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The advancement of renewable energy infrastructure in smart buildings (e.g., photovoltaic) has highlighted

the importance of energy self-consumption by energy-demanding IoT-enabled devices (e.g., heating/cooling,

electromobility, and appliances), which refers to the process of intelligently consuming energy at the time

it is available. This stabilizes the energy grid, minimizes energy dissipation on power lines but more impor-

tantly is good for the environment as energy from fossil sources with a high CO2 footprint is minimized. On

the other hand, user comfort levels expressed in the form of Rule Automation Workflows (RAW), are usually

not aligned with renewable production patterns. In this work, we propose an innovative framework, coined

IoT Meta-Control Firewall (IMCF+), which aims to bridge this gap and balance the trade-off between comfort,

energy consumption, and CO2 emissions. The IMCF+ framework incorporates an innovative Green Planner

(GP) algorithm, which is an AI-inspired algorithm that schedules energy consumption with a variety of amor-

tization strategies. We have implemented IMCF+ and GP as part of a complete IoT ecosystem in openHAB

and our extensive evaluation shows that we achieve a CO2 reduction of 45–59% to satisfy the comfort of a

variety of user groups with only a moderate ≈3% in reducing their comfort levels.
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1 INTRODUCTION

The Paris Agreement within the United Nations Framework Convention on Climate Change, deal-
ing with greenhouse-gas-emissions mitigation, adaptation, and finance, signed in New York City,
on April 22, 2016, aimed to strengthen the global response to the threat of climate change, since we
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are witnessing a steady increase in CO2 since the Industrial Revolution (1760–1840 AD). Addition-
ally, the cost of polluting, regarding power generation, has increased more than 140% in 20211 after
a stricter environmental agenda in Europe was laid out, along with a sweeping rally in natural gas
prices. Besides all that, natural gas will only reduce 1/3 of the terrible emission image.

In the long-term, high carbon prices could accelerate the investment in equipment, developing
intelligent software to decrease the level of emissions, or switch to cleaner fuels. Technologies such
as Green Hydrogen production from renewable energy or carbon capture and storage, become
more economically viable in case that the carbon price remains at or above current levels. By 2030,
the European’s ambition is to produce 10 million tones of renewable hydrogen that is expected
to significantly reduce the CO2 emissions [1]. When the energy used to power electrolysis comes
from renewable sources it is called Green Hydrogen, and this approach can be effectively used as
a future step mainly anticipated to replace humongous mobile batteries (in airplanes, ships, large
lorries, etc.).

On the other hand, self-consumption of renewable energy remains complementary to nowadays
and future requirement for a cleaner environment. Particularly, it constitutes a distributed in-situ
approach that does not require enormous infrastructure but rather only intelligent planning algo-
rithms for the CO2 reduction and is shown to achieve more than 70% for a domestic household.
Consequently, minimizing the CO2 pollution in spaces where the human is active (e.g., houses and
offices) in which people spend 80–90% of their time, can positively impact the environment.

Given that energy is produced in a variety of manners (fossil, renewable, nuclear, etc.), the im-
pact on the environment is typically measured in kg CO2 emitted per kWh of energy produced.2

In countries with a high kg CO2 per kWh factor, this effectively reduces CO2 pollution but also
contributes to the stabilization of the energy grid. In Table 1, we can see the CO2 emissions due to
electricity generation supplied by the European Environment Agency (Eurostat). The CO2 emis-
sion intensity (kg CO2) is calculated as the ratio of CO2 emissions from public electricity produc-
tion (as a share of CO2 emissions from public electricity and heat production related to electricity
production), and gross electricity production. On average, we see that most countries have still a
long way for becoming CO2 neutral and that this is an exciting problem space to seek for novel
contributions. In Table 2, we can see the CO2 emissions produced by return flights according to
figures from the German non-profit organization “Atmosfair” [2]. The figures are averages consid-
ering which aircraft models are typically used on flight routes, and the estimated occupancy of
seats on board those planes.

A key driver for the control of CO2 is the uptake of Internet of Things (IoT), which connect
all the smart devices in the world that can “see”, “hear”, “think”, “react”, perform tasks as well
as communicate with each other using open protocols [3–6], and thus, power consumption and
CO2 emissions controlled by IoT infrastructure can be brought under the same roof. IoT enables
the development of smart applications in important domains, such as transportation, healthcare,
industrial automation, emergency response, and business, having significant impact on the quality
of people’s life and the growth of the world’s economy and security [5]. Studies showed that IoT
connected devices worldwide is projected to amount to 30.9 billion units by 2025,3 including smart
cars, home devices, industrial equipment, and so on, and later on to 100 billion connected devices
by 2030 [7].

In our previous works [8, 9], we presented the design and preliminary results of an innovative
system, coined IoT Meta-Control Firewall (IMCF), which aims to schedule comfort preferences

1Bloomberg Green., URL: https://tinyurl.com/yxewwpzm.
2For the remainder of this work, we denote the more typical metric of kg CO2-eq(uivalent) with only kg CO2.
3Statista., URL: https://tinyurl.com/mw74ku2h.
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Table 1. The European Environment Agency CO2 Emission Intensity
for EU-27 and USA-Average

COUNTRY kg CO2 per kWh

Sweden 0.013

Lithuania 0.018

France 0.059

Austria 0.085

Latvia 0.105

Finland 0.113

Slovakia 0.132

Denmark 0.166

Belgium 0.17

Croatia 0.21

Luxembourg 0.219

Slovenia 0.254

Italy 0.256

Hungary 0.26

Spain 0.265

COUNTRY kg CO2 per kWh

Romania 0.306

Portugal 0.325

Ireland 0.425

Germany 0.441

Bulgaria 0.47

Netherlands 0.505

Czech Republic 0.513

Greece 0.623

Malta 0.648

Cyprus 0.677

Poland 0.773

Estonia 0.819

COUNTRY kg CO2 per kWh

EU-27 (average) 0.296

USA (average) 0.449

Table 2. The Carbon Dioxide (CO2) Emissions Produced by
Return Flights According to “Atmosfair” [2]

Flying From Flying To kg CO2

Paris Frankfurt 115

Frankfurt London 138

Sydney Melbourne 165

London Rome 234

New York City Paris 922

London New York City 986

Moscow Washington D.C. 1,383

Los Angeles London 1,650

Brussels Rio de Janeiro 1,756

Athens Brasilia 1,783

Barcelona Shanghai 1,844

Perth Athens 2,530

London Perth 3,153

of user in smart buildings (expressed in the form of so-called Rule Automation Workflows—RAW),
such that long term energy objectives can be meet (e.g., consume less than 400 kWh in Decem-
ber). We presented the Energy Planner (EP) algorithm that takes care of the scheduling using
primitive amortization strategies. Our previous work was however, unfortunately agnostic of the
climate impact of the RAW automation process. In this work, we present the IoT Meta-Control

Firewall (IMCF+) framework, which is inspired by the advancement of renewable energy in-
frastructure in smart buildings (e.g., photovoltaic) that has highlighted the importance of energy
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self-consumption by energy-demanding IoT-enabled devices (e.g., heating/cooling, electromobil-
ity, and appliances). Self-consumption refers to the process of intelligently consuming energy at
the time it is available. This stabilizes the energy grid, minimizes energy dissipation on power lines
but more importantly is good for the environment as energy from fossil sources with a high CO2

footprint is minimized.
Particularly, in IMCF+ a user (or group of users) start out by defining a vector of RAW rules,

coined MRT , and an Energy Consumption Profile, coined ECP (see Figure 1). The high-level objec-
tive is to identify among all MRT rules the ones that must be dropped so that the user stays within
the desired energy budget according to the ECP history. For this purpose, it utilizes an intelligent
search algorithm, which goes over the exponentially large search space of

∑
r ≤n r -combinations

(where n = |MRT |), quickly yielding the rules to be dropped. Particularly, IMCF+ adopts an intel-
ligent energy amortization process along with an AI-inspired Green-Planner (GP) algorithm we
propose, to balance the trade-off between user comfort and CO2 emissions subject to pre-specified
energy consumption budget while satisfying the RAW pipelines of users. IMCF+ adapts the RAW
pipelines in a way that these do not collide with the long-term objectives of users (by dropping
certain rules based on preference priority).

The RAW pipelines are distinguished in our discussion into the comfort rules and necessity rules.
The comfort rules aim at promoting an individual’s physical convenience (e.g., room temperature,
ambient lighting, pre-heating of car, operation readiness of general appliances or whatever is con-
sidered tentative comfort to an individual), while the necessity rules are those rules that should
always be executed regardless of whether the long-term target is met. For ease of exposition, con-
sider only the comfort rules, sorted in order of importance, for the remainder of this work.

In respect to processing the RAW rules, one could ignore the RAW rules completely, obtaining
in this way the best energy consumption (thus, low CO2 emission) but the worst comfort (we call
this the No Rule (NR) method–see Figure 1). In contrast, a user could obtain maximum comfort by
having every single preference rule inside RAW executed that would obviously bring the highest
comfort but at the same time also consume the highest amount of energy and consequently pro-
duce high CO2 emissions (we call this the Meta-Rule (MR) method). We assume that a user sets,
for example, the temperature/illumination to his/her most preferable level, for his/her maximum
comfort. The IFTTT approach, in the absence of a detailed user preference profile MRT, being an
arbitrary sequence of rule executions would then be somewhere in between these two borderline
cases, while GP is a more well-rounded version of arbitrary IFTTT rules.

We claim that by consuming energy more intelligently (i.e., green-smart IoT actuations) can
greatly contribute to the environmental impact of ICT enabling us to improve living conditions
and respect the environment reaching agreed targets. We assume that IMCF+ can be adopted
in smart environments equipped with net-metering or net-billing PV or wind systems where
self-consumption translates to an actuation in the physical space. Having different PV system
sizes, means different production patterns. Thus, the historical user data incorporated in the
algorithm and problem formulation will be proportional to the PV system. This also results to the
proportional allocation and distribution regarding hourly upper bounds and energy consumption
accordingly. To understand this desideratum, consider two separate examples in a green-home
and green-dormitory setting, respectively.

Green-Home: As a first example consider a single family that has invested in photovoltaic
technology to cover its heating/cooling, mobility, and other energy requirements. In our scenario,
the family has a yearly budget of 8,500 kWh (i.e., yearly production of this household under a
net-metering scheme, where energy excess on a sunny day can be used at later stages within a
yearly cycle) and aims to spend this energy budget through a RAW that configures the energy con-
sumption preferences of the family (e.g., room temperatures across the year in the house as well as
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Fig. 1. The GP algorithm proposed in this work is an AI-inspired algorithm that finds the best possible energy
consumption strategy with respect to user comfort and CO2 emissions by only using a MRT profile, a Weather

Forecast, and an Energy Consumption Profile ( ECP) and without the necessity of a learning history used
by ML methods.

auxiliary lighting). The family is willing to adapt its desired interior temperature preferences (e.g.,
adapting indoor temperature by 1°C, somebody can save 6% of its energy consumption4) accord-
ing to production and consumption patterns but has no clue how the RAW pipelines contribute
to the target of using only 8,500 kWh per year. Currently, they rely on manual guess-work and
manual planning that is cumbersome and error-prone [10]. Section 2 overviews the related work
extensively, showing that no other solution is available to the problem under investigation.

Green-Dorms: As a second example consider the SAVES [11] project, which was an inter-
dormitory energy-saving competition within the framework of the European Commission Intel-
ligent Energy–Europe (IEE) program that took place between 2014–2016. The project aimed to
achieve energy-saving habits by students at a key moment of change in their lives so that they
can continue energy-saving actions throughout their private lives. SAVES aimed at delivering 8%
average electricity savings in participating dormitories. In the case of University of Cyprus stu-
dents, the task was undertaken with great excitement and passion that eventually led to a saving
of only 4,44%. Even though students applied common sense and perseverance in achieving the
energy reduction target, there was a lack of intelligent control to reach the higher desired target.

We expose how we have integrated IMCF+ into the readily available openHAB IoT stack bring-
ing in this way optimal integration and compatibility prospects (as the complete IoT ecosystem
bindings are already readily available). In this article, we have the following contributions:

— We propose a novel notion of filtering RAW workflows using the IMCF+ firewall that is
formally defined. In this scope, we propose the design and implementation of the Green

Plan (GP) algorithm that has the ability to handle the user’s comfort profile by considering
the user’s energy budget and the carbon dioxide emissions.

— We present a complete system architecture of our IMCF+ green energy management system
implemented inside the openHAB stack.

4U.S. Dept. of Energy. http://tiny.cc/qbosuz.
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— We evaluate our design with extensive experimentation on real datasets with weather fore-
cast data from OpenWeatherMap, and measurements from a real residential apartment that
comprises of a variety of sensors and approximately 5M readings (1.09 GB in total), showing
that GP can be premise for energy-aware and CO2-aware green actuations in the future. We
finally also demonstrate the utility of our pioneer system.

The remaining of the article is organized as follows: Section 2 presents the background and
other related work. Section 3 provides our system model and formulates the problem. Section 4
presents our proposed framework and its internal components. Section 5 presents our complete
system architecture proposition while Section 6 presents our experimental methodology and re-
sults. Section 7 concludes the article.

2 BACKGROUND AND RELATED WORK

In this section, we provide background on the studied subject of IoT rule automation workflows
and also provide the related work.

2.1 IoT Data Management

The uptake of IoT in recent years has brought a revived interest on data management and data
engineering solutions, architectures and applications with a focus on data ingestion [12], analytic
architectures for streaming data [13] as well as relevant benchmarking [14]. From the applica-
tion perspective, a specific focus has been given to privacy [15], context awareness [16], tem-
poral analytics [17], localization [18, 19], and telco big data [20]. Green Data Management has
been a complementary and related topic with intensive research over the years, particularly in
data centers [21–25] and data warehouse design [26, 27], green-aware route planning in GIS sys-
tems [28–31], smart grids [32–36], but the focus on green IoT actuation application frameworks
has been overlooked over the years.

2.2 Rule Automation Workflows (RAW)

In this subsection, we cover complementary work of RAW pipelines and the competing approaches
to achieve the exploration of the RAW search space.

Preamble: Beside data collection, many IoT devices also enable the execution of Rule Automa-

tion Workflows (RAW), which span from simple predicate statements to procedural workflows
aiming to capture a smart actuation pipeline in tools like IFTTT [37], which controls Philips Hue
lights, BMW i3 EVs or Daikin A/C units [38, 39], Apilio.io, or Apple Automation [40]. RAW aim to
meet the convenience level of users under specific conditions (e.g., “warm house to 22°C if cold or
preheat EV when approaching”). In the simplest case, a user expresses preferences manually through
a vendor-specific smartphone app or an integrated app. This process requires attention by custo-
dians, exposing distraction hazards, calling for more automated (i.e., “smarter”) approaches.

One of the most straightforward approaches to achieve a smarter RAW is to do so with the so-
called trigger-action model. Users control the behavior of an IoT by specifying triggers (e.g., “if it is
sunny outside”) and their resultant actions (e.g., “turn off the lights”). Because of its conceptual sim-
plicity, the trigger-action model has attracted significant attention with IFTTT [37] (“If This Then
That”) becoming one of the first large-scale deployments. Services like Apilio [41] expanded the ex-
pressiveness of the RAW with Boolean predicates (e.g., conjunctions) and Apple Automation [40]
even introduced procedural programming constructs, like variables, while loops, if statements and
functions to bring RAW smart actuations to new levels.

Real-time IFTTT: Heo et al. [42] implemented RT-IFTTT, a real-time IoT language and its
framework that uses trigger condition-aware flexible sensor polling intervals. The RT-IFTTT

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 29. Publication date: September 2022.
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language extends the existing IFTTT syntax and allows users to specify real-time constraints for
their applets. Again, this system does not enable long term energy planning and it does not also
allow green planning.

RAW Informed Search Methods: are generally characterized by a utility in scanning the so-
lution space to reach a goal. These algorithms utilize an evaluation function that greedily assesses
some distance of the current state to the target state (e.g., in the case of Best-first search) and the
least cost incurred to reach the current state (e.g., in the case of A* heuristic search). Unfortunately,
A*-search always requires some evaluation function that is not available in our case as we really do
not know the comfort target of a user within the agreed energy budget. As such, we must rely on
stochastic informed search algorithms (e.g., simulated annealing and hill climbing), which proba-
bilistically carry out a similar task but without requiring a rigid target function. The GP algorithm
proposed in this work, is founded on simulated annealing space exploration method that deploys a
user-controlled energy amortization strategy and domain heuristics to bring forward the expected
result.

RAW Machine Learning and Privacy: Another important point is that the GP algorithm does
not deploy Machine Learning (ML) techniques, such as Artificial Neural Networks (ANNs) or
variants [43], given that these methods require a lot of training data that is not available in our case
due to privacy reasons. Training data for user habits and preferences can be privacy-sensitive. We
feel that this can pose a serious imminent privacy threat, given that smart-environment controllers
like IMCF are many times private enterprises that are less controlled, thus they might be tempted
to exploit the “big” behavior data of their customers, by either selling it to advertising companies
or by linking it to other sensitive data.

In summary, none of the above RAW technologies enables individuals or group of users to express
their comfort preferences while achieving some long-term energy objective while curbing emissions.

2.3 Smart Energy Management Systems

In this subsection, we overview energy management systems for three different contexts, stem-
ming both from the industrial and academic sectors.

Photovoltaic Home Energy Management: The Sunny Home Manager [44] (HM) con-
trollers by SMA monitors power flows, particularly the production of AC power from the inverters
and the consumption of AC power from the households (recorded by an energy meter). HM then
manages the power consumption workloads accordingly (e.g., when to operate a washing machine
or smart car charger so that solar energy self-consumption is optimized). This is achieved with its
open Simple Energy Management Protocol (SEMP) or the industry-wide adopted EEBUS [45]
protocols with its KEO reference implementation. However, these protocols are geared for load
management inside smart buildings rather than for enabling users achieve some long-term energy
(energy consumption) targets and restricting CO2 emissions as we do in our work. As such, these
energy HMs have a complementary role to the energy planning propositions we present in this
article.

Smart Thermostats: The Nest.com Learning Thermostat is a programmable and self-learning
Wi-Fi-enabled thermostat that optimizes cooling and heating to conserve energy. However, there
are the following differences with IMCF+: (i) these thermostats do not enable the adaptation of
comfort preferences to meet the long-term energy planning targets of individuals or group of
individuals (see examples in Section 1) considering at the same time the carbon dioxide emissions;
and (ii) these require learning data from users (e.g., location) that might be a privacy concern.

Smart Homes Energy Predictions: There is general research in the sphere of energy pre-
diction of smart homes. Particularly, in [46] the authors predict user behaviors and designed a
protection method to avoid privacy threads. Yang et al. [47] proposed an intelligent smart home
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Table 3. Notation used Throughout this Work

Notation Description

j, D, ej IoT device j, Set of all j, energy consumption of j
γ , Γj CO2 emission intensity per country, CO2 emission of device j

MR j
i , MRT , N MR i for j, Set of all MR j

i , N = |MR |
I , I j

i Input data, attribute value of input data

O,O j
i Output data, attribute value of output

p, t Execution Period, time granularity

ECP Energy Consumption Profile

energy management scheme which supports context-aware service that allows users to do cus-
tomized configurations and offers energy usage modes, like general mode, power-saving mode,
and economic mode to save the energy efficiently. The work in [48] describes an ongoing at-
tempt in creating a smart IoT desk that can improve the occupant’s satisfaction with the environ-
ment, their health, and productivity by personalizing the environment based on their monitored
preferences.

Smart zoning: The approach to dynamically regulate the set points of thermostats in every
room at different levels according to geometry, orientation, and interaction among rooms caused
by occupancy patterns, refers to smart zoning. The research conducted in [49, 50], frames the prob-
lem of load management with smart zoning into a multiple-mode feedback-based optimal control
problem, which refers to embedding multiple behaviors (triggered by building-occupant dynamic
interaction) into the optimization problem, with closed-loop control strategies using information
stemming from building and weather states. The authors’ framework makes it is possible to save
more than 15% energy consumption, with 25% increased thermal comfort.

3 SYSTEM MODEL AND PROBLEM FORMULATION

This section formalizes our system model, assumptions and problem. To exemplify our terminol-
ogy, we use examples from a smart green-home setting. Table 3 summarizes our notation.

3.1 System Model

Consider a smart green-home composed of D IoT devices (e.g., Daikin A/C split units) monitored
by a cloud-based, vendor-specific controller Service (e.g., Daikin Cloud Service) for defining their
behavior based on a particular context (e.g., temperature, humidity). The IoT devices j consume
ej energy each time they operate under a particular mode of operation. For example, a split unit
consumes around ej = 833 watts (i.e., 0.833 kWh) when started but on average not more than ej =

318 watts (i.e., 0.318 kWh), which according to Table 1 for the European Union with an emission
intensity γ = 0.296 kg CO2/kWh, it produces about Γ = ej ×γ = 0.95 kg CO2 emissions, on average.
We assume, however, that the smart green-home is equipped with a net-metering photovoltaic
system that allows the resident to consume the generated energy in the house, and request energy
from the grid (and therefore produce CO2 emissions) only when no energy is generated from the
photovoltaic system (i.e., when there is no sunlight).

We also assume that a user has identified a set of MRs MR j
i for each device j = 1, . . . ,D, which is

recorded with a Meta-Service, such as the IMCF+ service we propose in this work. Particularly, all

MRs are stored centrally on a meta-rule table (MRT) MRT = {MR j
i |i ≥ 0}, and Meta-Service takes

care to periodically, i.e., every t time steps in an overall execution period p, execute these rules

on the IoT devices through Service. Each MR MR j
i obviously relies on a particular input context

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 29. Publication date: September 2022.
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Table 4. The MRT

Meta-rule Description Input Values Output Values

MR1
1: If outdoor temp. > 35◦C I 1

1 ∈ � O1
1 ∈ {0, 1}

then switch-on AC in room

MR1
2: If summer then set AC I 1

2 ∈ {0, 1} O1
2 ∈ �

in room at 20◦C
MR2

3: If daytime turn lights off I 2
3 ∈ � O2

3 ∈ {0, 1}

Constraint : My monthly CO2 I2 = O2 =

emission to NOT exceed 118kg consumption() {O1
1 , . . . ,O

M
N
}

(i.e., ≈400kWh)

(e.g., temperature from weather channel, or indoor temperature of the A/C split unit, or outdoor
temperature of the split unit fan, or user location, to name a few examples) and we will coin these

I j
i . The MR j

i rule execution generates at every discrete time point an output O j
i , which defines the

action to be executed on device j.
Table 4 exemplifies some MR j

i ∈ MRT that satisfy a user’s preference rules along with the long-
term objective. For example, the constraint states “Keep my monthly CO2 emission below 118 kg”,
which is approximately ≈100 euros or ≈400 kWh (e.g., 1 kWh costs around 0.296 kg CO2 in EU-27
and around 0.449 kg CO2 in USA—see Table 1—so energy conversion to CO2 emission is carried
out directly). The incorporation of multiple rules may cause several deficiencies, such as rules
competing or throwing a clash with each other, rules becoming infeasible to be satisfied and/or
rules that their behavior depends on the output of other rules. This is mainly due to the inability
of current controllers to autonomously track and monitor a high number of rules that may be set
by the user in different periods, under different circumstances.

3.2 Research Goal

Design an intelligent algorithm that enables some user to find an energy-efficient plan for the execution
of a set of actuation rules encoded inMRT and a tentative energy consumption history ECP , satisfying
several objectives subject to a specific CO2 emission constraint.

The efficiency of the proposed techniques to achieve the above research goal is measured by
the following metrics: (i) the Comfort Error ; (ii) the Energy Consumption required for finding a
near-optimal plan of MRs; and (iii) CO2 Emission required to execute the research goal.

Definition 3.2.1. Comfort Error CEj (MRi ) is the difference between the desired output value

Ωj
i ∈ � of a rule set by a user and the actual value O j

i ∈ � set by the controller, given by: ce =

|Ωj
i | − |O

j
i |. The comfort can be defined individually by rules related to temperature, humidity, and

illumination or a combination of those. Please note that this research study has adopted particular
smart sensors for the sake of experimentation, however, the proposed framework can easily adopt
any kind of smart sensor, which corresponds to comfort, with minor modifications.

Definition 3.2.2. Energy Consumption Ej (MRi ) is the energy consumption of device j given

the action defined by output O j
i of MR MRi , given by:

Ej =
⎧⎪⎨
⎪
⎩

ej , if O j
i is executed

0, otherwise
,

where ej is the energy cost of device j for MR MRi .

ACM Transactions on Internet of Things, Vol. 3, No. 4, Article 29. Publication date: September 2022.
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Definition 3.2.3. CO2 Emission Γj (Ej ,γ ) is the CO2 emission produced by the actuation of device
j given the energy consumption Ej as well as the CO2 emission intensity γ of a particular country,
given by:

Γj =
⎧⎪⎨
⎪
⎩

Ej × γ , if device j operates

0, otherwise
,

where Ej is given by Definition 3.2.

Both the comfort cej (MRi ), the energy consumption Ej (MRi ) and the CO2 emission Γj (Ej ,γ )
functions, are repeated every t seconds (e.g., hourly, daily, monthly, and yearly preference) over a
time period p (i.e., the complete duration of the execution). Our research goal can be expressed as
follows:

min FCE =

t∑
k=1

(
1

N

N∑
i=1

D∑
j=1

CEj (MRi )

)
(1)

subject to FE ≤ Ep , and FΓ ≤ Γp where:

FE =

t∑
k=1

(
1

N

N∑
i=1

D∑
j=1

Ej (MRi )

)
, (2)

Ep is total available energy budget for the complete period p during which the execution of our
algorithm takes place,

FΓ =

t∑
k=1

(
1

N

N∑
i=1

D∑
j=1

Γj (Ej (MRi ,γ ))

)
(3)

and Γp is the maximum desired CO2 emission for the complete periodp during which the execution
of our algorithm takes place.

3.3 Baseline Approaches

There are two extreme scenarios that can be considered as the baselines for our proposition, the
one guaranteeing minimum CO2 emission and maximum comfort error, and the other minimum
comfort error and maximum CO2 emission. NR: takes into consideration NRs and therefore it does
not modify the behavior of the autonomous devices. This conflicts with the user’s comfort level.
Consequently, the energy consumption and consequently the CO2 emission of this approach is
minimum and the comfort error is maximum. MR: is a greedy approach that ignores the CO2

emission and triggers all actions for satisfying all MRs set by the user. Consequently, the energy
consumption and consequently the CO2 emission of this approach is maximum and the comfort
error is minimum.

4 THE IOT META-CONTROL FIREWALL (IMCF+)

In this section, we detail the internal phases of the IMCF+ framework, followed by an example of
its operation and analysis.

4.1 Outline of Operation

The IMCF+ framework (presented in Algorithm 1) is composed of two subroutines: (i) the Amor-

tization Plan (AP); and (ii) the GP. The combination of the two, forms the energy management
process, and the operation of each is described in the following subsections. The AP is responsible
for calculating the maximum energy budget constraint (coined Ep ) and the CO2 emission constraint
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(FΓ ) through a pre-selected amortization formula. Then an AI approach is executed for generating
a GP solution s∗ for optimizing the comfort error FCE (s∗) subject to satisfying the FE (s∗) ≤ Ep and
FΓ (s∗) ≤ Γp constraints. In this article, we have adopted a simulated annealing heuristic, which
does not require a learning history (like respective ML techniques), does not require a target func-
tion (e.g., like A*), it does not get stuck in local optima (e.g., like traditional hill-climbing) and it
is straightforward to be implemented in a resource-constraint setting like local smart controllers
(e.g., Raspberry).

In our research study, the real monthly consumption patterns indicated on Table 5 are consid-
ered as the maximum energy consumption of a household per month within a year. This max
monthly energy is then transformed to hourly max energy consumption based on each month’s
overall consumption and a particular amortization formula. Consequently, the energy will not be
equally shared in every hour of the year, since there is a different energy consumption pattern per
month. Therefore, there will be a difference between the available hourly energy consumption for
each month. The APs, e.g., the Linear Amortization formula, provide upper bounds (constraints
the max energy consumption) that can be consumed hourly at each month, but it does not set the
actual energy that will be consumed. The latter is the GP algorithm’s responsibility to decide how
much energy will be consumed, which should be less than the maximum budget set by the amor-
tization formulas. By satisfying the constraint (that is, not consuming more energy hourly than
the max calculated by the amortization formulas) will consequently guarantee that the monthly
energy consumption and consequently the yearly energy consumption will be less than the real
consumption patterns of Table 5.

4.2 Amortization Plan (AP) Algorithm

The AP () subroutine is initially executed for calculating the energy budget constraint Ep sub-
ject to a monthly residence Energy Consumption Profile ECP , such as the one exemplified in Ta-
ble 5 for a flat. The hourly energy budget constraint is referring to the maximum upper bounds
per hour, therefore it does not necessarily mean that for every hour we will be using the entire
available budget. The AP() is responsible to set the hourly upper consumption bounds (hourly
energy budget constraint), and later the GP() will handle the actual hourly energy allocation.
Moreover, the AP() algorithm brought forward in this work does not simply translate kWh to
CO2 emissions, but rather uses a weather dataset along with heuristics to make consumption
as clean as possible. There are several amortization strategies that can be used, such as the
following:

(i) Linear Amortization Formula (LAF): In this case, the total energy consumption TE can
be linearly allocated throughout a pre-specified period p of duration time t , which can be set as
yearly, monthly, daily, hourly, and so on, giving the energy budget constraint:

Ep =
TE

t
, (4)

whereTE is the total energy allocated for the complete periodp. In our ECP example of Table 5, the
flat consumes a total energy TE = 3,666 kWh yearly, on average. In this case, if an hourly energy
budget period is selected by the user, then the energy budget constraint Eh will be calculated as
Eh = 3666/8928 = 0.742 kWh, for a duration t = 12 × 31 × 24 = 8,928, indicating the hourly
available budget for the whole year.

(ii) Balloon Linear Amortization Formula (BLAF): In this case, the user saves a percentage
π of energy from total energy TE for a period of time λ < t , the so-called balloon σ , which is
used in the remaining period λ′ = t −λ that the energy consumption is higher. The energy budget
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Table 5. Energy Consumption Profile (ECP) of a Flat

Months kWh per month kWh per day kg CO2 (EU-27) kg CO2 (USA)

January 775.50 25.0 7.40 11.23

February 528.75 17.06 5.05 7.66

March 246.75 7.96 2.36 3.57

April 141.00 4.55 1.35 2.04

May 176.25 5.69 1.68 2.55

June 211.50 6.82 2.02 3.06

July 246.75 7.96 2.36 3.57

August 317.25 10.23 3.03 4.60

September 211.50 6.82 2.02 3.06

October 176.25 5.69 1.68 2.55

November 211.50 6.82 2.02 3.06

December 423.00 13.65 4.04 6.13

Total 3666.00 – – –

constraint Ep for a period p of duration t is calculated as follows:

Ep =

{
T E
t
− σ

λ
, for λ period

T E
t
+ σ

λ
, for λ′ period

,

where σ =
(TE
t
× λ

)
× π .

(5)

In our example, if the user desires to save π = 30% of the total energy consumption TE = 3,666
kWh, for λ = 7 months (e.g., for April to October) that the consumption is lower than the remaining
λ′ = 5 months (i.e., November to March) then σ = (305.5 × 7) × 0.3 = 641.55 kWh. Therefore, the
energy consumption for seven months, between April to October, will be Ep = 397.15 and for
five months, between November to March will be Ep = 213.85 kW. The corresponding hourly
energy budget constraint of this formula will be Eh = 397.15/(31 × 24) = 0.53 kWh and Eh =

213.85/(31 × 24) = 0.28 kWh, accordingly.
(iii) ECP-based Amortization Formula (EAF): In this case, a set of weights is calculated using

the Energy Consumption Profile ECP vector (e.g., see Table 5). The weights are then used to define
the energy budget constraints for a user-defined period over an available energy budget E:

Ep =

{
wi × E
t/|ECP |

}
, f or i = 1, . . . , |ECP |,

where wi =
TE

ECPi
and

|ECP |∑
i=1

wi = 1,

(6)

TE is the total energy consumption derived from the ECP , E is the user-specified available energy
budget, |ECP | is the size of the Energy Consumption Profile vector and t/|ECP | normalizes the
energy budget based on the time granularity duration t . Clearly, t could have taken a different
granularity (e.g., day, hour, or even minute), given that this information is typically available in
energy monitoring systems. For example, let’s assume an hourly energy budget period and an
available yearly budget E = 3,500 kWh selected by a user of a flat with an ECP indicated in the left
column of Table 5. The total energy consumption derived from the ECP set isTE = 3,666 kWh and
|ECP | = 12. Therefore, w1 = 0.211,w2 = 0.144, and so on until w12 = 0.115. The hourly energy

consumption per month can be calculated as {wi×3500
31×24 }. In all cases, the max CO2 emission Γp is
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Fig. 2. Example execution of the IMCF+ framework planner.

calculated as:

Γp = Ep × γ
and the constraint FΓ is directly calculated using Equation (3).

4.3 Green Plan (GP) Algorithm

In this subsection, we discuss our GP algorithm and its related components and parameters.
Solution Representation: A GP solution is a vector s = < s1, . . . , sN > of size N = |MRT |. A

vector component si represents a MR in table MRT , where si = 0 means ignoring MR at position i
of table MRT and si = 1 means adopting MR at position i .

Initialization: At the beginning, an initial solution s∗ is developed in line 8 that will specify the
initial state of the algorithm. An initial solution can be generated randomly or deterministically.
In the latter, a deterministic solution for the GP can be to set all vector components to 1, meaning
that all MRs will be greedily triggered, favoring in this way the comfort error objective, but having
a high probability of violating the Γp constraint. In the case of a random initialization, the values
of all vector components are uniformly randomly selected.

Optimization: For the optimization step, a simulated annealing heuristic is utilized to trans-
form the current state’s solution s∗ to a new state’s solution s by uniformly randomly selecting
and swapping up to k components of s∗. The probability of making the transition from the current
state s∗ to a candidate new state s is specified by an acceptance probability function P (e (s∗), e (s ),T ),
where e (s∗) and e (s ) is the energy (or fitness evaluation) of the solutions generate in states s∗ and
s , respectively, andT is a global time-varying parameter, called the temperature. The temperature
T plays a crucial role in controlling the evolution of the state s , since a large T favors coarse vari-
ations between the states, where a small T favors more fine grain variations. Parameter T can be
either set through a pre-specified annealing schedule or calculated in respect to the number of it-
erations passed (i.e.,T = τ+1

τmax
). In any case, a gradual reduction of T is required as the simulation

proceeds. A transition is always accepted when s is better than s∗ and is probabilistically accepted,
with a probability P (e (s∗), e (s ),T ) when s is worse than s∗, allowing in this way the heuristic to
avoid local optima. Here, it is important to note that any heuristic or meta-heuristic approach can
be utilized in the GP optimization step.

Evaluation: Each solution s is evaluated using the performance metrics FCE , FE and FΓ of Equa-
tions (1)–(3) in lines 10 and 13. A solution s is considered better and replaces the current best
solution s∗ (i.e., transition is accepted) if (FE (s ) ≤ Ep ) && (FCE (s ) < FCE (s∗)) && (FΓ (s ) < FΓ (s∗)).
Otherwise, if s is worse than s∗, the transition is accepted only if a uniformly random generated
value rand < P (e (s∗), e (s ),T ), where rand is in the range of [0, 1].
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ALGORITHM 1: IMCF+: Generates a Green Plan

Input: MRT : Meta-Rule Table; k : components to be modified; τmax : max iterations; t : time granularity; apl :
amortization plan; ECP : Energy Consumption Profile; T :Temperature

Output: An green plan solution s∗ = (s1, . . . , sN )

1: AP(apl ,p,ECP ) � Amortization Plan Routine

2: switch (apl )
3: a: Ep ← LAF (t ,ECP ) � use linear Equation (4)

4: b: Ep ← BLAF (t ,ECP ) � use balloon Equation (5)

5: c: Ep ← EAF (t ,ECP ) � use ECP-based Equation (6)

6: return Γp = Ep × γ � max CO2 emission for γ CO2 emission intensity

7:

8: GP(MRT ,k,τmax , i, Γp ) � Green Plan Routine

9: s∗ ← initi (MRT ) � s∗: initial solution for time i

10: (FCE , FE , FΓ)← evaluate (s∗) � with Equations (1)–(3)

11: While τ < τmax do � τ : current iteration

12: s ← optimization(s∗) � randomly select k positions and swap their binary value

13: (FCE , FE , FΓ)← evaluate (s ) � with Equations (1)–(3)

14: If (FE (s ) ≤ Ep ) && (FCE (s ) < FCE (s∗)) && (FΓ (s ) < Γp ) then

15: s∗ ← s � Set s as the current solution s∗

16: Else If rand (0, 1) ≤ P (FCE (s∗), FCE (s ),T ) && (FCE (s ) < FCE (s∗)) && (FΓ (s ) < Γp ) then

17: s∗ ← s � Set s as the current solution s∗

18: EndIf

19: τ + + � Increase iterations

20: EndWhile

21: return s∗ � Return the final green plan solution

22:

23: Γp ← AP (apl , t ,ECP );

24: return (∀t
i GP (MRT ,k,τmax , i, Γp ))

Termination criterion: The GP stops when τmax iterations are completed. Alternatively, the
algorithm can iterate until �s |FCE (s ) < FCE (s∗). However, in the absence of any knowledge on the
optimal solution this may result in an infinite loop.

Example: Consider the simplified scenario of Figure 2 in which a user sets four MRs MR j
i in

the MRT for a four-room residence, which along with some input data from the house’s sensors as
well as some online web services (e.g., weather forecasting website) are forwarded to the IMCF+.
IMCF+ initially runs the AP subroutine using a pre-selected amortization formula as well as the
ECP to calculate an energy budget constraint Ep and consequently a CO2 emission constraint Γp .
Then it converts the MRT to a binary vector, in which each index of the vector represents a MR
in the MRT . A random initialization process generates the first solution s∗ =< 1, 0, 0, 1 >, which
means that MRs 1 and 4 will be triggered and MRs 2 and 3 will be ignored. Solution s∗ is evaluated
using the performance metrics FCE , FE and FΓ of Equations (1)–(3). During the optimization, k = 2
vector components are modified using a uniform random generator. In this example, the value
of vector component 2 is swapped from 0 to 1 and the value of component 4 is swapped from 1
to 0. The newly generated solution s = < 1, 1, 0, 0 > is again evaluated using Equations (1)–(3)
and compared with the current best solution s∗. At each iteration, when s is better than s∗ then
s becomes the s∗, otherwise of s is worse than s∗ then a uniformly random generator picks and
returns a value rand in the range [0, 1] and if rand ≤ P (FCE (s∗), FCE (s ),T ) then s becomes s∗. The
algorithm stops when the termination criterion is met.
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4.4 Performance Analysis

We analytically derive the performance of IMCF+ with respect to the estimated comfort error
CE and CO2 emission Γ. We adopt a worst-case analysis as it provides a bound for all input. Our
experimental evaluation in Section 6, shows that under realistic and real datasets our approach
performs more efficiently than the projected worst case. The analysis is based on our system model
and ignores any energy not directly associated with the MRT MRT .

Lemma 1. Our IMCF+ approach has a comfort error of FCE =
1
n

∑D
i=1

∑
j cej (MRi ), i = 1, . . . ,n,

where n > 0 is the number of MRs that will be executed.

Proof. The GP will select at least n > 0 MRs to be executed satisfying in this way the energy
budget constraint. In the worst case scenario and for an energy budget equal to zero, IMCF+ will
act as the NR approach providing FCE = 1. On the other hand, the MR approach by greedily
executing all MRs in the MRT will offer an FCE = 0. �

Lemma 2. Our IMCF+ approach has a CO2 emission of FΓ =
1
n

∑D
i=1

∑
j Γj (Ej (MRi ),γ ), i = 1, . . . ,n,

where n ≤ N is the number of MRs that will be executed.

Proof. The GP will select at most n ≤ N MRs to be executed satisfying in this way the CO2

emissions constraint. In the worst case scenario and by ignoring the constraint, IMCF+ will act as
the MR approach providing FΓ = 1. On the other hand, the NR approach by not executing any MR
of the MRT will offer an FΓ = 0. �

5 THE IMCF+ SYSTEM ARCHITECTURE

In this section, we describe an integrated system we have developed for IMCF+ using the open
Home Automation Bus (OpenHAB),5 the Linux crontab daemon, as well as the Laravel PHP web
framework following the model–view–controller architectural pattern. We start out with a discus-
sion of the system architecture and then describe the Graphical User Interface we have developed
that integrates directly into OpenHAB’s mobile and web Panel view for both interactive manage-
ment of IoT and automated management of Energy-aware and CO2-aware MRT rule pipelines
using the GP described in this work.

5.1 System Architecture

Our system architecture comprises the following components: (i) a full-fledge local controller im-
plemented inside the openHAB stack, which is a smart home management software; and (ii) IMCF+,
which is the software system that encapsulates the complete application logic of the energy man-
agement stack we propose in this work along with the respective user interfaces.

Local Controller (LC): is a java-based system installed on a micro device, like a Linux Rasp-
berry PI, running on the local network of a user. The LC will be in direct communication with the
IoT devices (i.e., Things (TG)) to instruct them based on the preferences registered by a user (see
Figure 3). A user will typically download the openHAB smartphone application (APP), for iOS or
Android, and interact with TG through LC. For the implementation of LC we decided to extend the
openHAB stack, which is a vendor and technology agnostic open source automation software for
smart home that provides a rich ecosystem of bridges through which a user can interact directly
with IoT devices (e.g., Daikin Smart A/C, Phillips HUE lights) both locally and remotely. This gives
us the benefit to achieve maximum IoT market compatibility as the integration of IoT is always an
immense challenge.

5OpenHAB, https://openhab.org.
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Fig. 3. Overview of the IMCF+ system implementation.

Fig. 4. IMCF+ Graphical User Interface: Integration of the IMCF+ Software Library in the openHAB Home
Automation Stack. From left to right: (a) Interactive and Automated Menu; (b) Dashboard for smart space
current state; (c) MRT Configurator; and (d) MRT data entry form.

The IMCF+ system is protected by the authentication provided by openHAB and Laravel frame-
work. The LC is also located on the user’s local network and is protected by the Ubuntu operating
system firewall. Therefore, the system is quite secure, as someone with malicious intent will have
to break through the security offered by openHAB and Laravel to be able to infect files or penetrate
the firewall.

To realize the operation of LC, consider, for example, a user inside his smart space that se-
lects through an APP to increase the temperature of an A/C from 21 to 25 degrees Celsius (see
Figure 4(a) and (b)). This manual interaction goes to LC that communicates this directly to TG (on
older units this is typically unencrypted http communication channels, either http query string or
in some cases JSON web 2.0 interactions). When a user’s APP is outside a smart space, the network
firewall and Network Address Translation (NAT) will obviously not let this user interact with
LC. As such, the user’s APP connects to the Cloud Controller (CC), which is a server on the public
Internet that communicates and controls LC remotely.

The complete picture can tentatively be complemented by a Cloud Meta-Controller (CMC),
like IFTTT, which can enable the user to configure and run various custom rules. CMC would in
this case interact with CC that would in turn interact with LC that would eventually interact with
TG, all under the manual control of the user APP.
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All above clearly do not enable the adaptation of comfort preferences to meet the long-term
energy planning targets of individuals or group of individuals as we do in this work (see examples
in Section 1) and describe technically next. In the future, we also plan to investigate the so called
IMCF+-Cloud extensions that will enable IMCF+ to operate as a CMC controller in the cloud.

The IMCF+ Component is a software extension to LC we have implemented that encapsu-
lates the implementation of the GP algorithm but also the Graphical User Interfaces (GUI) and
storage necessary to allow the user to interact with the system. The GP algorithm is implemented
as a JAVA library which takes the user configurations from a local MariaDB persistency layer. The
storage layer is populated by the user using the APP, which has been configured in a way to inte-
grate seamlessly the MRT rule definition process through a web-based GUI (see Figure 4(c) and (d)).
The GUI code is written in the Laravel PHP web framework following the model–view–controller
architectural pattern as well as JavaScript and HTML. Our complete code is approximately 2,500
lines-of-code (LOC) plus 3,000 LOC going to the GUI.

For the GUI code execution, we rely directly on the NGINX web web-server available on Rasp-
berry PI, while for the IMCF+ GP library we invoke the cron job daemon that reliably executes the
Green Planning every few minutes. In case devices have to be turned on or off, the IMCF+ system
has the following options in our system:

— Binding-mode, where IMCF+ exploits the rich ecosystem of bridges available on the open-
HAB open source project to interact with local devices. We use this as the default mode, as
it allows our platform to scale to a very wide spectrum of IoT devices.

Example6:

daikin.things: daikin:ac_unit:living_room_ac [ host="192.168.0.5" ]

daikin.items: Switch DaikinACUnit_Power

channel = "daikin:ac_unit:living_room_ac:power"

Number:Temperature DaikinACUnit_SetPoint

channel = "daikin:ac_unit:living_room_ac:settemp"

— Extended mode, where IMCF+ implements locally the custom instructions for enabling and
disabling the various TG devices in the smart space of a user. An example of this mode is
the following command:
Example: Setting Daikin in Cool Mode 25 degrees.7

http://192.168.0.5/aircon/set_control_info?
pow=1&mode=3&stemp=25&shum=0

Given that many of the IoT communications are unencrypted, this can easily be captured
by deep packet analyzers like Wireshark. Additionally, to avoid any additional CMC, CC
or LC interactions with the Daikin TG, we also configure the LC network firewall with the
iptables command to disable TCP flows to designated TG devices on the local network. In
this case, IMCF+ works as a real network firewall by blocking all outgoing traffic from LC
to TG.

Example:

iptables -A OUTPUT -s 192.168.0.5 -j DROP

5.2 Graphical User Interface (GUI)

Our prototype GUI provides all the functionalities for a user participating in IMCF+. The GUI is
divided into a MRT interface and the OpenHAB Rules Table, respectively, as shown in Figure 4(d).

6OpenHAB Daikin Binding. https://www.openhab.org/addons/bindings/daikin/.
7Daikin Control. https://github.com/ael-code/daikin-control.
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Fig. 5. Histograms of Light-Level and Temperature of the apartment dataset, and the outdoors Temperature
retrieved from the OpenWeather forecast dataset.

The MRs interface prompts users to define kWh preferred limit, temperature, and light values for
any configured time slots. The OpenHAB Rules Table records are retrieved through the OpenHAB
Rest API system consisted of smart device sensor measurements installed and pre-configured in
a building. These rule combinations are used by the AI GP algorithm to satisfy the user needs
keeping the balance between comfort and energy consumption.

At a high level, our GUI enables the following functions: (i) record OpenHAB item measure-
ments/values on local storage and present those on a table; (ii) configure various MRs in re-
gards of kWh limit, temperature, and light values; and (iii) operate IMCF+ framework and get
an efficient execution considering user satisfaction along with balanced comfort error and energy
consumption.

6 EXPERIMENTAL METHODOLOGY AND EVALUATION

This section presents an experimental evaluation of our proposed framework. We start-out with
the experimental methodology and setup in Section 6.1, followed by various evaluation studies in
different smart environments in Section 6.2, and finally a number of experiments that expose the
core benefits of our IMCF+ framework and its internal GP algorithm compared to baseline tech-
niques. The experimentation was conducted based on a micro-benchmarking study for parameters
of the GP algorithm and concludes with an Energy Conservation Study as defined in Section 6.3.

6.1 Methodology

This section provides details regarding the algorithms, metrics, and datasets used for evaluating
the performance of the proposed approach.

Datasets: We have adopted a trace-driven experimental methodology in which real datasets
are fed into our simulator executed on the testbed. This allows repeatable execution of workloads
under different control parameters. Our evaluation is carried out on an Ubuntu 18.04 VMWare
server image, featuring 8 GB of RAM with 2 virtual CPUs (@ 2.40 GHz). The image utilizes fast
local 10K RPM RAID-5 LSILogic SCSI disks, formatted with VMFS 6 (1MB block size). We utilize
anonymized measurements from a real residential apartment that comprises a variety of sensors,
sub-meters and approximately 5,668,878 readings (1.09 GB in total). Our real datasets of residential
data are collected by the “Center for Advanced Studies in Adaptive Systems” (CASAS) [51] at
Washington State University in the School of Electrical Engineering and Computer Science. CASAS
serves to meet research needs around testing of the technologies using real data through the use
of a smart homes environment located on the WSU Pullman campus. The real weather forecast
dataset was acquired using Weather API on the OpenWeatherMap website and contains ∼5 years
(2012–2017) of high temporal resolution data based on hourly measurements of various weather
attributes, such as temperature, humidity, air pressure, weather description, wind direction, and
speed (see Figure 5).
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Table 6. MRT and IFTTT Configurations for Flat Experiments

Description Time/Duration Action Value

Night Heat 01:00–07:00 Set Temper. 25

Morning Lights 04:00–09:00 Set Light 40

Day Heat 08:00–16:00 Set Temper. 22

Midday Lights 10:00–17:00 Set Light 30

Afternoon Preheat 17:00–24:00 Set Temper. 24

Cosmetic Lights 18:00–24:00 Set Light 40

Energy Flat for three years Set kWh Limit 11,000

Energy House for three years Set kWh Limit 25,500

Energy Dorms for three years Set kWh Limit 480,000

IF THIS THEN THAT

Season Summer Set Temper. 25

Season Winter Set Temper. 20

Weather Sunny Set Temper. 20

Weather Cloudy Set Temper. 22

Weather Sunny Set Light 0

Weather Cloudy Set Light 40

Temperature >30 Set Temper. 23

Temperature <10 Set Temper. 24

Light Level >15 Set Light 9

Door Open Set Light 0

— Temperature Dataset: The 700 MB dataset contains 3,555,238 readings on a second basis
between October 2013 and December 2016. The readings, which are recorded at a residen-
tial apartment of a volunteer adult, include temperature and door/window sensor measure-
ments.

— Light Dataset: The 416 MB dataset contains 2,113,640 readings on a second basis between
October 2013 and December 2016. The readings, which are recorded at a residential apart-
ment of a volunteer adult, include light measurements.

— Weather Forecast Dataset: The 71,23 MB dataset contains 271,561 readings on an hourly
basis between October 2012 and November 2017. The historical weather data is available for
30 US and Canadian Cities, as well as 6 Israeli cities, including temperature, humidity, air
pressure, weather description, wind direction, and speed.

To evaluate the scalability of our propositions for residential buildings of various scales, we
have generated three realistic datasets by replicating the above onto various building sizes. The
resulting datasets are the following:

— Flat Dataset: A single user flat/apartment dataset consisted of one bedroom, a bathroom,
and a kitchen. The apartment has a single split unit to warm/cool an area size of 50 m2. It
has a size of 1.09 GB.

— House Dataset: A residential house dataset generated by replicating, mixing up the read-
ings, and multiplying the real dataset by the factor of four. It has three bedrooms and four
split units used by four residents. The area size is approximately 200 m2. It has a size of
4.50 GBs.

— Dorms Dataset: A University Campus dataset (dorms) generated synthetically from the
bootstrap datasets. We have generated 50 dorm apartments consisting of two bedrooms
(10 m2/room) with a shared bathroom, a kitchen, and two split units. The total area size
of the dorms is approximately 2000m2 and has a size of 20 GBs.

Metrics: Our cost metrics are Energy Consumption (FE ), CO2 Emission (FΓ ), and Comfort Error
(FCE ) as defined in Section 3 as well as CPU Time (FT ) for the comparison in the performance study.
The CPU Time (FT ) is the processing time required by the controller for running the optimization
function and calculating the output for all MRs. The mean and standard deviation of the results is
shown with error bars in all experimental studies that follow, based on ten repetitions.

Algorithms: Here we provide a concise overview of the compared methods and algorithms
considering the MRT Table 6, which is inspired from real preferences recorded by users.

— No-Rule (NR): This method ignores all rules in the MRT (see Table 6 used in the flat dataset,
the rest use uniformly random variations of the same table). FE is obviously always 0 since
no IoT device is turned on. On the other hand, FCE is measured as a percentage of comfort a
user will had he executed all rules (Def. 3.1) and (FT ) is only the cost of doing the simulation.
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— If-This-Then-That (IFTTT): This executes the IFTTT preferences (see Table 6) used in the
flat dataset. The dataset was collected from the official IFTTT website. For the evaluation
we measure FCE , i.e., percentage of comfort a user will get from executing the IFTTT rules
against all rules (recorded in the MRT table).

— Meta-Rule (MR) method: This method executes all rules in the MRT (again, see Table 6
used in the flat dataset, the rest use uniformly random variations of the same table). FE is
obviously maximum here and FCE is minimum as IoT devices will operate maximally.

— Green Planner (GP) algorithm: This is the algorithm we propose in Section 4. For the
construction of the GP algorithm we have set the number of rules activation/deactivation in
each iteration (k), a savings percentage amount (s), and the number of iterations (τmax ) and
detailed evaluation follows for these parameters in Sections 6.3.2 and 6.3.3.

Evaluation Plan: We split our experimental evaluation into two basic series: (i) Evaluation
Studies in Section 6.2, during which we carry out an evaluation in a variety of environments using
a pre-configured instance of our GP algorithm according to the parameters we identify in the
subsequent micro-benchmarking section; (ii) Micro-benchmarking Study in 6.3, during which we
carry out a detailed evaluation of all parameters according to the following table:

Table 7. Micro-benchmark Study Configuration Table

Section Name k s τmax Initialization

6.3.1 Performance Evaluation 4 0% 15 random

6.3.2 k-opt Evaluation 2, 3, 4 0% 15 random

6.3.3 Initialization Evaluation 4 0% 15 all-1s, random, all-0s

6.3.4 Energy Conservation Study 4 0%–40% 15 random

6.2 IMCF+ Evaluation Studies

In this section, we carry out an extensive evaluation study in various smart environments equipped
with net-metering photovoltaic systems. Particularly, we examine IMCF+ in scenarios such as a
household, university campus, and hotel apartments, using different time frames and rules as well
as diverse number of users. Note that the financial benefit of using our GP is not significant in a
net-metering system, however, the environmental impact is very significant.

6.2.1 Household Evaluation Study. For this experimental series, we deployed an instance of our
real system for a family of three persons for one week (see Figure 6). Particularly, we allowed
each person to configure their personal preferences using the Mobile APP that interacts with an
IMCF+-LC node on a Linux VM on our datacenter described earlier. Particularly, each individual
resident entered approximately three different MRs according to their personal preferences. The
weekly energy consumption (kWh) limit was set by one of the residents to 165 kWh. This results
in configuration data of approximately 65 bytes/user stored in the MariaDB persistency layer. To
measure the environmental parameters (i.e., temperature, light) we use data from the open weather
API. We measure again the performance of the proposed GP framework in regard to FE , FΓ , and
FCE .

The FE , FΓ , and FCE results for our evaluation using real Weather Forecast data are summarized
in Table 8. In respect to FCE , our observation is that GP is indeed an efficient approach for retrieving
great user satisfaction, as it performs in 4 seconds on average with an Average Comfort Error
≈3.45%. Table 9 demonstrates for each individual resident their own Average Comfort Error values
in respect with their configured MRs, showing both a consistent and high satisfaction close to 98.9%
for all residents. The system behaves correspondingly to what we observed in the simulations,
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Fig. 6. Household evaluation study.

Table 8. Evaluating the Household System with Respect to FE , FΓ and FCE

MR algorithm GP algorithm

Time Duration Week Week

Energy Consumption (FE ) 210.85 kWh 132.15 kWh

Comfort Error (FCE ) 0% 3.45%

kg CO2 Emission (FΓ ) 84,15 kg CO2 50.79 kg CO2

Energy Consumption (FE ) with CO2 emissions 185.0 kWh 114.85 kWh

Energy Consumption (FE ) without CO2 emissions 25.85 kWh 17.3 kWh

Table 9. Individual Resident Comfort Error (FCE )

Users Comfort Error (FCE )

Father 1.2806%

Mother 1.1500%

Daughter 1.0234%

therefore the FE ≈ 130.64 kWh is within the preferred budget limit as pre-configured by the user,
and with a reasonable FΓ ≈ 50.79 kg CO2. This is approximately a one-way flight trip from Paris to
Frankfurt, since according to the figures in Table 2 from the German non-profit organization called
“Atmosfair”, a flight from Paris to Frankfurt and back generates about 115 kg of CO2 per passenger.
As presented in the results section, the kilograms of carbon dioxide emissions reduction while
using the GP algorithm is ≈59% (33 kg CO2) less than the MR algorithm.

6.2.2 University Campus Evaluation Study. In view of this experimental series, we have simu-
lated our system at the University of Cyprus for the timespan of a year using the kg/CO2 readings
of Cyprus (see Table 1). The campus consists of 10 hall blocks, a sports center, laundry stations,
a library, a parking lot, a restaurant, and the accommodation service office (see Figure 7). The
administration officer configured approximately 25 MRs/preferences for the entire university cam-
pus through the Mobile APP directly interacting with the IMCF+ Local Controller node located on
our datacenter. The administration officer is responsible to manage and act as a core to the setting
system considering the smooth functionality of all the campus premises. Additionally, the modera-
tor has the privilege to monitor the state and mode of the IoT devices though the GUI console. The
annual energy consumption (kWh) limit was set to 500,000 kWh. Similarly, to the previous case,
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Fig. 7. University campus evaluation study.

Table 10. Evaluating the University Campus System with Respect to
FE , FΓ , and FCE

MR algorithm GP algorithm

Time Duration Year Year
Energy Consumption (FE ) 652,641 kWh 414,548 kWh
Comfort Error (FC E ) 0% 3.20%
kg CO2 Emission (FΓ ) 355,719.50 kg CO2 166,956.03 kg CO2

Energy Consumption (FE ) with CO2 emissions 580,655.40 kWh 368,832.85 kWh
Energy Consumption (FE ) without CO2 emissions 71,985.60 kWh 45,715.15 kWh

data from the Open Weather API have been used for the environmental parameters (i.e., tempera-
ture, light) measurement, thus the GP framework strictly considers the performance of the FE , FΓ ,
and FCE , respectively.

Table 10 summarizes the FE , FΓ , and FCE results for our university campus evaluation study. In
respect to FCE , our observation is that GP behaves proficiently while retrieving a great satisfaction,
as it performs with an Average Comfort Error ≈3.20%. This indicates that the more rules are con-
figured to the system, the better results are produced by the proposed framework. The algorithm
acts correspondingly to what we observed in the simulations, therefore the FE ≈ 414,548 kWh is
within the preferred budget limit as pre-configured by the administration officer, and also with a
reasonable FΓ ≈ 166,956.03 kg CO2. This is approximately 53 return flight trips from London to
Perth, since according to the figures of Table 2 from “Atmosfair”, flying from London to Perth and
back generates about 3,153 kg of CO2 per passenger. As the results clearly present, the kilograms
of carbon dioxide emissions reduction while using the GP algorithm is ≈47% (188,763 kg CO2) less
than the MR algorithm.

6.2.3 Hotel Apartments Evaluation Study. In the final experimental series, we have deployed an
instance of our framework for a hotel’s apartments under an annual operation. The hotel consists
of approximately 50 apartments, each one with its own kitchen, a bathroom, a living room, one-
three bedrooms, and a balcony (see Figure 8). For each apartment tenants were prompted to set up
their personal MR preferences through a smart mobile device. In contrast with the previous cases,
each tenant had the privilege to configure its rented apartment’s smart devices in regard to tem-
perature and light level, but only the hotel’s administrative landlord could exclusively configure
the annual energy consumption (kWh) limit for all hotel apartments, which in this case was set to
375,000 kWh. All the users can log into the IMCF+ platform and observe their personal comfort
level. Moreover, Open Weather API data have been used for the measurement of the environmental
parameters, and then the GP framework was executed and evaluated upon the FE , FΓ , and FCE .

Table 11 summarizes the FE , FΓ , and FCE results for our hotel apartments evaluation study. In
respect to FCE , our observation is that GP operates effectively as it performs with an Average
Comfort Error ≈2.45%, showing an excellent satisfaction level for the entire group of users. The
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Fig. 8. Hotel apartments evaluation study.

Table 11. Evaluating the Hotel Apartments System with Respect to
FE , FΓ , and FCE

MR algorithm GP algorithm

Time Duration Year Year
Energy Consumption (FE ) 509,339 kWh 322,411 kWh
Comfort Error (FC E ) 0% 2.45%
kg CO2 Emission (FΓ ) 271,962.35 kg CO2 126,125.29 kg CO2

Energy Consumption (FE ) with CO2 emissions 452,988.50 kWh 280,902.65 kWh
Energy Consumption (FE ) without CO2 emissions 56,350.50 kWh 41,508.53 kWh

framework behaves accordingly to what we observed in the simulations, therefore the FE ≈ 322,411
kWh is within the preferred budget limit as pre-configured by the hotel’s administrative landlord,
and also with a reasonable FΓ ≈ 126,125.29 kg CO2. This is approximately as 49 return flight trips
from Perth to Athens, since according to the figures in Table 2 from “Atmosfair”, flying from Perth
to Athens and back generates about 2,530 kg of CO2 per passenger. As clearly demonstrated in the
results section, the kilograms of carbon dioxide emissions reduction while using the GP algorithm
is ≈45% (145,837 kg CO2) less than the MR algorithm.

6.3 Micro-benchmarking Series

In this section, we carry out an extensive micro-benchmarking study for various parameters. Par-
ticularly, we examine the number of rules activation/deactivation in each iteration (k), the savings
percentage amount (s), different initialization methods, and the number of iterations (τmax ) as it
is summarized in Table 7. This study guided us to tune and select the right combination of config-
uration settings for the optimal operation of the GP algorithm.

6.3.1 Series-1: Performance Evaluation. In this experimental series, we evaluate the perfor-
mance of the proposed GP framework against all algorithms over all datasets introduced, with
respect to FE , FΓ , and FCE . Figure 9 demonstrates the trade-off between the Energy Consumption,
the Comfort Error, the CO2 Emission, and the CPU Execution Time between all approaches. The
NR approach obtained the worst FCE = 62–72% of the whole dataset, and the best FE = 0 kWh
along with the best FΓ = 0 kg CO2. The GP algorithm obtained a reasonable FCE around 6.5–8%,
the second lowest FE and the less CO2 Emission intensity. The IFTTT and MR algorithms are
greedy in regards of Energy Consumption, thus their kWh consumed and CO2 Emissions are very
high. The main difference between the two is that IFTTT has FCE = 26% in the residential flat case,
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Fig. 9. Performance Evaluation: Evaluation in terms of the comfort error (FCE ), the Energy Consumption

(FE ), the CO2 emission (FΓ ), and the CPU execution time (FT ) in all datasets.

FCE = 29% in the case of a house, and FCE = 39% in the dorms case, while the MR satisfies all the
MRs, thus its FCE is 0%, which is the best possible obtained.

In the residential flat case, the preferred energy budget was configured to 11,000 kWh for all
three years, and the GP managed to save up to 10% of energy, which is approximately 9,500 kWh,
with a reasonable FCE around 6.5–7%, and ≈3,600 kg CO2 Emission. In the case of a house, the
preferred energy budget was configured to 25,500 kWh for all three years, and the GP managed
to achieve approximately 22,300 kWh, with a reasonable FCE around 7–7.5%, and ≈8700 kg CO2

Emission. In dorms case, the preferred energy budget was configured to 480,000 kWh for all three
years, and the GP managed to achieve approximately 410,000 kWh, with a reasonable FCE around
7.5–8%, and ≈135,000 kg CO2 Emission. It is important to notice, that the difference between the
MR and the GP in regard to energy consumption, is relatively high and particularly ≈5,000 kWh
for the flat dataset, ≈10,000 kWh for the house dataset, and ≈150,000 kWh for the dorms dataset.

The fastest execution time (FT ) was achieved by the NR method since it simply calculates the
error without applying any rules on the imported datasets. The GP algorithm is using the hill climb-
ing approach by searching an optimal solution for the user taking into account the preferred al-
lowed energy budget constraint and curbing the CO2 emissions, thus it is the most time-consuming
method. The MR greedy approach focuses only on minimizing the Comfort Error, which means
executing all MRs without any iterative processes or calculations, since FCE = 0%. The GP has been
also applied across different countries around the world based on a house scenario as shown on
Table 12, demonstrating the CO2 emission intensity (kg CO2 per kWh) for each case, respectively.

6.3.2 Series-2: k-opt Evaluation. In the second experiment, we evaluate the performance of the
proposed GP framework against different ks (rule modifications), with respect to Energy Con-
sumption, CPU Execution Time, CO2 Emission, and the Comfort Error. Figure 10 illustrates that
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Table 12. The GP Algorithm has been Applied Across different Countries Demonstrating the
CO2 Emission Intensity (kg CO2 per kWh) based on a House Scenario with an Approximate Energy

Consumption of ≈22300 kWh

COUNTRY kg CO2 per kWh

Sweden 255.35

Lithuania 351.76

France 1143.53

Austria 1474.27

Latvia 1920.60

Finland 2349.90

Slovakia 2805.54

Denmark 3248.08

Belgium 3690.77

COUNTRY kg CO2 per kWh

Croatia 4148.76

Luxembourg 4590.48

Slovenia 5015.88

Italy 5125.36

Hungary 5300.80

Spain 5349.64

Romania 6578.41

Portugal 6800.32

Ireland 7500.01

COUNTRY kg CO2 per kWh

Germany 8214.16

Bulgaria 8951.33

Netherlands 9959.84

Czech Republic 10750.20

Greece 11562.38

Malta 12064.89

Cyprus 12905.67

Poland 13559.11

Estonia 15200.73

COUNTRY kg CO2 per kWh

EU-27 (average) 5651.82

USA (average) 8700.15

Fig. 10. k-opt Evaluation: Evaluation in terms of the comfort error (FCE ), the CO2 emission (FΓ ), the
CPU execution time (FT ), and the Energy Consumption (FE ) based on the number of modified rules
(activated/deactivated), in all datasets.

by using four activation/deactivation rule modifications in each iteration we obtain the best FCE

with the best possible CO2 Emission intensity. The worst FCE occurred when we used two rule
modifications. In the residential flat case, the energy consumed was in every case approximately
the same and around 9,500 kWh. What actually made a difference was the FCE , which decreased
from 6.8% to 6.5% (≈3600 kg CO2) in the flat case, from 7.5% to 7.0% (≈8700 kg CO2) in the house
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Fig. 11. Initialization Evaluation: Evaluation in terms of the comfort error (FCE ), the CO2 emission (FΓ ), the
CPU execution time (FT ), and the Energy Consumption (FE ) based on various initialization techniques, in all
datasets.

scenario, and from 8.3% to 8.0% (≈135,000 kg CO2) in the dorms scenario, as we increased the acti-
vation/deactivation rule modifications in each iteration. This is due to the hill climbing approach
performing bigger “jumps” towards the local optimum at each step and thus searching the solution
space more effectively. As the number of k rule modifications increases, the execution (FT ) takes
more time to complete and the energy consumption is decreasing gradually.

6.3.3 Series-3: Initialization Evaluation. In the third experimental series, we evaluate the per-
formance of the proposed GP framework using different initialization strategies, with respect to
Energy Consumption, CO2 Emission, CPU Execution Time, and the Comfort Error. In the first (all-
1s) case, we have initially activated and applied all rules. In the second (random) case, we have
uniformly randomly activated some rules and in the last (all-0s) case, we have initially deactivated
all rules. Figure 11 presents the FCE that increases by using the “all-deactivated” (i.e., all-0s) rules
strategy, hence consuming less energy and slightly more CO2 Emission in contrast to the “all-
activated” (i.e., all-1s) and the “random” rule strategies. In the residential flat case, starting from
all-1s, moving to random and finally to all-0s, we observe an increase on the FCE from approxi-
mately 6.5% to 7.5% and on the FΓ from ≈3600 kg CO2 to ≈3800 kg CO2, but, respectively, there
is a decrease on the FE from approximately 9500 kWh to 8900 kWh. In the house scenario, start-
ing from all-1s, moving to random and finally to all-0s, we observe an increase on the FCE from
approximately 7.0% to 7.8% and on the FΓ from ≈8700 kg CO2 to ≈9000 kg CO2, but, respectively,
there is a decrease on the FE from approximately 22300 kWh to 20500 kWh. In the dorms case, start-
ing from all-1s, moving to random and finally to all-0s, we observe an increase on the FCE from
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Fig. 12. Energy Conservation Study: Evaluation in terms of the comfort error (FCE ), the CO2 emission (FΓ ),
the CPU execution time (FT ), and the Energy Consumption (FE ) based on different saving values, in all
datasets.

approximately 8.0% to 8.6% and on the FΓ from ≈135,000 kg CO2 to ≈158,000 kg CO2, respectively,
though there is a decrease on the FE from approximately 410,000 kWh to 400,000 kWh. This is due
to the hill climbing approach that needs to perform more iterations in the solution space to find
the local optimum, and consequently an optimal GP, when all rules are deactivated.

6.3.4 Series-4: Energy Conservation Study. In the fourth experimental series, we evaluate the
performance of the proposed GP approach over various savings percentages, with respect to En-
ergy Consumption, CO2 Emission, CPU Execution Time, and Comfort Error. This evaluation is
inspired by the SAVES is an inter-dormitory energy-saving competition that took place on 2014–
2016 and that we outlined in the introduction. SAVES aimed at delivering 8% average electricity
savings in participating dormitories.

Figure 12 shows that by increasing the potential energy savings there is a slight increase on the
FCE and a decrease on the FΓ clearly demonstrating the trade-off between those objectives. The
trade-off ranges between 5–40% of energy savings (that is around 1,500 kWh and ≈500 kg CO2 in
the residential flat case) for 1–3% increase on the FCE can be considered as a fair exchange.

7 CONCLUSIONS AND FUTURE WORK

In this work, we propose an innovative framework, coined IMCF+, which aims to bridge this gap
and balance the trade-off between comfort, energy consumption, and CO2 emissions, while satis-
fying the RAW pipelines of users in smart environments. The IMCF+ framework incorporates an
innovative GP algorithm, which is an AI-inspired algorithm that schedules energy consumption
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with a variety of amortization strategies. We have implemented IMCF+ and GP as part of a com-
plete IoT ecosystem in openHAB and our extensive evaluation on real traces from an apartment, a
house, and a campus shows that we achieve a CO2 reduction of 45–59% to satisfy the comfort of a
variety of user groups with only a moderate ≈3% in reducing their comfort levels. We also found
that the execution of GP is fast and efficient, carrying out the computation in about 6 seconds for
the largest datasets. Given that our approach requires no training data and only a primitive MRT
preference profile, this can easily integrate in low end edge smart actuations platforms, as we have
demonstrated with our architecture.

In the future, we plan to investigate in further detail the interesting topic of multiple energy/GPs
representing conflicting interests for the benefit of smart communities. We also aim to investigate
the so-called IMCF-Cloud extensions that will enable IMCF+ to operate as a CMC controller in the
cloud and carry out large field studies. Moreover, the rule adaptation process is a feature that we
will consider integrating in our framework in the future. Finally, we aim to investigate power work-
load identification methods for power-hungry devices (e.g., white devices, electric vehicles, and
heating) and how to reschedule those workloads in a environmental friendly manner. Expanding
the scope of IMCF+ into other domains, beyond smart residences, is another interesting general-
ization direction of the architecture we propose in this work that we will consider for future work.
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