedestrians.

6.5 Congestion Forecasting & Predictive Path Planning

Congestion forecasting is a classic problem in intelligent transportation systems research where
the task is, given the current traffic situation, to forecast the future traffic situation. Traditionally,
time-series regression techniques such as ARIMA, VAR, and others have been applied to predict
the future situation of the traffic. Recently, more advanced techniques that involve complex and
deep neural networks have been studied and are now considered state-of-the-art [32]. Additionally,
some traffic prediction solutions, besides road monitoring data, also incorporate online informa-
tion about events and weather conditions to achieve higher accuracy [55]. However, our work
focuses on indoor foot traffic congestion, a task that is entirely different in the sense that condi-
tions can change very fast; from little congestion in one minute, to high congestion in the next
minute, and back to little congestion. Furthermore, in the transportation domain, the task is to fore-
cast the congestion at a specific road segment (or sensor) that is strictly uni-directional, whereas
corridors are bidirectional (people can walk in opposite directions at the same time at the same
corridor).

Considering only the current traffic and assuming that it remains constant thereafter leads to
suboptimal results due to the highly dynamic nature of indoor congestion. Therefore, it is impera-
tive that predictive path planning [13] is employed to discover the best possible path that satisfies
the constraints by predicting how congested a corridor will be when the person arrives there.

7 CONCLUSIONS AND FUTURE WORK

In this article, we present ASTRO, a novel graph-based path discovering algorithm that reduces
the risk of COVID-19 exposure and enables Mobile Contact Avoidance Navigation (MCAN).
ASTRO algorithm integrates outdoor nodes (i.e., buildings) with indoor nodes (e.g., doors, stairs,
escalators, elevators) to efficiently provide a personalized contact-avoidance path satisfying a user-
specified set of constraints (i.e., accessibility requirements, congestion tolerance, arrival time, and
outdoor exposure). ASTRO uses a two-level data structure, dubbed CM-Structure, which allows
the algorithm to quickly retrieve the congestion models that are relevant to a corridor to forecast
the congestion at a given point in time. A second contribution of this article is an experimental
platform for indoor congestion generation to support congestion forecasting in indoor spaces. We
have developed this platform as part of ASTRO’s evaluation to address the lack of readily available
indoor congestion data to train ML models. Our experimental results show that ASTRO can reduce
the risk of COVID-19 exposure by up to one order of magnitude while maintaining similar response
time compared to algorithms that are oblivious to congestion.

Beyond MCAN, ASTRO can be used as a core component in the development of evacuation
algorithms [47] and group recommendations where multiple requests arrived/submitted need
to be considered together. In the future, we plan to incorporate ASTRO and CM-Structure in

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

11:28 C. Anastasious et al.

HealthDist [11, 38], our first MCAN prototype system. HealthDist can provide accessibility in-
formation about individuals for more accurate walking speed, which can be used by ASTRO to
enhance prediction accuracy. We also aim to enhance the congestion modeling process to further
improve the forecasting accuracy and efficiency of the models by exploring new machine learn-
ing models that exploit state and real-time information from crowdsourcing and sensing devices.
Last, we also plan to investigate novel path scheduling solutions at the system level to prevent
congestion hot-spots using participatory services.

ACKNOWLEDGMENTS

We thank Brian Nixon, member of our group at the University of Pittsburgh for the assistance
with the implementation. We also thank Thalia Chrysanthis and Diomides Papadiomidous for
their valuable help in proofreading the manuscript.

Any opinions, findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of any of the sponsors.

REFERENCES

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine learning. In
Proceedings of the 12th USENILX Conference on Operating Systems Design and Implementation (OSDI’'16). USENIX As-
sociation, 265—283.
Ahmed F. Abdelghany, Khaled F. Abdelghany, Hani S. Mahmassani, and Wael Alhalabi. 2014. Modeling framework
for optimal evacuation of large-scale crowded pedestrian facilities. Eur. J. Oper. Res. 237, 3 (2014), 1105-1118. DOI:
https://doi.org/10.1016/j.ejor.2014.02.054
[3] Imad Afyouni, Cyril Ray, Sergio Ilarri, and Christophe Claramunt. 2014. A PostgreSQL extension for continuous
path and range queries in indoor mobile environments. Pervas. Mob. Comput. 15 (2014), 128-150. DOI: https://doi.
org/10.1016/j.pmc;j.2013.09.008
[4] Nadeem Ahmed, Regio A. Michelin, Wanli Xue, Sushmita Ruj, Robert A. Malaney, Salil S. Kanhere, Aruna Seneviratne,
Wen Hu, Helge Janicke, and Sanjay K. Jha. 2020. A survey of COVID-19 contact tracing apps. IEEE Access 8 (2020),
134577-134601. DOI: https://doi.org/10.1109/ACCESS.2020.3010226
[5] Heba Aly, Anas Basalamah, and Moustafa Youssef. 2017. Accurate and energy-efficient GPS-Less outdoor localiza-
tion. ACM Trans. Spatial Algor. Syst. 3, 2 (2017), 4:1-4:31. DOI: https://doi.org/10.1145/3085575
[6] Richard W. Bohannon and A. Williams Andrews. 2011. Normal walking speed: A descriptive meta-analysis. Physio-
therapy 97, 3 (2011), 182-189. DOI: https://doi.org/10.1016/j.physio.2010.12.004
[7] Georgios Chatzimilioudis, Andreas Konstantinidis, Christos Laoudias, and Demetrios Zeinalipour-Yazti. 2012.
Crowdsourcing with smartphones. IEEE Internet Comput. 16, 5 (2012), 36—44. DOI: https://doi.org/10.1109/MIC.2012.
70
[8] Constantinos Costa, Xiaoyu Ge, and Panos K. Chrysanthis. 2019. CAPRIO: Context-aware path recommendation
exploiting indoor and outdoor information. In Proceedings of the 20th IEEE International Conference on Mobile Data
Management. IEEE, 431-436. DOI: https://doi.org/10.1109/MDM.2019.000-7
[9] Constantinos Costa, Xiaoyu Ge, and Panos K. Chrysanthis. 2019. CAPRIO: Graph-based integration of indoor and
outdoor data for path discovery. Proc. VLDB Endow. 12, 12 (2019), 1878-1881. DOI: https://doi.org/10.14778/3352063.
3352089
[10] Constantinos Costa, Xiaoyu Ge, Evan McEllhenney, Evan Kebler, Panos K. Chrysanthis, and Demetrios Zeinalipour-
Yazti. 2020. CAPRIO v2.0: A context-aware unified indoor-outdoor path recommendation system. In Proceedings
of the 21st IEEE International Conference on Mobile Data Management. IEEE, 230-231. DOI: https://doi.org/10.1109/
MDM48529.2020.00048
[11] Constantinos Costa, Brian T. Nixon, Sayantani Bhattacharjee, Benjamin Graybill, Demetrios Zeinalipour-Yazti,
Walter Schneider, and Panos K. Chrysanthis. 2021. A context, location and preference-aware system for safe pedes-
trian mobility. In Proceedings of the 22nd IEEE International Conference on Mobile Data Management. IEEE, 217-224.
DOI: https://doi.org/10.1109/MDM52706.2021.00042
[12] Buti Al Delail, Luis Weruaga, and M. Jamal Zemerly. 2012. CAViAR: Context aware visual indoor augmented real-
ity for a university campus. In Proceedings of the IEEE/WIC/ACM International Conferences on Web Intelligence and
Intelligent Agent Technology. IEEE Computer Society, 286-290. DOI: https://doi.org/10.1109/WI-IAT.2012.99
[13] Ugur Demiryurek and Cyrus Shahabi. 2017. Predictive Path Planning. Springer, 1630-1640. DOI: https://doi.org/10.
1007/978-3-319-17885-1_1567

—
Do
—

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

https://doi.org/10.1016/j.ejor.2014.02.054
https://doi.org/10.1016/j.pmcj.2013.09.008
https://doi.org/10.1109/ACCESS.2020.3010226
https://doi.org/10.1145/3085575
https://doi.org/10.1016/j.physio.2010.12.004
https://doi.org/10.1109/MIC.2012.70
https://doi.org/10.1109/MDM.2019.000-7
https://doi.org/10.14778/3352063.3352089
https://doi.org/10.1109/MDM48529.2020.00048
https://doi.org/10.1109/MDM52706.2021.00042
https://doi.org/10.1109/WI-IAT.2012.99
https://doi.org/10.1007/978-3-319-17885-1_1567

ASTRO: COVID-19 Contact Prediction and Avoidance 11:29

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]
[32]

[33]

Benjamin Ehret, Christian Henning, Maria R. Cervera, Alexander Meulemans, Johannes von Oswald, and Benjamin F.
Grewe. 2021. Continual learning in recurrent neural networks. In Proceedings of the 9th International Conference on
Learning Representations. Retrieved from https://openreview.net/forum?id=8xeBUgD8u9.

Claudio Feliciani and Katsuhiro Nishinari. 2018. Measurement of congestion and intrinsic risk in pedestrian crowds.
Transport. Res. Part C: Emerg. Technol. 91 (2018), 124-155. DOI: https://doi.org/10.1016/j.trc.2018.03.027

Zijin Feng, Tiantian Liu, Huan Li, Hua Lu, Lidan Shou, and Jianliang Xu. 2020. Indoor top-k keyword-aware routing
query. In Proceedings of the 36th IEEE International Conference on Data Engineering. IEEE, 1213-1224. DOI: https:
//doi.org/10.1109/ICDE48307.2020.00109

Nimalika Fernando, David A. McMeekin, and Iain Murray. 2016. Poster: Context aware route determination model
for mobile indoor navigation systems for vision impaired people. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services Companion. ACM, 24. DOI: https://doi.org/10.1145/2938559.
2948799

Luca Ferretti, Chris Wymant, Michelle Kendall, Lele Zhao, Anel Nurtay, Lucie Abeler-Dérner, Michael Parker, David
Bonsall, and Christophe Fraser. 2020. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital
contact tracing. Science 368, 6491 (2020). DOI: https://doi.org/10.1126/science.abb6936

Matthew Garvey, Nilaksh Das, Jiaxing Su, Meghna Natraj, and Bhanu Verma. 2016. PASSAGE: a travel safety assistant
with safe path recommendations for pedestrians. In Proceedings of the 21st International Conference on Intelligent User
Interfaces. ACM, 84-87. DOI: https://doi.org/10.1145/2876456.2879470

Qianyue Hao, Lin Chen, Fengli Xu, and Yong Li. 2020. Understanding the urban pandemic spreading of COVID-19
with real world mobility data. In Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining. ACM, 3485-3492. DOI: https://doi.org/10.1145/3394486.3412860

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Syst. Sci. Cybern. 4, 2 (1968), 100-107. DOI: https://doi.org/10.1109/TSSC.1968.300136

Jizhou Huang, Haifeng Wang, Miao Fan, An Zhuo, Yibo Sun, and Ying Li. 2020. Understanding the impact of the
COVID-19 pandemic on transportation-related behaviors with human mobility data. In Proceedings of the 26th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 3443-3450. DOI: https://doi.org/10.1145/3394486.
3412856

Seren Kejser Jensen, Jens Thomas Vejlby Nielsen, Hua Lu, and Muhammad Aamir Cheema. 2016. Outdoor-indoor
space: Unified modeling and shortest path search. In Proceedings of the 8th ACM SIGSPATIAL International Workshop
on Indoor Spatial Awareness. ACM, 35-42. DOI: https://doi.org/10.1145/3005422.3005427

Richard L. Knoblauch, Martin T. Pietrucha, and Marsha Nitzburg. 1996. Field studies of pedestrian walking speed
and start-up time. Transport. Res. Rec. 1538, 1 (1996), 27-38.

Turgay Korkmaz and Marwan Krunz. 2001. Multi-constrained optimal path selection. In Proceedings of the IEEE
Conference on Computer Communications, 20th Annual Joint Conference of the IEEE Computer and Communications
Societies. IEEE Computer Society, 834-843. DOI: https://doi.org/10.1109/INFCOM.2001.916274

Djibrilla Amadou Kountché, Benjamin Neveux, Nicolas Monmarché, Pierre Gaucher, and Mohamed Slimane. 2011.
Indoor localization and guidance system for disabled people. In Proceedings of the International Conference on the
Network of the Future. IEEE, 81-86. DOI: https://doi.org/10.1109/NOF.2011.6126688

Fernando A. Kuipers, Turgay Korkmaz, Marwan Krunz, and Piet Van Mieghem. 2004. Performance evaluation of
constraint-based path selection algorithms. IEEE Netw. 18, 5 (2004), 16—23. DOI: https://doi.org/10.1109/MNET.2004.
1337731

Fernando A. Kuipers, Piet Van Mieghem, Turgay Korkmaz, and Marwan Krunz. 2002. An overview of constraint-
based path selection algorithms for QoS routing. IEEE Commun. Mag. 40, 12 (2002), 50-55. DOI: https://doi.org/10.
1109/MCOM.2002.1106159

Christos Laoudias, Artyom Nikitin, Panagiotis Karras, Moustafa Youssef, and Demetrios Zeinalipour-Yazti. 2021.
Indoor quality-of-position visual assessment using crowdsourced fingerprint maps. ACM Trans. Spatial Algor. Syst.
7,2 (2021), 10:1-10:32. DOI: https://doi.org/10.1145/3433026

B. Li, J. P. Muioz, X. Rong, Q. Chen, J. Xiao, Y. Tian, A. Arditi, and M. Yousuf. 2019. Vision-based mobile indoor
assistive navigation aid for blind people. IEEE Trans. Mob. Comput. 18, 3 (Mar. 2019), 702-714. DOI: https://doi.org/
10.1109/TMC.2018.2842751

Mo Li, Pengfei Zhou, Yuanqing Zheng, Zhenjiang Li, and Guobin Shen. 2015. IODetector: a generic service for
Indoor/Outdoor detection. ACM Trans. Sens. Netw. 11, 2 (2015), 28:1-28:29. DOI : https://doi.org/10.1145/2659466
Yaguang Li and Cyrus Shahabi. 2018. A brief overview of machine learning methods for short-term traffic forecasting
and future directions. ACM SIGSPATIAL Special 10, 1 (2018), 3-9. DOI: https://doi.org/10.1145/3231541.3231544
Tiantian Liu, Zijin Feng, Huan Li, Hua Lu, Muhammad Aamir Cheema, Hong Cheng, and Jianliang Xu. 2020. Shortest
path queries for indoor venues with temporal variations. In Proceedings of the 36th IEEE International Conference on
Data Engineering. IEEE, 2014-2017. DOI: https://doi.org/10.1109/ICDE48307.2020.00227

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

https://openreview.net/forum?id=8xeBUgD8u9
https://doi.org/10.1016/j.trc.2018.03.027
https://doi.org/10.1109/ICDE48307.2020.00109
https://doi.org/10.1145/2938559.2948799
https://doi.org/10.1126/science.abb6936
https://doi.org/10.1145/2876456.2879470
https://doi.org/10.1145/3394486.3412860
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1145/3394486.3412856
https://doi.org/10.1145/3005422.3005427
https://doi.org/10.1109/INFCOM.2001.916274
https://doi.org/10.1109/NOF.2011.6126688
https://doi.org/10.1109/MNET.2004.1337731
https://doi.org/10.1109/MCOM.2002.1106159
https://doi.org/10.1145/3433026
https://doi.org/10.1109/TMC.2018.2842751
https://doi.org/10.1145/2659466
https://doi.org/10.1145/3231541.3231544
https://doi.org/10.1109/ICDE48307.2020.00227

11:30 C. Anastasious et al.

[34] Halgurd S. Maghdid, Thsan Alshahib Lami, Kayhan Zrar Ghafoor, and Jaime Lloret Mauri. 2016. Seamless outdoors-
indoors localization solutions on smartphones: Implementation and challenges. ACM Comput. Surv. 48, 4 (2016),
53:1-53:34. DOI: https://doi.org/10.1145/2871166

[35] Felix Mata and Christophe Claramunt. 2014. A social navigation guide using augmented reality. In Proceedings of the
22nd ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 541-544. DOI:
https://doi.org/10.1145/2666310.2666364

[36] Felix Mata and Christophe Claramunt. 2015. A mobile trusted path system based on social network data. In Proceed-
ings of the 23rd SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 101:1-
101:4. DOI: https://doi.org/10.1145/2820783.2820799

[37] Mohamed F. Mokbel, Sofiane Abbar, and Rade Stanojevic. 2020. Contact tracing: Beyond the apps. DOI: https://doi.
org/10.1145/3431843.3431846

[38] Brian T. Nixon, Sayantani Bhattacharjee, Benjamin Graybill, Constantinos Costa, Sudhir Pathak, Walter Schneider,

and Panos K. Chrysanthis. 2021. HealthDist: a context, location and preference-aware system for safe navigation.

In Proceedings of the 22nd IEEE International Conference on Mobile Data Management. IEEE, 250-253. DOI: https:

//doi.org/10.1109/MDM52706.2021.00050

Seula Park, Seongyong Kim, and Kiyun Yu. 2018. Designing of indoor linkable pedestrian network data model for

the transportation vulnerable. In Proceedings of the 2nd International Conference on Digital Signal Processing. ACM,

57-60. DOI: https://doi.org/10.1145/3193025.3193048

Shakiba Rahimiaghdam, Pinar Karagoz, and Alev Mutlu. 2016. Personalized time-aware outdoor activity recom-

mendation system. In Proceedings of the 31st Annual ACM Symposium on Applied Computing. ACM, 1121-1126. DOI:

https://doi.org/10.1145/2851613.2851814

[41] Van Romero, William D. Stone, and Julie Dyke Ford. 2020. COVID-19 indoor exposure levels: An analysis of foot

traffic scenarios within an academic building. Transport. Res. Interdisc. Perspect. 7 (2020), 100185. DOI: https://doi.org/

10.1016/j.trip.2020.100185

Hyeong-Gyu Ryu, Tachoon Kim, and Ki-Joune Li. 2014. Indoor navigation map for visually impaired people. In

Proceedings of the 6th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness (ISA’14). Association for

Computing Machinery, New York, NY, 32-35. DOI: https://doi.org/10.1145/2676528.2676533

Dimitris Sacharidis and Panagiotis Bouros. 2013. Routing directions: Keeping it fast and simple. In Proceedings of

the 21st SIGSPATIAL International Conference on Advances in Geographic Information Systems. ACM, 164-173. DOL:

https://doi.org/10.1145/2525314.2525362

Chaluka Salgado, Muhammad Aamir Cheema, and David Taniar. 2018. An efficient approximation algorithm for

multi-criteria indoor route planning queries. In Proceedings of the 26th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems. ACM, 448-451. DOI: https://doi.org/10.1145/3274895.3274938

Thomas Springer. 2011. Mapbiquitous—An approach for integrated indoor/outdoor location-based services. In Pro-

ceedings of the 3rd International Conference on Mobile Computing, Applications, and Services (Lecture Notes of the In-

stitute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol. 95), Joy Ying Zhang, Jarek

Wilkiewicz, and Ani Nahapetian (Eds.). Springer, 80-99. DOI: https://doi.org/10.1007/978-3-642-32320-1_6

[46] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014. Sequence to sequence learning with neural networks. In
Proceedings of the Annual Conference on Neural Information Processing Systems. 3104-3112. Retrieved from https:
//proceedings.neurips.cc/paper/2014/file/al4ac55a4f27472c5d894ec1c3c743d2-Paper.pdf.

[47] Jesse Szwedko, Callen Shaw, Alexander G. Connor, Alexandros Labrinidis, and Panos K. Chrysanthis. 2009. Demon-

strating an evacuation algorithm with mobile devices using an e-scavenger hunt game. In Proceedings of the 8th ACM

International Workshop on Data Engineering for Wireless and Mobile Access. ACM, 49-52. DOI: https://doi.org/10.1145/

1594139.1594154

Xiaogiang Teng, Deke Guo, Yulan Guo, Xiaolei Zhou, Zeliu Ding, and Zhong Liu. 2017. IONavi: An indoor-outdoor

navigation service via mobile crowdsensing. ACM Trans. Sens. Netw. 13, 2 (2017), 12:1-12:28. DOI: https://doi.org/10.

1145/3043948

[49] Qianru Wang, Bin Guo, Yan Liu, Qi Han, Tong Xin, and Zhiwen Yu. 2018. CrowdNavi: Last-mile outdoor navigation
for pedestrians using mobile crowdsensing. Proc. ACM Hum. Comput. Interact. 2, CSCW (2018), 179:1-179:23. DOI:
https://doi.org/10.1145/3274448

[50] Hang Wu, Suining He, and S.-H. Gary Chan. 2017. Efficient sequence matching and path construction for geomag-
netic indoor localization. In Proceedings of the International Conference on Embedded Wireless Systems and Networks.
Junction Publishing, Canada/ACM, 156-167. Retrieved from http://dl.acm.org/citation.cfm?id=3108030.

[51] LiXiong, Cyrus Shahabi, Yanan Da, Ritesh Ahuja, Vicki Hertzberg, Lance Waller, Xiaogian Jiang, and Amy Franklin.
2020. REACT: Real-time contact tracing and risk monitoring using privacy-enhanced mobile tracking. ACM SIGSPA-
TIAL Special 12, 2 (2020), 3—14. DOI: https://doi.org/10.1145/3431843.3431845

(39

—

[40

=

[42

—

[43

—_

(44

[l

(45

=

(48

—

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

https://doi.org/10.1145/2871166
https://doi.org/10.1145/2666310.2666364
https://doi.org/10.1145/2820783.2820799
https://doi.org/10.1145/3431843.3431846
https://doi.org/10.1109/MDM52706.2021.00050
https://doi.org/10.1145/3193025.3193048
https://doi.org/10.1145/2851613.2851814
https://doi.org/10.1016/j.trip.2020.100185
https://doi.org/10.1145/2676528.2676533
https://doi.org/10.1145/2525314.2525362
https://doi.org/10.1145/3274895.3274938
https://doi.org/10.1007/978-3-642-32320-1_6
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://doi.org/10.1145/1594139.1594154
https://doi.org/10.1145/3043948
https://doi.org/10.1145/3274448
http://dl.acm.org/citation.cfm?id=3108030
https://doi.org/10.1145/3431843.3431845

ASTRO: COVID-19 Contact Prediction and Avoidance 11:31

[52] Demetrios Zeinalipour-Yazti and Christophe Claramunt. 2020. COVID-19 Mobile Contact Tracing Apps (MCTA):
A digital vaccine or a privacy demolition? In Proceedings of the 21st IEEE International Conference on Mobile Data
Management. IEEE, 1-4. DOI: https://doi.org/10.1109/MDM48529.2020.00020

[53] Demetrios Zeinalipour-Yazti, Christos Laoudias, Kyriakos Georgiou, and Georgios Chatzimilioudis. 2017. Internet-
based indoor navigation services. IEEE Internet Comput. 21, 4 (2017), 54-63. DOI: https://doi.org/10.1109/MIC.2017.
2911420

[54] Angqi Zhao, Guanfeng Liu, Bolong Zheng, Yan Zhao, and Kai Zheng. 2020. Temporal paths discovery with multiple
constraints in attributed dynamic graphs. World Wide Web 23, 1 (2020), 313-336. DOI: https://doi.org/10.1007/s11280-
019-00670-4

[55] Tian Zhou, Lixin Gao, and Daiheng Ni. 2014. Road traffic prediction by incorporating online information. In Pro-

ceedings of the 23rd International World Wide Web Conference. ACM, 1235-1240. DOI: https://doi.org/10.1145/2567948.
2580072

Received December 2020; accepted September 2021

ACM Transactions on Spatial Algorithms and Systems, Vol. 8, No. 2, Article 11. Publication date: December 2021.

https://doi.org/10.1109/MDM48529.2020.00020
https://doi.org/10.1109/MIC.2017.2911420
https://doi.org/10.1007/s11280-019-00670-4
https://doi.org/10.1145/2567948.2580072

