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Abstract—Online analytics, in most advanced scientific, business, and social media applications, rely heavily on the efficient execution
of large numbers of Aggregate Continuous Queries (ACQs). ACQs continuously aggregate streaming data and periodically produce
results such as max or average over a given window of the latest data. It has been shown that it is beneficial to use Incremental
Evaluation (/E) for re-using calculations performed over parts of the ACQ window, and to share them in multi-query (MQ) environments
among certain sets of ACQs. In this work, we re-examine how the principle of sharing is applied in /E techniques as well as in MQ
optimizers. We provide an extensive taxonomy of /E techniques and a new approach of using the state-of-the-art /E techniques as part
of MQ optimizers in a way that reduces the execution plan costs by up to 270,000x. We evaluate all of our solutions both theoretically

and experimentally using both real and synthetic datasets.

Index Terms—Data streaming, sliding window, aggregate queries

1 INTRODUCTION

1.1 Motivation

ATA stream processing has gained momentum in many
Dapplications that require quick responses based on
incoming high velocity data flows. A representative example
is a stock market application where multiple clients monitor
the price fluctuations of the stocks. In this setting, a system
needs to be able to efficiently answer analytical queries (e.g.,
average stock revenue, profit margin per stock, etc.) for dif-
ferent clients, each one with (potentially) different timing
requirements. These requirements are typically associated
with a range (or window) (r) and a slide (s), which can be
either tuple count or time-based. A slide denotes the period at
which an ACQ produces an output, and a range is the win-
dow over which the statistics are calculated.

Example 1. Consider a stock trading application monitoring
average stock prices every 3 seconds for the past 5 seconds.
Such an application submits a time-based ACQ with speci-
fications of a 5 second range and 3 second slide.

Efficient data stream processing is also important in
monitoring applications in the fields of health care, science,
social media, and network control.

Data Stream Management Systems (DSMS) were proposed
both in academia [1], [2], [3], [4], [5], [6], [7] and industry [8],
[9], [10], [11], [12], [13], [14], [15] as the most suitable systems
for handling such data flows on-the-fly and in real time. In a
DSMS, clients register their analytical queries on incom-
ing data streams. These queries continuously aggregate

o The authors are with the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260 USA. E-mail: {aus, panos J@cs.pitt.edu.

Manuscript received 8 Dec. 2019; revised 28 Aug. 2020, accepted 29 Sept. 2020.
Date of publication 9 Oct. 2020; date of current version 7 July 2022.
(Corresponding author: Anatoli U. Shein.)

Recommended for acceptance by C. Li.

Digital Object Identifier no. 10.1109/TKDE.2020.3029770

the incoming data, and as such they are called Aggregate
Continuous Queries (ACQs).

1.2 Problem Statement
An ACQ requires the DSMS to keep state over time while
performing aggregations. Normally, DSMSs only keep the
window of the most recent data items, and when new data
arrives, the window slides by discarding the data items that
fall outside of the window specification and filling in the
new data items. It is clear that the greater the range and the
smaller the slide of the ACQ, the higher its cost is to main-
tain (memory) and process (CPU). It has been shown that in
sliding-window stream processing it is beneficial to utilize
Incremental Evaluation (IE), which operates by maintaining
and reusing calculations performed over the unchanged
parts of the window, rather than executing the re-evaluation
of the entire window after each update [16], [17]. IE is also
referred to as Two-Ops since it typically operates in two
phases by (1) running partial aggregations on the data while
accumulating it and (2) producing the answer by perform-
ing the final aggregation over the partial results [18], [19].
Recently, there were many advancements to the Incremen-
tal Evaluation (IE) of sliding-window queries. However, it has
been shown that certain techniques are more beneficial than
others in certain environments. For example FlatFIT [20] is
optimized for increased throughput, while DABA [21] is opti-
mized to maintain lower latency. Also, some techniques are
only applicable for particular sets of aggregations, e.g., Sub-
tract-on-evict [21] can only process invertible aggregations.
Additionally, some IE techniques (such as DABA) focus solely
on single-query scenarios where all computational resources
are devoted to supporting one long-running, high accuracy
ACQ, while others (such as SlickDeque [22]) also consider
multi-query (MQ) settings that are common in multi-tenant
cloud infrastructures, where multiple ACQs with a wide range
of periodic features are executed on the same hardware and
can share computation.
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Fig. 1. Incremental Evaluation Taxonomy. Our contributions are marked with squares.

Also, most of the IE techniques that do consider MQ
processing always force maximum sharing. However, it
was shown that maximum sharing does not always offer
maximum performance, and selective sharing may achieve
better results by intelligently splitting the query load into
multiple execution trees [23]. Unfortunately, the state-of-
the-art MQ optimizers WeaveShare [23] and TriWeave [24]
that support selective sharing only work with the outdated
Panes [19] and Pairs [18] techniques (see Section 2) for IE.
Thus, the opportunity arises to explore the suitability of
new and more efficient IE techniques for use in combination
with the MQ optimizers to achieve higher throughput and
lower latency for processing large numbers of ACQs. Unfor-
tunately, the task of combining new IE techniques with the
MQ optimizers is hard since it requires an in-depth theoreti-
cal analysis of each compared IE technique towards estimat-
ing and quantifying its performance before the actual
execution given any possible query workload. This chal-
lenge is addressed in this work.

1.3 Contributions
The contributions of this paper are as follows:

1) A taxonomy of all IE techniques available today,
their breakdown in terms of applicability and goals,
and our improvements to IE techniques and MQ
optimizers (Sections 2 and 3).

2) A theoretical analysis of the available IE techniques
that determines their average operational cost ({2)
per slide given any set of input ACQs and allows
estimating their performance on average within 22
percent of the actual performance (Section 4).

3) Two new MQ optimizers based on WeaveShare and
TriWeave that supports the new IE techniques using
the performance estimates from the theoretical study
above. The new optimizers reduce execution costs
by up to 270,000x compared to the state-of-the-art
ones (Section 5).

2 INCREMENTAL EVALUATION TAXONOMY

In order to provide a better context to our work, we developed
a taxonomy of existing Incremental Evaluation (IE) techniques
(illustrated in Fig. 1). The IE techniques can be broadly
divided into partial aggregation and final aggregation categories.
The final aggregations can be further distinguished into Naive,
Tree-based, Throughput Optimized, and Latency Optimized.

Our taxonomy includes IE techniques that produce exact
answers since it is crucial for many applications (e.g., finan-
cial, medical, etc.), and assumes in-order (or slightly out-of-
order) IE processing. That is, our taxonomy does not con-
sider approximate calculation methods, which were pro-
posed to save time and space by sacrificing accuracy [25],
[26], [27], [28], nor IE methods that handle out-of-order
processing [29], [30]. Also our taxonomy does not include
IE work in Temporal Database Systems, which stores the
entire stream of tuples and allows aggregations over any
continuous segments of the stream that are called Historical
Windows [31], [32]. In contrast, we focus on techniques that
process windows that end at or near the most recent results
and are referred to as Suffix Windows. All the IE techniques
in our taxonomy are compatible and can be used together
with higher level general stream slicing and processing
techniques [30], [33], [34].

Additionally, we only focus on distributive (simple)
operations where the aggregation for the set S can be com-
puted from two of the same aggregations of subsets S1
and 52, given subsets S1 and S2 were constructed by split-
ting S in two [35]. Calculating algebraic aggregations
(which are composed of a number of distributive aggrega-
tions) follows trivially by maintaining several structures
and/or applying extra calculations on final results, how-
ever we do not focus on them. The rest of the aggregations
are holistic and are out of the scope for this work: they
require specifically tailored algorithms which cannot be
generalized.

2.1 Partial Aggregation

Partial aggregation can be thought of as the buffering of par-
tial results until the query result needs to be returned by the
final aggregation. Since partial aggregation allows buffering
results that are later processed by a more expensive final
aggregator, each buffered partial aggregate (or simply par-
tial) is reused multiple times as part of different final aggre-
gations, alleviating the use of CPU and memory resources.
Clearly, it is beneficial to reduce the number of produced
partials in order to minimize the amount of work done by
the final aggregator. To this end the following partial aggre-
gation techniques were proposed.

Panes [19] was proposed as the first partial aggregation
technique for processing ACQs efficiently. The idea behind
it is to partition the incoming datastream into “panes” (we
refer to them as partials), and maintain just one aggregate

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:17:38 UTC from IEEE Xplore. Restrictions apply.



SHEIN AND CHRYSANTHIS: MULTI-QUERY OPTIMIZATION OF INCREMENTALLY EVALUATED SLIDING-WINDOW AGGREGATIONS

Range

( ‘cie— Final
[P IR oo

Fig. 2. Panes Technique (range=4 and slide=1).

f,=(r%s)
f,=(s-f) Range (r)
Range (r)
Range(r) .
ARREARNEANREARREARNEAY
Slide (s) Slide (s) Slide (s)
Fig. 3. Pairs Technique (range=14 and slide=8).
Final
Aggregatio\ni \;\_

ececececsee

Partials —

Fig. 4. Cutty-slicing Technique (range=>5 and slide=3).

value for each partial. This way every incoming tuple affects
the aggregate value for just the current partial, and when
the whole aggregate is due to be reported, the answer is
assembled by performing the final aggregation over all of
the partials in the current window. Therefore, each new par-
tial is reused multiple times for different final aggregations.
For example, in Fig. 2 partial P4 is used 3 times as part of
the final aggregations F1, F2, and F3. The number of partials
per window is range/slide if the range is divisible by slide,
otherwise it is range/GCD(range, slide), where GCD is the
Greatest Common Divisor.

Paired Windows (or simply Pairs [18]) was a technique
introduced to reduce the number of partials in a window in
cases where the range is not divisible by the slide. It works
by splitting each slide into two fragments of different
lengths as illustrated in Fig. 3, where fragment lengths f;
and f5, were calculated as follows: fo = range%slide and
fi = slide — f». This way each window is composed of 2 -
|r/s] + 1 partials, which significantly reduces the memory
consumption and accelerates final aggregations.

Cutty-slicing was proposed as part of the Cutty opti-
mizer [33]. The advantage of Cutty-slicing is that it starts
each new partial only at positions that signify the beginning
of new windows. This way the final aggregation can execute
in the middle of the partial aggregation calculation by
accessing the current value in the partial (Fig. 4). This
reduces the number of partials per window to [r/s] in cases
where the range is not divisible by the slide at the cost of
requiring a more complicated implementation.

Summary. Partial aggregation is beneficial in sliding win-
dow processing because it reduces the amount of more
expensive final aggregations. In the setting where query
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TABLE 1
Partial Aggregation Technique Comparison

Partial Aggregation  # of partials per window  # of partials per window
Algorithm when r%s = 0 when r%s # 0
Panes r/s r/GCD(r, s)

Pairs r/s 2-r/s]+1
Cutty-slicing r/s [r/s]

T
Query Range

Fig. 5. FlatFAT technique.

ranges are divisible by their corresponding slides, all three
of the above techniques perform the same, otherwise the
Cutty-slicing technique achieves the best results. The com-
parison of the partial aggregation techniques is summarized
in Table 1.

2.2 Final Aggregation
The goal of final aggregation is to produce ACQ results by
assembling them from the partials.

Panes [19] (which we consider to be Naive in this work)
works by simply iterating over the partials and constructing
the answer. The example in Fig. 2 performs a final aggrega-
tion F2 by iterating over partials P2, P3, P4, and P5. Natu-
rally, such a solution quickly became outdated due to the
increasing workloads that created bottlenecks in the final
aggregator.

Panes (Inv) [19] (or Panes for Invertible/Differential
Aggregate Queries) was proposed at the same time as Panes
to efficiently process invertible aggregates. It works by
maintaining a running aggregate (e.g., running sum), and
invoking the inverse operation (e.g., subtract) on every
expiring tuple. This algorithm (with minor differences) was
also proposed as R-Int [36] and Subtract-on-Evict [21].
Despite being effective, Panes (Inv) is only applicable for
invertible operations.

FlatFAT [37] (or Flat Fixed-sized Aggregator) is a final
aggregation technique which stores tuples in a pre-allo-
cated, pointer-less, tree-based data structure (Fig. 5). Origi-
nally, FlatFAT allowed only one tuple per leaf, however it
was later extended [33] to perform partial aggregation by
allowing it to store partial aggregates as tree leaves. Each
internal node of the tree contains an aggregate of its two
children. The root node has the result of the entire range
allowed by the tree. In our experiments we compare our
contributions to the improved version of FlatFAT [33].

New partials are inserted into the leaves of the binary
tree left-to-right. The leaves form a circular array, meaning
that after inserting a value to the rightmost leaf, the next
insert goes into the leftmost one. Each insert triggers the
update procedure, which is performed by walking the tree
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bottom-up and updating all internal nodes with new aggre-
gate values. An example of an update operation on leaf 15 is
illustrated with green squares in Fig. 5. The look-up of the
answer in FlatFAT is performed by returning the root node
value if a query requires the result for the maximum win-
dow, or by aggregating a minimum set of internal nodes
that covers the required range of leaf nodes. The example of
answering a query with a range of 11 partials starting from
leaf 15 is shown with red triangles in Fig. 5.

B-Int [36] (or Base Intervals) is another final aggregation
technique that uses a multi-level data structure that consists
of dyadic intervals of different lengths. On the bottom level
the interval length is one partial, on the next level the inter-
val length is two partials, on the third level the length is
four partials, and so on until we reach the top level that just
has one interval of the maximum supported range length.
The whole data structure is organized in a circular fashion
so that the rightmost interval on any level is followed by the
leftmost interval from the same level (Fig. 6). The binary
nature of this data structure makes it similar to FlatFAT,
and like FlatFAT, when producing the final aggregate B-Int
also determines the minimum number of intervals needed
to represent the desired range and aggregates them. For
example, in Fig. 6 B-Int aggregates all marked intervals to
get the answer for the specified query range.

FlatFIT [20] (or Flat and Fast Index Traverser) was pro-
posed with a goal of increasing the throughput of ACQ
processing. FlatFIT achieves this acceleration by dynami-
cally storing the intermediate results and their correspond-
ing pointers indicating how far ahead FlatFIT can skip in its
calculation. It uses two circular arrays Pointers and Partials
interconnected with their indices and stack Positions. An
example of update and look-up operations at position (or
index) 5 is illustrated in Fig. 7. In this example we process a
query with a range of 9 partials (which spans positions 8 to
5). To do that, FlatFIT follows the Pointers from position 8 to
position 5, and pushes visited positions (8 and 1) on the
Positions stack. Once position 5 is reached, all the Partials
from the stored Positions are aggregated to return the final
answer.

Query Range =9

! | [
8 0o 1 3 4 5 6 7 8 9 10
Positions Pointers
Stack Partials D D

New
Partial

Fig. 7. FlatFIT technique.
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While allowing high throughput FlatFIT has latency
spikes due to the so called window reset event that occurs
periodically every n + 1 slides [20], rendering it a through-
put optimized technique.

TwoStacks [21] was shown to also achieve high through-
put by using an old trick from functional programming to
implement a queue with two stacks, F (front) and B (back),
where all insertions push a value val and an aggregation agg
of everything below it onto B, and evictions pop from F as
illustrated in Fig. 8. When F is empty (step 3 in Fig. 8), the
algorithm flips B onto F, making it a calculation-heavy step
that introduces latency spikes. To produce the final aggrega-
tion, the tops of both F and B stacks are aggregated, e.g., the
max in step 2 is calculated as maz(6, 1) = 6.

DABA [21] (or De-Amortized Bankers Algorithm) was
proposed as an alternative to TwoStacks that reduces the
latency spikes while maintaining high throughput. The
algorithm uses a principle of the Functional Okasaki Aggre-
gator to de-amortize the TwoStacks algorithm. DABA uses
two queues, vals and aggs, as shown in Fig. 9. These queues
are implemented as chunked-array queues with six ordered
pointers which make up the F and B stacks similarly to Two-
Stacks. However after each insertion and eviction event, a
function fixup is called which re-balances pointers and fixes
the consistency of the aggs queue. The details about how the
fixup function performs the incremental reversal of B to F
can be found in [21]. The implementations of DABA and
several other techniques are also available on GitHub.

SlickDeque [22] unlike all the other IE techniques above
does not process all ACQs uniformly. It handles aggregate
operations differently based on their invertibility properties.

Iy I
1 1
r \r 1
I, Iy 1,
L |
r r \r 1
F L R A B E
(front) (left) (right) (accum) (back) (end)
vals
e =
aggs

Fig. 9. DABA technique.
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TABLE 2
Algorithmic Complexities
Time Space
Algorithm Single Query Max-Multi | Single | Max-Multi
Amort | Worst Query Query Query
Panes n n n? n n
FlatFAT log(n) | log(n) | n-log(n) 2n** 2n**
B-Int log(n) | log(n) | n-log(n) 2n** 2n**
FlatFIT 3 n 3n 2n up to 2.5n
TwoStacks 3 n — 2n —
DABA 5 8 — 2n —
Slick [ Inv 2 2 2n n 2n
Deque ‘ Non-Inv <2 n* n 2 to 2n* 2 to 2n*

“the probability of these cases is negligible: 1 in n!.
“true only when n is a power of 2, otherwise 3n.

The invertible operations are processed using SlickDeque
(Inv), the modified Panes (Inv) approach, which allows
multi-query processing by maintaining running aggregates
for each unique range in a hashmap. Non-invertible ACQs
are processed with a novel deque-based algorithm SlickDe-
que (Non-Inv), by requiring the following property: if opera-
tion @ is non-invertible, then x & y = z, where z € {z,y}.

The intuition behind the SlickDeque (Non-Inv) algo-
rithm can be seen in Fig. 10, which illustrates the moment
when an update operation (insert partial 4 with sequential
position 1) is performed on the deque structure that pro-
cesses max ACQs with the slide of 1 partial and different
ranges between 1 and 6 partials. First, since the new parti-
al’s position is 1 it means that a full iteration was just com-
pleted (1 through 6) and the previous partial with position
1 now expires and is removed from the head of the deque.
Next, the new partial is added as the last element at the
tail of the deque. However, since we are processing max
and the value of the new partial is larger than the values 2
and 3, these partials are removed according to the algo-
rithm, and the new partial is placed after the partial with
value 5 and position 3. Next, we return the query answer
(max). When the whole window is queried (to process
ACQ with range 6) the max is located at the head of the
deque (value 5 at this point). Otherwise, the answer is
looked up by traversing the deque from head to tail and
finding the partial with the correct (pre-calculated)
sequential position.

Summary. The separation based on invertibility in Slick-
Deque leads to the best throughput and latency for both
invertible and non-invertible operations in systems with
heavy workloads out of all the above algorithms. In [22]
we theoretically show the time and space complexity
advantages of SlickDeque (summarized in Table 2) and
experimentally validate them using a real workload.
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Specifically, SlickDeque achieves up to a 19 percent
throughput improvement in a single query environment
(Fig. 11) and up to a 345 percent improvement in a fully
shared MQ environment (Fig. 12) while requiring up to 5
times less memory (Fig. 13) and maintaining 283 percent
lower latency spikes on average (Fig. 14) over the next
best approaches.

With the introduction of the SlickDeque technique, the
final aggregation for a single query can now be performed
in constant time with no more than 2 operations per slide.
Thus, we believe that sharing at the level of partial and final
aggregation has reached its limit. In the rest of this work we
focus on combining IE techniques with MQ optimization
because it is the next logical step for further improving slid-
ing-window aggregations.

3 MuLTI-QUERY (MQ) OPTIMIZATION

The general objective of MQ optimization is to reduce (or
eliminate) the repeated processing of overlapping operations
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across multiple queries [38]. This repetition happens due to
the processing of the same data items by different queries
which exhibit an overlap in at least one of the following fea-
tures: (1) predicate conditions, (2) group-by attributes, or (3)
window specification. In this work we focus on optimizers
targeting the window specification overlaps.

3.1 Shared Processing of ACQs

Since the ACQs are executed periodically (unlike one-shot,
ad hoc queries), several processing schemes, as well as ACQ
optimizers, take advantage of the shared processing of
ACQs [18], [23], [29], [33], which reduces the long-term
overall processing costs by sharing partial results. To show
the benefits of sharing in such scenarios, consider the fol-
lowing example:

Example 2 (Fig. 15). Assume two ACQs monitor the max
stock value over the same data stream. The first ACQ has
a slide of 2 tuples and a range of 6 tuples, the second one
has a slide of 4 tuples and a range of 8 tuples. That is, the
first ACQ is computing partial aggregates every 2 tuples,
and the second is computing the same partial aggregates
every 4 tuples. Clearly the calculation producing partial
aggregates only needs to be performed once every 2
tuples, and both ACQs can use these partial aggregates
for their corresponding final aggregations. The first ACQ
then only needs to run each final aggregation over the
last three partials, and the second over the last 4.

Partial results sharing is applicable for all matching
aggregate operations, (e.g., three different ACQs all calculat-
ing max), and for different but compatible aggregate opera-
tions (e.g., three different ACQs calculating sum, count and
average, yet share results by treating average as 2.

To determine how many partial aggregates are needed
after combining n ACQs into a shared execution plan, we
first find the length of the new composite slide, which is the
Least Common Multiple (LCM) of the slides of the combined
ACQs (in Example 2 it is four). Each slide is then repeated
LCM /slide times to fit the length of the composite slide,
and all slide multiples are marked within the composite
slide as edges (in Example 2 the edges are at positions 2 and
4 of a composite slide). If slides consist of several fragments
due to the partial aggregation, all fragments are also marked
within the composite slide as edges. If two or more ACQs
mark the same location, it means that location is a common
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edge. The more common edges that are present in the com-
posite slide, the more partial aggregation sharing that can
be performed.

Originally, the Bit Set technique [23] was used to deter-
mine how many partial aggregations (edges) are scheduled
within the composite slide. This technique performs the
counting of edges by traversing the entire composite slide
and thus is very inefficient. Later we proposed an efficient
mathematical solution to this problem, Formula F1 [39]
(described in Section 3.1.2).

3.1.1  Weavability

Out of all the IE techniques mentioned in Section 2, only
Panes, FlatFAT, B-Int, FlatFIT, and SlickDeque are known to
support MQ execution. These techniques share partial
aggregates among all of the registered queries (i.e., all the
queries are merged and processed as a single execution
tree), thus achieving maximum sharing. However, it was
shown that it is not always beneficial, and selective sharing
achieves better performance by splitting the query load into
multiple execution trees (that form an execution plan).

Intuitively, the overall cost of ACQ processing consists of
partial aggregation and final aggregation costs. It is clear
that combining ACQs together into execution trees helps to
reduce the partial aggregation costs (since partials are
shared across all ACQs in a tree and can be reused) while
increasing the final aggregation costs (since partials them-
selves become smaller and require more frequent final
aggregation processing). Thus, forcing maximum sharing
by processing all ACQs in just one execution tree is likely to
incur high final aggregation costs. To address the trade off
outline above and quantify the plan costs the Weavability
concept was proposed [23].

Weavability is a metric that measures the overall benefit of
sharing intermediate results between any number of ACQs.
If it is beneficial to share computations between these ACQs,
then these ACQs are known to weave well together and are
combined into the same shared execution tree by the MQ
optimizer.

We say that two ACQs weave perfectly when their compos-
ite slide contains only common edges since this way when we
process them together we minimize both partial aggregation
costs (by executing just one tree) and final aggregation costs
(by having partials of optimal length) at the same time.

The following formula can be used to calculate the cost
(C) of the execution plan before and after combining ACQs
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into shared trees, and the difference between these costs
tells us if the combination is beneficial:

i=1

where m is the number of the trees in the plan, A is input rate
in tuples per second, E; is Edge rate of tree i, and (), is the
overlap factor of tree i. Edge rate is the number of partial
aggregations performed per second, and the overlap factor is
the total number of final-aggregation operations performed
on each fragment. Note that both E; and (); are calculated by
using ranges are slides of ACQs processed in tree .

It is clear that mA represents partial aggregation costs
since each input to each execution tree is processed by the
partial aggregator. Similarly, Z:’; | EiQ); signifies final aggre-
gation costs of the execution plan, where E; determines how
often the final aggregator will be invoked and (}; determines
how much work it will need to do per each invocation.

Clearly, it is crucial to be able to generate high quality
execution plans quickly. Unfortunately, this has been
proven to be NP-hard [40], and currently only approxima-
tion algorithms can produce acceptable execution plans.
Such approximation algorithms are utilized in the state of
the art MQ optimizers WeaveShare [23] and TriWeave [24].

The WeaveShare [23] and TriWeave [24] MQ optimizers
both utilize the concept of Weavability to produce execution
plans for sets of input ACQs. The TriWeave optimizer was
proposed as a part of a more general state-of-the-art Tri-
Ops [24] optimizer, which besides targeting window specifi-
cations (using TriWeave), also targets predicate conditions
and group-by attributes.

Both WeaveShare and TriWeave optimizers selectively par-
tition ACQs into multiple disjointed execution trees (i.e.,
groups), resulting in a dramatic reduction in the total query
plan processing cost, and are theoretically guaranteed to
approximate the optimal cost-savings to within a factor of
four for practical variants of the problem [41]. Both Weave-
Share and TriWeave start with a no-share plan, where each
ACQ has its own execution tree. Then they iteratively con-
sider all possible pairs of execution trees and combine those
that reduce the total plan cost the most into a single tree, and
produce final execution plans consisting of multiple dis-
jointed execution trees when they cannot find another pair
that would reduce the total plan cost further. The difference
between WeaveShare and TriWeave is that the former assumes
separate partial aggregation processing on each execution
tree (causes larger partials), while the latter assumes com-
bined partial aggregation processing using a large composite
slide that passes ready partials to the execution trees (causes
smaller partials). Because of this difference the execution
plans produced by WeaveShare largely have higher partial
aggregation costs and lower final aggregation costs com-
pared to TriWeave. However, as we show in our experiments
below, the overall costs of the execution plans produced by
both optimizers are comparable (within 5 percent).

3.1.2 F1: Accelerating the Optimization of ACQs

Since the original Weavability-based MQ optimizers Weave-
Share and TriWeave do not scale well with an increasin

Authorized licensed use limited to: University of Pittsburgh Library System. Dowi %oade

3905
——BS —®-F1 F1_Opt @& Crash
1000
~® ?
w 100 / n
i} pun e d n
%] /r*’
oo
S 1w #
8 ° o
2 " ]
g * (g
e J
=) s A i
5 il i
& 01 » |
et
0.01
BQ%BB%QQQQQQQQQQQQ 00 QQ

O 0L
50 05 4O 2 D 2 (D (@ A A oS ‘obo;o&o &

S
KN

S

&
S S
~ \0

Number of ACQs

Fig. 16. Bit set and F1 scalability in terms of the number of ACQs using
the WeaveShare optimizer.

number of ACQs, we proposed a novel closed formula,
F1 [39], that accelerates Weavability calculations. F1 effi-
ciently calculates the number of unique edges in a composite
slide allowing the MQ optimizers to achieve exceptional
scalability in systems with heavy workloads:

LHGl (n,1)], 2)

LCM,, Z

where LCM,, is an LCM of all n processed slides s:
LCM(sy, 82,...,8,), and function G;(a,b) is a sum of the
inversed LCMs of all possible groups of slides of size b from
a set of size a. For example:

1 1

2 .
G (3 ) LC‘]\J(Sl7 53) + LC]\/[(SQ, 53)

1
LC]\I(Sl, 52)

Note that calculating the number of unique edges in a com-
posite slide is by far the most resource intensive part of
Weavability calculations. This number was previously calcu-
lated using the Bit Set approach by iterating over the com-
posite slide multiple times with different increments while
identifying and counting the unique edges. F1, on the con-
trary, performs this task algebraically by computing them.

In general, F1 can reduce the computation time of any
technique that combines partial aggregations within com-
posite slides of multiple ACQs. We theoretically showed
that F1 is superior in both time and space complexities to
the previous Bit Set approach.

We showed that Bit Set approach has a time complexity
of at least e, while F'1 has a time complexity of at worst 2".
Clearly, when n goes to infinity, it is increasingly beneficial
to use F'1 over Bit Set for producing the same execution
plan given the same input. We experimentally showed that
F1 executes up to 60,000 times faster and can handle
1,000,000 ACQs in a setting where the limit for the Bit Set
technique is 550 (Fig. 16). In this experiment comparing the
performance of Bit Set and F1, using both techniques, Wea-
veShare generated the exact same execution plan (consisting
of the same number of trees and queries per tree) for each
set of ACQs.

Summary. With the introduction of our FI formula for
Weavability calculations, MQ optimizers are now able to
achieve better scalability with increasing workloads. The
modification of MQ optimizers in light of the new IE techni-

ues are addressed in Section 4.
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4 UTILIZING NEW /E TECHNIQUES
FOR MQ OPTIMIZATION

It is intuitive that by combining new IE techniques and the
MQ optimizers, significant benefits in ACQ processing can
be achieved. This section presents how the existing MQ
optimizers can be modified in order to support new efficient
IE techniques. To accomplish this, the plan cost calculation
process in MQ optimizers needs to be adjusted. The need
for such adjustment can be extrapolated from Equation (1)
for cost calculations discussed in Section 3.1.1.

Equation (1) uses the () parameter (which denotes the
total number of final-aggregation operations performed per
edge) calculated as range divided by slide per execution
tree. As demonstrated in Section 2.2, such a number of final-
aggregation operations is only applicable for the outdated
Panes technique, and all other compared IE techniques per-
form fewer operations.

For the new IE techniques the () estimation is more complex
due to the variability of operation numbers between different
slides, and dependability on the input data, given that our MQ
optimizers need to be able to estimate () for any number of
ACQs with any periodical properties. Thus, a theoretical analy-
sis (presented below) of all the IE techniques is necessary.

4.1 Estimating Q)

In order to evaluate how different Incremental Evaluation (IE)
techniques perform when used in multi-query (MQ) optimiz-
ers, we need to calculate the number of final aggregation
operations () that they perform on average per slide (i.e.,
after receiving each new partial) given () unique ACQs.
After that () is used in their corresponding cost formulas in
MQ optimizers. The range and slide of each query ¢; we
denote as r; and slide s; respectively (i is a sequential num-
ber of a query). IE techniques must support MQ processing
in order to be used in such optimizers, which rules out the
TwoStacks and DABA techniques presented in Section 2.2.
Our analysis of () for the rest of the techniques (Panes, Flat-
FAT, FlatFIT, and SlickDeque) follows below.

Panes. 1t is intuitive that ) for this naive technique in single
query environments can be calculated as range divided by slide
(r/s) since the query range is assembled from r/s slides. Simi-
larly, in MQ environments, since each added query increases (2
by its range divided by slide, we calculate it as follows:

Q_,.
Q:ZS—L_. (3)

i=1 "

FlatFAT. Given that this technique utilizes a binary tree
for its calculations, in single query scenarios ()=
Q - l0g2(Py4z), where P, is the total number of partials (or
leaf nodes) in the tree. P, is also the longest query range
that can be processed by this structure. The ) formula fol-
lows from the fact that the number of levels in a binary tree
are logs(Pas) + 1, and on each update FlatFAT updates the
tree in a bottom-up fashion from the leaf to the root. The
answer to the query with the longest range in this case could
be simply taken from the root of the tree without additional
operations. For each additional query with a unique range
that consists of P, < P, partials, the aggregate is com-
posed from a minimum set of internal tree nodes that covers
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the number of partials (tree leaves) P;. Thus, given that P,
can be calculated as r; divided by the average partial length,
each new query ¢; increases ) by |logs(P;, —1)] + ﬁﬁ,

resulting in the formula:

0= ;(UO%(R: -1)] +W)- )

13

Even though the actual number of partials processed is
likely to be different for each slide, in the long run the cost
per partial averages out, making this estimation valid. For
quick approximate calculations () can be also estimated as
logs(P; — 1) + 1 for each unique query.

FlatFIT. For this technique, we estimate () as 3-Q, i.e,
each unique ACQ requires about 3 operations per slide. We
show in [20] that €} is 3 operations per slide for a single query
environment and 3 - Q) per slide in a max-multi-query environ-
ment (a MQ environment with the maximum number of
queries covering all possible ranges from 1 to r,,4,). Thus,
intuitively each added query should be adding 3 operations
per slide to (). We confirmed this formula experimentally by
testing a large number of various query sets. Even though
there was slight variability in the results (due to the effect of
periodic properties of ACQs), () always stayed close to 3 - Q
and never crossed 2 - @ or 4 - Q. Given our intuition above,
our closest estimation for FlatFIT appears to be:

0=3-Q, (5)

which we use in our experiments with cost-based MQ
optimizers.

SlickDeque (Inv). In single query environments this tech-
nique has () = 2 because there are only two operations per-
formed for each new partial: (1) the aggregation of the arriving
partial with the running aggregate, and (2) the inversion opera-
tion of the expiring value (e.g., subtraction in the case of Sum).
Similarly, in the case with multiple queries we get () by multi-
plying the number of running aggregates by 2. Unfortunately,
the number of running aggregates does not always equal Q
due to the different periodic properties of ACQs, an ACQ might
assemble its final aggregate from different numbers of partials
on different stages of execution, which means we need to keep
running aggregates for all of these possibilities. However, if
several queries need the same running aggregate (aggregating
same number of partials) it is shared. Thus, in order to calculate
the exact number of running aggregates required per query set
we need to create a composite slide and iterate over it while
counting all possible numbers of partials needed at every edge,
and to get ) we finally multiply the number of unique running
aggregates by 2. Currently we do not know if there is a faster
approach to determine this. Due to the complexity of this calcu-
lation in our experiments we use an approximation: first we
divide each query range r; by the average partial aggregate
length to get P;, and then take the count of all the unique P, val-
ues and multiply by 2, resulting in the following formula:

QO =2 - # of unique P;. (6)

Given that in our experiments we generally have () that is
larger than the number of unique slides (which are gener-
ated by factoring a large number), the variance of P; values
is low, which makes our estimation valid (we also verified
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this experimentally), however this estimation might slightly
vary in the other case.

SlickDeque (Non-Inv). Previously [22] we proved that () is
bounded by 2 operations per slide (in single query environ-
ments), however in this work we worked out a more accu-
rate estimation and accounted for MQ overhead in order to
use this technique in MQ optimizers. SlickDeque (Non-Inv)
performs exactly 2 operations per slide if we do not account
for the following two cases: (1) expiration of partials at the
head of the deque, and (2) deletion of the head node of the
deque. When either of the two cases occur, 1 operation is
performed for that slide instead of 2.

Case (1) happens when the partial stayed on the deque
for the entire max query range worth of partials (P,q.),
which means that there was no input partials that could dis-
place the expiring partial from the deque (e.g., if Max is cal-
culated, there was not any input partial greater or equal to
our expiring partial). The probability of that happening
(given uniform input) is 1 to P4, where P, is the number
of partials in the query with the longest range. Thus we sub-
tract 1/P,,,, from € to account for the average number of
times this happens in a long running process.

Case (2) happens when any input partial displaces the head
node of the deque (e.g., if Max is calculated, a partial higher
than all the nodes including the head node arrives). The prob-
ability of that happening is again 1/P,,,, per slide since that is
the probability of the new partial displacing the most valuable
partial from the latest P,,,., (e.g., the highest value if Max is cal-
culated), thus we subtract another 1/ P from ().

Now, in order to account for MQ cases we have to account
for operations required by the algorithm to return query
answers. In a single query environment this could be simply
done by returning the value of the head node on the deque,
however if we need to return answers to several queries with
different ranges we traverse the deque. During the planning
stage all queries are ordered descendingly by their ranges,
which makes it possible during execution to get answers to
all queries in just one full traversal of the deque. Each query
requires at least one operation to compare its required F; to
the current iterator position within the deque. To account for
that we add @ to our cost estimate (). Also, to account for the
operations that need to be performed to traverse the deque
(in the worst case) we add the number of operations equal to
the average length of the deque during execution. Given the
uniform input, as shown in [22], the average deque length
equals the sum of the inversed factorials of sequential natural
numbers from 1 to P,,,,, where P,,,, is again the maximum
number of partials needed by any query to assemble its
answer, and can be expressed as >~ | 4. This follows from
the fact that the probability of randomly picking = numbers
ordered in a particular way (e.g., ascending) is 1 to z!. Thus,
we estimate () for SlickDeque (Non-Inv) as:

Prag

Summary. We recap our theoretical findings in Table 3.

5 EXPERIMENTAL EVALUATION

In this section, we present the results of our experimental eval-
uation of using the new IE techniques in MQ optimizers by (1)
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TABLE 3
Estimated Final Aggregation Costs

[ IE technique | Operations Per Edge () |
Panes 219:1 o
FlatFAT S (Loga(Pi — )] + Pty
FlatFIT 3-Q
Slick Inv. 2 - #ofuniquel;
Deque | Non-L 2 —2/Prar + Q + S0 h

generating execution plans for the IE techniques and compar-
ing their estimated costs, and (2) actually executing several
generated plans and comparing the practical performance.

5.1 Plan Generation Testbed

In this part of our evaluation we show the significance of IE
technique selection on generated plan costs using our plan
generating platform written in Java. Specifically, we imple-
mented the WeaveShare and TriWeave MQ optimizers as
described in [23] and [24] and augmented them with the sup-
port of different () calculations (estimation of final aggrega-
tions) for our compared IE techniques. Our workload is
composed of a number of ACQs with different characteris-
tics, which are generated synthetically in order to get a more
detailed sensitivity analysis of the optimization performance
by fine-tuning the generation parameters (described below).
Moreover, it allows us to target all possible real-life scenarios
and analyze them.

Plan generation experimental parameters:

[IE technique] Specifies which technique is used for IE
processing. The available techniques are: Panes, FlatFAT,
FlatFIT, SlickDeque (Inv and Non-Inv).

[@num] Number of ACQs. We assume that all ACQs are
installed on the same data stream, process distributive
aggregations (which allow sharing partial aggregations
among ACQs), and can be performed in just one operation.

[Aggregations] For simplicity we use sum for invertible,
and max for non-invertible aggregations. As long as the
actual aggregation functions are consistent with our
assumptions, they do not have a significant effect on the
final plan cost or processing performance.

[Smaz) Maximum slide length provides an upper bound
on how large slides of our ACQs can be. The minimum slide
allowed by the system is one. The slides are drawn from the
set of factors of S,

[A] The input rate describes how fast tuples arrive
through the input stream in our system.

[Zskew) Zipf distribution skew depicts the popularity of
each slide length in the final set of ACQs. A Zipf skew of
zero produces uniform distribution, and a greater Zipf
skew is skewed towards large slides.

[Omaz] Maximum overlap factor defines the upper bound
for the overlap factor. The range of each ACQ is determined
by drawing an ovelap factor from a uniform distribution
between one and O, and multiplying it by ACQ’s slide.

5.2 Plan Generation Results

To compare the sensitivity of the estimated plan costs pro-
duced by our new IE techniques to the parameters Qum,
Smazr Omaz, A, and Zge,, we ran five experiments where we
varied one of these parameters at a time while keeping the
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TABLE 4
Experiment Parameters

EXP'# QTLUW’L Sma.L' Omaz )\ ZSk(JLU
1 1-10K 1K 10K 1 0

2 100 10-100K 10K 1 0

3 100 1K 100-1M 1 0

4 100 1K 10K 0.01-100 0

5 100 1K 10K 1 (-1)-1
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Fig. 17. Plan cost with increasing number of queries using WeaveShare
(left) and TriWeave(right).
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Fig. 18. Plan cost with increasing max slide using WeaveShare (left) and
TriWeave(right).

rest of them fixed. The parameters were selected separately
for each experiment in a way that would highlight the differ-
ences in the scalabilities of the five compared IE techniques.
The experimental parameters are specified in the Table 4.

All results are taken as averages of running each experi-
ment ten times. We ran all our experiments on a dual Intel
(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz server with 96 GB
of RAM.

Exp 1: Number of ACQs Sensitivity

In this test we varied the @y, from 1 to 10,000 (Fig. 17).
Clearly increasing the ., also increases the amount of
required calculations, causing higher costs for all of the gen-
erated plans (for both WeaveShareand TriWeave optimizers).
The growth rates of all underlying IE techniques are similar
to what we expected from the theoretical analysis of the
time complexities of their underlying algorithms. Thus we
see that using SlickDeque (Non-Inv) and SlickDeque (Inv)
show the best results by outperforming the closest compet-
ing IE technique (FlatFIT) by up to 3x and the state-of-the-
art Panes technique by up to 5,000x.

Exp 2: Max Slide Sensitivity

In this test we varied the S, from 10 to 100,000 (Fig. 18).
As opposed to to Exp 1, increasing the S,,,, decreases the
amount of required calculations. This happens because with
a higher max slide parameter, the generated ACQs have lon-
ger slides, which results in longer distances between the
edges (where the final aggregations are performed). This
way the workload for the final aggregator is reduced while
keeping the same workload for the partial aggregator,
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Fig. 20. Plan cost with increasing input rate using WeaveShare (left) and
TriWeave(right).

resulting in a decreased total cost. Notice again that SlickDe-
que shows vastly superior performance by surpassing all
other algorithms by up to 4,300x.

Exp 3: Overlap Factor Sensitivity

In this test we varied the O,,,, from 100 to 1,000,000
(Fig. 19). Similarly to Exp 1, increasing the O,,,, increases
the amount of required calculations (in most cases). This fol-
lows from the fact that increasing O,,,, increases ACQ
ranges, which require more partials to be assembled during
each final aggregation. However, algorithms FlatFIT and
SlickDeque (both Inv and Non-Inv) have constant complexity
in terms of increasing window, thus their performance
remains largely unaffected by the increasing ranges. As a
result, we can see that the difference between the best per-
forming SlickDequetechnique and the currently used Panes
technique grows much faster than in the first two experi-
ments, and reaches 270,000x improvement.

Exp 4: Input Rate Sensitivity

In this test we varied A from 0.01 to 100 (Fig. 20). Increas-
ing A increases the amount of required calculations because
with higher input rates partial aggregators have to do more
work aggregating the input tuples (which can be seen in
Equation (1)). Notice that the performance of the Panes algo-
rithm is not significantly affected by the increasing input
rate because the cost of the Panes algorithm is largely domi-
nated by the final aggregator cost, and the increase in partial
aggregation cost is proportionally small. SlickDeque again
outperforms other algorithms by up to 3,000x.

Exp 5: Slide Skew Sensitivity

In this experiment we varied the Zg, from —1 to 1
(Fig. 21). It is similar to the max slide scalability experiment,
because in both experiments we are gradually increasing
the amount of ACQs with large slides and thus decreasing
the amount of required calculations. The difference here is
that when significantly skewing all slides drawn from the
same set to one side (when Z,,, is close to -1 and 1), they
start repeating, which lessens the affect on the costs (we can
see flatter lines on the figures in these places). SlickDeque
outperforms all the other IE techniques by up to 4,200x.
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Plan Generation Summary. Previously we showed that
SlickDeque is best in stand-alone settings due to its superior
algorithmic complexity [22]. The new results above confirm
that SlickDeque still offers the same performance advantages
when used in MQ optimizers. We also observed that it allows
greater degree of weavability that results in fewer execution
trees in an execution plan on average across all runs:

Panes
16.0

IE technique FlatFAT FlatFIT SlickDeque

15.7 10.3 4.8

# of Execution Trees

This observed 2-3x reduction in the number of execution
trees can explain the superior performance of SlickDeque in
MQ optimizers. It also confirms our intuition that the more
effective the IE technique is, the more benefit can be reaped
by processing more ACQs together.

5.3 Practical Evaluation Testbed
In order to verify the correctness (and practical significance)
of the plan cost estimations produced by our updated MQ
optimizers in the first part of our evaluation, we executed a
few selected plans on a real dataset using our execution
platform written in C++ and examined their performance.
Setup. We generated one plan using WeaveShare and one
plan using the TriWeave optimizer for each of the compared
IE techniques using the query load parameters that corre-
spond to the middle point of each figure from our plan gen-
eration experiments (Exp. 1-5):

Qnum Snl(ll‘
100 1K

Omaz A
10K

Zskew
0

—_

Platform. For this evaluation we built an experimental
platform in C++ (compiled with G++5.4). Specifically, we
implemented a stand-alone stream aggregator platform and
programmed the Panes, FlatFAT, FlatFIT, and SlickDeque
(Inv and Non-inv) algorithms within the same codebase,
sharing data structures and function calls to enable a fair
comparison. Although all of the compared algorithms can
be easily ported to any commercial general purpose stream
processing system, we chose to go with a stand-alone plat-
form to carry out our evaluation in an isolated environment
in order to avoid any potential system interference and
overheads. In the future we are planning to repeat our eval-
uation on a production system.

Dataset. We utilized the DEBS12 Grand Challenge Data-
set [42] which contains events generated by sensors of large
hi-tech manufacturing equipment. Each tuple in this dataset
incorporates 3 energy readings and 51 values signifyin
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Fig. 22. WeaveShare: estimated throughput in 1/cost_unit per second
(left), actual throughput in results per second (right).

various sensor states. The records were sampled at the rate
of 100Hz, and the whole dataset includes ~33 million
unique events.

Evaluation Metrics. Generally, a cost of a plan is estimated
as the required computation power to process this plan. It is
clear that there is a reverse relationship between the plan
cost (measured in operations per second) and the through-
put (measured as the number of actual query answers
received per second). Thus, to perform a fair comparison
we converted the plan cost to estimated throughput by
inverting it (i.e., 1/Cost).

5.4 Practical Evaluation Results
To measure the actual throughput, we ran each execution
tree of a plan for 30 minutes at full speed while counting
query results returned by the system, added them together
to get the total number for the plan, and divided them by
1,800 to get the number per second. Even though the esti-
mated and actual throughputs are measured in different
units, they should correlate and be proportionally similar if
our calculations are correct. These experiments were run on
the same hardware as the plan generation experiments.

Exp 6: WeaveShare: estimated versus actual throughput

In this test we can see that visually our actual throughput
correlates with the expected one, which gives us confidence
that our updated WeaveShareoptimizer performs cost esti-
mation of all the IE techniques rather accurately (Fig. 22).
The statistics say that if we normalize the scales of both esti-
mated and actual throughputs by equating their largest
readings, the average deviation between estimated and
practical readings averages 31 percent, which is a good
result given the dependency of the actual performance on a
variety of system/environmental factors. Thus, we con-
clude that our estimations of the IE techniques are accurate
enough to be used in the MQ optimizer WeaveShare.

Exp 7: TriWeave: estimated versus actual throughput

In this test we can again see that our actual throughputs
are visually similar to the expected ones (Fig. 23). If we
again normalize the scales of both estimated and actual
throughputs, the deviation is on average only 14 percent,
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Fig. 23. TriWeave: estimated throughput in 1/cost_unit per second (left),
actual throughput in results per second (right).
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which is even better than in Exp. 6. Again we have confi-
dence that our calculations have meaning and can be used
in the MQ optimizer TriWeave.

Practical Evaluation Summary. The correlation that we see
between the estimated and the actual performance numbers
(with an average deviation of only 22 percent) gives us con-
fidence that our new final aggregation cost calculations ({2)
are valid and can be utilized in cost-based MQ optimizers.

6 CONCLUSION

In this work we proposed a taxonomy of all IE techniques
available today and their breakdown in terms of their appli-
cability, complexity, and ability to work in MQ environ-
ments. The key contribution of this paper, however, is
combining the recently developed IE techniques with the
cost based MQ optimizers.

We addressed the challenging problem of theoretically
analysing the IE techniques and estimating their perfor-
mance dynamically based on any given workload. We used
these findings in the state-of-art MQ optimizers for making
tree collocation decisions, and experimentally showed that
our estimations are within 22 percent of the actual numbers
on average.

We also showed experimentally that MQ optimizers in
combination with the IE technique SlickDeque produce up to
270,000x more efficient execution plans than in combination
with other IE techniques, and we showed practically that
our generated execution plans indeed achieve the expected
(high) performance when executed on a real dataset.
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