Personal and Ubiquitous Computing (2022) 26:781-794
https://doi.org/10.1007/s00779-020-01423-1

ORIGINAL ARTICLE

Set it and forget it: utility-based scheduling for public displays

Kristi Bushman' @ . Alexandros Labrinidis’

®

Check for
updates

Received: 16 August 2019 / Accepted: 3 June 2020 / Published online: 20 June 2020

© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract

The pervasiveness of public displays is prompting an increased need for “fresh” content to be shown, that is highly engaging
and useful to passerbys. As such, live or time-sensitive content is often shown in conjunction with “traditional” static content,
which creates scheduling challenges. In this work, we propose a utility-based framework that can be used to represent the
usefulness of a content item over time. We develop a novel scheduling algorithm for handling live and non-live content on
public displays using our utility-based framework. We experimentally evaluate our proposed algorithm against a number
of alternatives under a variety of workloads; the results show that our algorithm performs well on the proposed metrics.
Additional experimental evaluation shows that our utility-based framework can handle changes in priorities and deadlines
of content items, without requiring any involvement by the display owner beyond the initial setup.

Keywords Pervasive displays - Scheduling algorithm - Utility function - Deadlines

1 Introduction

Pervasive displays are becoming a regular fixture of every-
day city life [2]. Although the majority of such displays
are still showing mostly static content, e.g., advertisements,
the push and the demand for data-rich content is very high.
Data-rich content is often live (e.g., real-time transit infor-
mation!) or time-sensitive (e.g., weather forecasts). One
way to address the idiosyncrasies of live content is to assign
deadlines to it, i.e., a specific time point by which the
content item should be displayed in order to have posi-
tive “value” to passerbys. Of course, such deadline-driven
content may coexist with content that does not have such
specific timing requirements.

Uhttps://transitscreen.com

P4 Kristi Bushman
k.bushman @pitt.edu

Alexandros Labrinidis

labrinid @cs.pitt.edu

Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA 15260-9161, USA

1.1 Motivating example

Our motivating example is a public display at a bus stop that
shows various content items including real-time bus arrival
information, real-time traffic information, up to the minute
weather information, the Twitter feed of the bus company,
and advertisements. The motivation behind these content
choices is to make the display “interesting,” so that it does
not get ignored like banner ads on web sites. Along those
lines, we envision different content items being shown at
separate times on the display, instead of trying to squeeze
too many things in a single screen at the same time.

Given this setup, we want to determine the best schedule
to show the various content items. Clearly, the different
types of content have different “value” to the people at the
bus stop and that value changes over time. For example,
it is absolutely crucial that an alert about a bus arrival
be shown shortly before the bus arrives (30 s—1 min)
and definitely not after the bus leaves the bus stop. The
exact arrival time of the bus (i.e., the “deadline”) is often
not the originally scheduled time, since it is affected by
current traffic conditions, and therefore not known well in
advance. Additionally, other content types (e.g., Twitter
feeds) do not have such strict timing constraints, but must
also be shown.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-020-01423-1&domain=pdf
http://orcid.org/0000-0001-7647-0357
https://transitscreen.com
mailto: k.bushman@pitt.edu
mailto: labrinid@cs.pitt.edu

782

Pers Ubiquit Comput (2022) 26:781-794

Although bus alerts are high priority, we would like to
integrate them into the schedule in a way that feels natural.
Traditional scheduling methods have handled high priority
content items by allowing them to preempt less important
items. However, given that we would be showing these alerts
hundreds of times a day, we would prefer to integrate the
alerts into the schedule in a less intrusive manner.

1.2 Requirements of an ideal scheduling algorithm

Given the motivating example, we would like to have a
scheduling algorithm with the following characteristics:

— Can handle scheduling constraints (e.g., what time or
how often to show particular items).

— Can deal with content items being added to or
deleted from the list of available content (even without
significant advance notice).

— Can handle content that is deadline-driven, but also
content that is not.

— Can consider the different “value” content has to
viewers and use it to prioritize scheduling decisions.

— Can adapt the schedule in response to new priorities or
information.

— Can integrate time-sensitive content in a non-preemptive
manner.

To the best of our knowledge, there is no scheduling
algorithm that addresses all of the above characteristics.

1.3 Contributions of this work

We make the following contributions:

1. We propose a static utility function framework to
capture the inherent “value” of both deadline-driven and
traditional content items.

2. We extend the static utility function framework to a
self-adjusting utility function framework that is more
user-friendly and can adapt to changing priorities and
deadlines.

3. We develop a novel scheduling algorithm (Lookahead
algorithm) that uses the utility function framework
to minimize missed deadlines while maximizing the
overall utility of content items shown.

2 Related work

Most commercial digital signage players” allow the display
owner to create playlists (an ordering of content items that
play in a loop) or to specify the exact timings to show each

ZFor example, https://screen.cloud

@ Springer

item. With these scheduling methods, all schedule changes
must be made manually by the display owner ahead of time.
They cannot happen automatically in response to certain
information or events.

The scope of this work is in the area of context-
aware scheduling [16]. With context-aware scheduling, the
scheduler decides which item to show based on the greater
context that surrounds the display. Context information
may be provided to the scheduler via cameras, sensors, or
external information sources.

Elhart et al. [3] describe some of the key challenges
that arise in context-aware scheduling. The challenges most
relevant to this work include:

— introduction of new content items or scheduling con-
straints in real-time,

— handling constraints involving both absolute and relative
timings,

— defining appropriate preemptive or priority-based behav-
ior,

— optimizing multiple scheduling objectives, and

— providing a trade-off for competing objectives.

Some approaches in the area of context-aware scheduling
are tailored for a specific display with specific scheduling
criteria [9-12, 15]. Others try to provide a more general
framework that can be used to implement more specialized
schedulers [2, 14].

The Yarely player, designed by Clinch et al. [1], creates
a playlist from the items and constraints described in a
Content Descriptor Set. The playlist is cycled through on the
player in a round-robin fashion. High-priority content, such
as emergency alerts or personalized content items, are able
to interrupt the playlist.

Ribeiro and José [13] created a model to describe the
timeliness for two different categories of time-sensitive
content: information items and event-related items. The
timeliness of an information item decreases as time elapses
since the publication date. An event-related item becomes
more timely as the event gets closer, then loses timeliness
when the event is over. The scheduler chooses from among
the most timely items to decide what to display on the
screen.

Elhart et al. [4] designed a framework and API for
scheduling both interactive and non-interactive applica-
tions. The API allows applications to request display
resources in response to certain information or events. Inter-
active content is scheduled by preempting non-interactive
content.

Mikusz et al. [8] show how a lottery-based approach
can be used to meet the requirements of several different
scheduling policies. The lottery scheduling algorithm
allocates tickets to content items based on some scheduling
policy, then randomly draws a ticket to decide which item

https://screen.cloud

Pers Ubiquit Comput (2022) 26:781-794

783

to show. A change in scheduling priorities can be reflected
by changing the allocation of lottery tickets.

3 Scheduler architecture

We envision a public display scheduler that consists of three
core components: (a) a content library, (b) a filterer, and (c)
a content scheduler. A diagram is shown in Fig. 1.

The content library stores information about the appli-
cations, as well as the metadata needed for scheduling
purposes. Content items can be added to or removed from
the library at any time. A content item must include the
following: application info (image, video, web URL, etc.),
duration, valid days and times, and a utility function which
describes the item’s value over time. The content library has
a sub-component called the utility function adjuster which
can be used to alter the utility function of an item. Utility
functions are discussed in detail in Section 4.

The filterer pulls content items from the library and
removes any invalid items before passing them to the
scheduler. A content item is invalid if the current time is not
within valid times specified for the item.

From the items that make it through the filterer, the
content scheduler decides which item to show next. The
scheduler uses the Lookahead algorithm, which makes
scheduling decisions based on the utility function of each
item. This algorithm is discussed in detail in Section 5.

All interactions between the display owner and the
system occur through an API to the content library. The
display owner does not interact with the scheduler directly,
but can instead make scheduling changes by changing the
metadata of the content items. The API allows content items
to be added, deleted, or updated.

4 Utility functions for content items

Utility functions (UF’s) are used in many disciplines
in order to express value over time. UF’s that express
the value of job completion over time have been used
for scheduling tasks in real-time operating systems [5],
database systems [6], and HPC systems [7].

We propose using a utility function to represent the
viewer-perceived value of showing a content item over
time. These utility functions can then be used to inform
scheduling decisions.

4.1 Static utility function framework
Our framework supports two types of content: (a) anytime

content (AC) and (b) deadline-driven content (DC). We
believe these two categories encapsulate many different

content items, however, certain items such as interactive
items may not fit well into the framework.

Most items traditionally shown on public displays are
anytime content. This type of content has no inherent value
tied to a specific time of day. However, it may increase
in value to viewers if not shown for some period of time.
An example of an AC item is a weather application. The
weather is valuable to viewers at any time of day, however,
it is not valuable to show the weather twice in 1 min, as
major updates to the forecast are unlikely. Other examples
of AC items include news applications, Twitter feeds, and
advertisements. Typically, these items are shown multiple
times throughout the day.

A deadline-driven content item is tied to a very specific
time of day. These items can be thought of as “pseudo-
interrupt” content, because they require immediate attention
at a specific time. However, this type of content differs from
true interrupt-style content (e.g., emergency alerts): in our
case, we are aware of the content item in advance of when
it should be shown.

Often, these DC items will be related to live events. An
example of a DC item is an alert that says “Bus Arriving
Now.” Ideally, this item would be shown 30 s before the bus
arrives. Showing this item too early or too late would cause
confusion and provide no value to viewers. Other examples
of DC items include event reminders and live video streams.
DC items are only shown one time throughout the day.

The utility function of an AC item is a non-decreasing
function, where the x-axis units are time offsets relative to
the time when the content item was last shown. The y-axis
units are the viewer-perceived value of showing the item.
Immediately after an AC item is shown, the value of its
utility function goes back to the value at time offset zero.
The utility function of a DC item must increase from zero
at some time (#y) and return to zero at its deadline (7;). The
x-axis units for a DC utility function are absolute times of
day. The y-axis units are viewer-perceived value. For both
AC and DC items, the utility acquired by showing the item
at a particular time is represented by the integral of the UF
over the duration (d) that the content item is shown.

Using this framework, the display owner must design a
utility function for each content item that they wish to add
to the content library. The API is used to add and remove
content items. The display owner can write a script to make
API calls at certain times or in response to certain events so
that the display can contain time-sensitive items.

4.2 Self-adjusting utility functions
The utility adjuster component can be added to the content
library to allow a display owner to take advantage of self-

adjusting utility functions. A self-adjusting utility function
is an extension of the static utility function. This extension

@ Springer

784

Pers Ubiquit Comput (2022) 26:781-794

serves two main purposes. First, it allows the utility
functions to dynamically change over time in response to
new information or changing priorities. Second, it allows
for much of the burden of utility function creation to be
removed from the display owner. Designing static utility
functions that will result in a high quality schedule can
be difficult. It may require much trial and error before
static utility functions behave and interact as expected. The
self-adjusting utility function framework allows the display
owner to specify rules about how their ideal schedule
behaves, then the utility adjuster component will help to
create utility functions to satisfy the rules, and update them
over time as needed.

4.2.1 Self-adjusting DC functions

When using self-adjusting utility functions, the shape of
each deadline-driven utility function must still be specified
up front by the display owner. However, instead of
describing the shape in terms of absolute time, the shape is
specified using time points relative to the deadline. Now, if
the deadline is changed, the utility function can be redrawn
with respect to the new estimate of the deadline. For cases
such as the motivating example, where the deadlines are
not known well in advance, the estimate of each deadline
may change over time. In order to use a self-adjusting
DC function, the display owner would write a script that
monitors the deadline (in the case of the bus alerts, the script
would monitor the expected bus arrival time) and make
an API call to change the deadline of the utility function
whenever appropriate.

4.2.2 Self-adjusting AC functions

For anytime content items, rather than designing a utility
function, the display owner can specify rules that prescribe
the amount of playtime that each item should have. For
example, “Play item A for 30% of the available playtime.”
The available playtime is defined as any playtime not taken
up by deadline-driven items (since those items should have

priority). The display owner can write a script that makes
API calls to tell the utility adjuster component to change the
playtime percentage at certain times or in response to certain
events. Alternatively, these percentages could be set through
a user interface.

When the display owner specifies playtime rules in this
manner, the utility adjuster component will create utility
functions to be used in the system; however, these are
abstracted away from the display owner. Each AC item will
begin with the exact same shape utility function, which
will dynamically change based on the display owner’s rules.
Each of these AC functions has a scale factor, which will
stretch or compress the x-axis of the utility function, causing
the item to take more or less time in order to reach high
utility (Fig. 2). The faster an item reaches high utility, the
more often it will be shown. Each scale factor is initially set
to 1. According to the rules specified by the display owner,
the scale factors for each item will increase or decrease,
modifying the utility functions until they result in a schedule
such that each of the playtime rules are satisfied.

To adjust the scale factors of the AC utility functions,
the utility function adjuster component analyzes the content
chosen to play during the previous i minutes of history
from the schedule. If an item was played significantly less
than its target playtime during this section of history, the
scale factor is decreased by p percent (compressing the
utility function in the x direction). If the item was played
significantly more than its target playtime, the scale factor
is increased by p percent (stretching the utility function in
the x direction). If the historical percentage is within 2% of
the target percentage, the scale factor does not change. This
process is repeated every - minute.

The parameters & and p affect how quickly the schedule
is able to converge to the rules and how stable the playtime
percentages are over time. Sensitivity analysis on these
parameters is shown in Section 7.4.

This manner of scheduling using self-adjusting AC
functions can be generalized for use in traditional public
display applications that do not include any deadline-driven
content.

Fig.1 Scheduler architecture
API

Content Library

‘ News
‘Weather

addltem

removeltem

changeDeadline

L

Bus Information

— —_— Item to
Lookahead show next
—_—

Scheduler ™|

Utility function:

Jousy14

|

Duration:
10 sec

changePlaytimePercent| ’
—_

Utility adjuster

@ Springer

Pers Ubiquit Comput (2022) 26:781-794

785

120 120

100 100

- 80 - 80
h= =

= 60 = 60
5 5

40 40

20 20

0 0

0 200 400 600 800 1000 0 200

Time since item last shown

(a) Scale factor = 0.5

Time since item last shown

(b) Scale factor = 1.0

120
100
80
60

Utility

40
20

600 800 1000 0 200 400 600 800 1000

Time since item last shown

(c) Scale factor = 1.5

Fig.2 Scale factors stretch or compress the AC utility function in the x direction. When the utility function is compressed, the item acquires higher
utility sooner. When the utility function is stretched, it takes longer for the item to acquire high utility. a Scale factor = 0.5. b Scale factor = 1.0. ¢

Scale factor = 1.5

5 Lookahead scheduling algorithm

In this section, we propose an algorithm called the
Lookahead algorithm (LA) for scheduling content on public
displays using our utility function framework. In short, the
algorithm looks at when deadline-driven content items are
going to require airtime, then schedules anytime content
items around the DC items so that no preemptions are
necessary. The goal is to decide which content item to show
next in order to maximize both the total utility of content
shown and the number of DC items that are shown before
their deadlines.

Note that the scheduler only sees a static representation
of the utility function. If self-adjusting utility functions are
being used, the scheduler sees the current state of the utility
function as if it were static.

To decide which content item to show next, at time #,,
we construct a lookahead window of size w (seconds). The
lookahead window is a period of time where we will build a
hypothetical schedule of items that would ideally be shown
in the near future. This window helps inform our decision of
which content item to show at time #,. When constructing
this hypothetical schedule, we first only consider DC UF’s
that are valuable within the window. We will decide whether
to show an AC item after construction of the hypothetical
schedule is completed.

For each DC item, we calculate the slack of its utility
function. Our definition of slack was inspired by the notion
of slack in operating systems.> Slack measures how many
time slots are available for scheduling the content item while
also receiving positive utility value. Larger slack means
there are more options for when to schedule that item. The
formula for slack is as follows:

tg — max (t,, t5)

lack = —— 1
slac 7 @))]

3https://wikipedia.org/wiki/Least_slack_time_scheduling

We place DC items on the hypothetical schedule in order
of increasing slack (i.e., DC items with the least slack
are placed first). Each content item is placed at the time
where its acquired utility (integral of the UF) is maximized
given that it does not conflict with any item already on the
schedule. If there are multiple time slots that tie for the
highest acquired utility, the item is placed in the earliest
of those time slots. A content item is not placed on the
hypothetical schedule if it cannot acquire positive utility.

tg — Ih,t
slack = %X(”S))

Once all valid DC items have been placed on the
hypothetical schedule, we look at the very beginning of the
hypothetical schedule (at time #,,). If there is a content item
placed here on the hypothetical schedule, that is the content
item that will be shown next. Otherwise, we calculate the
gap of time from #, to the first DC item on the hypothetical
schedule. Out of the AC items with a duration that would fit
in this gap, the item with the highest utility density (3) [5] is
the item that will be shown next.

wtd R

I 3)

density = p

This decision process is executed within the last sec-
ond of showing the current item so that the decision of
what to show next is based on the most current knowledge
of upcoming content (new content items, updated utility
functions, etc.). Each time a decision is made, the hypothet-
ical schedule is completely reconstructed. Although content
items are likely to be placed in the same time slot on the
hypothetical schedule for many iterations of the decision
process, recomputing the hypothetical schedule with every
iteration allows the algorithm to be responsive to changing
content, while still using available knowledge to inform the
current decision.

@ Springer

https://wikipedia.org/wiki/Least_slack_time_scheduling

786

Pers Ubiquit Comput (2022) 26:781-794

6 Evaluation of the Lookahead algorithm
6.1 Evaluation environment

We implemented a simulator program in Python to evaluate
different scheduling algorithms; it was executed on a Dell
machine with an Intel Core 17 3.4 GHz processor and 32 GB
of RAM.

6.2 Algorithms evaluated

We evaluated the performance of our scheduling algorithm
compared with seven different baselines. These baselines
are algorithms that are commonly used in display schedul-
ing or operating systems, but have been adapted to make
sense under our utility-based framework.

— Earliest Deadline First/Greedy (EDF/G): For any DC
item that would acquire positive utility if shown next,
show the content item with the earliest deadline. If there
are no such DC items, show the AC item with the
highest utility density.

— Earliest Deadline First/Random (EDF/R): For any DC
item that would acquire positive utility if shown next,
show the content item with the earliest deadline. If there
are no such DC items, show a randomly chosen AC
item.

— Greedy (G): Choose the content item with the highest
utility density (as specified in (2)).

— Lookahead (LA): As described in Section 5. A
lookahead window of 5 min was used in our evaluation.

— Lottery with Current Utility (LOT-C): Allocate lottery
tickets based on the current height of the item’s UF.
Randomly draw a ticket to decide what to show next.

— Lottery with Maximum Utility (LOT-M): Allocate
lottery tickets based on the maximum height of an
item’s UF. Randomly draw a ticket to decide what to
show next.

— Random (RAND): Out of all content items that would
acquire positive utility if shown next, randomly select
which item to show.

— Round Robin (RR): Show all content items in a circular
order, skipping a content item if it would not acquire
positive utility.

6.3 Workload generation

We evaluate the Lookahead algorithm on different work-
loads of static utility functions. We do not consider self-
adjusting utility functions in this section since the scheduler
only sees a static representation of the utility function any-
way. We will demonstrate the use of self-adjusting utility
functions in the next section.

@ Springer

We generated different workloads for our evaluation
using template utility functions. These template functions
were designed to be simple functions with tunable
parameters that allow for the generation of workloads
with different properties. The experiments in this section
use the template utility functions, however, the Lookahead
algorithm does not depend on these templates. In practice,
the utility function for a content item can be any shape that
adheres to the constraints listed in Section 4.

The template function for an AC item is defined by the
four parameters shown in Fig. 3a. Recall that for AC items,
the x-axis tracks the time passed since the content item
was last shown. The intuition behind this template function
is that a content item will have a value of startHeight
immediately after being shown. This value will be close
to zero because seeing the same content item twice within
a short period of time is not useful to viewers. When
the content item has not been shown for startWidth
seconds, the value of showing the content item begins to
increase. After another slopeWidth seconds, the utility
function reaches its maximum possible value: end Height.
The end Height value is indicative of the content item’s
overall usefulness to viewers.

The template function for a DC item is defined by the
five parameters shown in Fig. 3b The intuition behind this
template function is that a DC item has a deadline after
which, showing the item is no longer useful to viewers. The
content item is useful to viewers up to width seconds before
the deadline. However, showing this content item would
be most valuable to viewers for a period of peakWidth
seconds ending at peakEnd. The value of the utility
function for this period of maximum value is peak Height.

We generated a baseline workload that is realistic of our
motivating example. This workload consists of 15 AC items
and 288 DC items with deadlines over the course of a 24-h
period (on average 1 DC item added to the content library
every 5 min). The time when an item is added to the content
library is its awareTime. At this time, the item will start
to be considered by the scheduler in its decisions. In the
baseline workload, all AC items are included in the content
library from the beginning of the simulation. DC items
are added to the content library at some time before their
deadlines. The parameters used for each utility function of
the baseline workload were randomly generated within the
ranges shown in Table 1. In our experiments, we change
certain parameters of the baseline workload to evaluate the
performance of the Lookahead algorithm across a variety of
workloads.

6.4 Evaluation metrics

To evaluate the performance of the scheduling algorithms,
we consider two metrics: (a) fotal acquired utility and (b)

Pers Ubiquit Comput (2022) 26:781-794

787

slopeWidth

Utility

startWidth

startHeight
0 100 200 300 400 500 600 700 800 900 1000

Time since item last shown

(a) AC template utility function

endHeight

. peakEnd
70 peakWidth
> 60 —— /
£
E 50
S 40
30 peakHeight
20
10
0
0 so | 100 150) 200 250
Time
deadline
width

(b) DC template utility function

Fig. 3 Template utility functions and parameters that enable content generation for different workloads. a AC template utility function. b DC

template utility function

percentage of deadlines met. Total acquired utility is the
sum of the utility acquired by each content item shown over
the course of the 24-h simulation (recall that utility is the
integral of the utility function over the duration shown).
The percentage of deadlines met is the percent of DC
items that are shown and complete their full duration before
their deadline. An algorithm that effectively integrates live
content into the schedule would have a high total acquired
utility and meet close to 100% of the deadlines.

For each of the following experiments, we measure the
two metrics on different workloads and plot the result for
each algorithm. An ideal algorithm should fall in the upper
right corner of this plot (high utility and high deadlines met)
regardless of the workload.

Table 1 Range of parameter values for utility functions of the baseline
workload

UF parameter Baseline range

DC duration (5, 60)
deadline () (1, 86400)
width (duration, duration * 8)
awareTime (tqg — width — 300, t; — width)
peakWidth (0, width)
peakEnd (tg — width + peakWidth, tg)
peakHeight (70, 100)
AC duration (5, 60)
awareTime 0
startWidth (0, 600)
slopeWidth (0, 600)
endHeight (40, 80)
startHeight (0, end Height)

For each content item, the values of the parameters of the UF are
chosen from a uniform distribution that spans the range listed in the
table. Times and durations are shown in seconds

6.5 Notice time (Fig. 4)

Notice time refers to the amount of time before the
beginning of the utility function (#;) that a DC item is
added to the content library. When an item has a longer
notice time, the scheduler has more opportunity to schedule
other content around it in a manner that maximizes the total
utility. We evaluated the LA algorithm using workloads with
long, medium, and short notice times. From the baseline
workload, the range of DC awareTime was changed to
(deadline — width — 300, deadline — width — 240),
(deadline — width — 180, deadline — width — 120), and
(deadline — width — 60, deadline — width) respectively.
For all three workloads, the LA algorithm outperforms the
other algorithms. Even with short notice times, the LA
algorithm is able to meet 96% of deadlines and acquire more
utility than all of the other algorithms evaluated.

6.6 Heights of AC vs DC functions (Fig. 5)

The maximum height of the UF is an indicator of the general
importance of the content item. We evaluated the LA
algorithm using workloads where the heights of DC utility
functions were taller, shorter, and the same height as the
AC utility functions. From the baseline workload, the range
of peakHeight for DC items was changed to (80, 100),
(20, 40), and (50, 70) respectively. The range of end Height
for AC functions was changed to (20, 40), (80, 100), and
(50, 70) respectively. When DC functions are taller than
AC functions, the LA algorithm outperforms the other
algorithms in terms of both acquired utility and deadlines
met. When AC functions are taller than DC functions,
the greedy algorithm acquires 7% more utility than the
LA algorithm. However, it does so by not scheduling any
DC items, thus meeting 99% fewer deadlines than the LA
algorithm. Because the LA algorithm acquires very high
utility and also integrates almost all of the live content into

@ Springer

788 Pers Ubiquit Comput (2022) 26:781-794
Long Notice Medium Notice Short Notice
e [Ad 5x10° GO LA 5x108 GO LA®
5x108
EDF/G
z EDFIG 2 ax10° ®L0T-C EDF/G 2 ax10° ®L0T-C
£ saos LoT-Cc® = =
Eha LoTrg 3 RRO®LOT-M 5 RR@®LOT-M
® b RR B 3x108 oL
1] o ORAND EDF/R® 0 3x10 EDF/R@®
5 a0t ORAND EDFIR® 5 5 @RAND
g S g
< 2x108 < 2a0° < 208
© © ©
° ° °
F os F 108 F 1408
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100

Deadlines met (%)

Deadlines met (%)

Deadlines met (%)

Fig.4 Total acquired utility and percent of DC deadlines met for running scheduling algorithms on workloads with different notice times. Long
notice (left), medium notice (middle), and short notice (right). The notice time refers to how far in advance the content item is added to the content

library

the schedule, it is the better performing algorithm for this
workload too.

6.7 Number of DC items (Figs. 6 and 7)

The number of DC items is an indication of the scheduling
difficulty. The more DC items there are, the more likely
it is that there are UF’s that overlap in time. When utility
functions overlap, it is more difficult to create a schedule
such that all items meet their deadlines and acquire high
utility. We evaluated the LA algorithm using workloads with
low, medium, high, and very high numbers of DC items.
From the baseline workload, the number of DC items was
changed to 288, 576, 864, and 1440 respectively. For all four
workloads, the LA algorithm is able to acquire high utility
while meeting deadlines.

6.8 Number of AC items (Fig. 8)

We evaluated the LA algorithm using workloads with
low (15), medium (30), and high (45) numbers of AC
items. While the greedy, random, round robin, and lottery
algorithms struggle to meet deadlines as the number of
AC items increase, the LA algorithm is able to meet over

99% of the deadlines and acquire high utility with all three
workloads.

6.9 Sensitivity of Lookahead window size (Table 2)

We evaluated the LA algorithm on the baseline workload
using different lookahead window sizes. The optimal
window size is dependent on the workload. The lookahead
window should be at least as long as the longest duration
content item. However, a slightly larger window allows
the algorithm to consider more information when making
a decision. The execution time of the algorithm increases
linearly with the size of the window. Although, the utility
acquired by the algorithm increases logarithmically with
the size of the window, any window size over the longest
duration content item yields reasonable performance.

6.10 Discussion

In general across all workloads, the Lookahead algorithm
is the only algorithm that acquires consistently high utility
and meets almost all deadlines. The random (RAND) and
round robin (RR) algorithms do not perform well because
they do not take into account the deadline or the utility of a

AC taller than DC DC taller than AC Same Height
G LA LAY 0 c® LA
7106] EDF/G o4 3x10° | Gce > EDF/G
LogC EDF/G
2 ex100 | ®RR 2 ||:8¥8| Zwas] LOT-C@®RR
] ~ El ®RR - 5 LOT-M®
Soae{ OLOTM 2 240t ®RAND EDF/R® 2
g @®RAND 3 B saoe{ RAND® EDFIR®
5 4x10°4 EDFIR® £ £
jon o o
o) 1)
<C 3x10° < <C 2x10°
© © 1x10° 4 ©
J(-)J 2x10° 4 ‘6 46
= L L 1x10°
1x108 4
0 0 0
0 20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100

Deadlines met (%)

Deadlines met (%)

Deadlines met (%)

Fig.5 Total acquired utility and percent of DC deadlines met for run-
ning scheduling algorithms on workloads with different height UF’s.
AC taller than DC (left), DC taller than AC (middle), and AC same

@ Springer

height as DC (right). The max height of a utility function is indicative
of the overall importance of the item to the viewer

Pers Ubiquit Comput (2022) 26:781-794

789

60000

50000

40000

30000

Frequency

20000

10000

Low Number of DC

0 1 2 3 4 5 6 7 8
Number of concurrent DC functions

60000

50000

40000

30000

Frequency

20000

10000

0

Medium Number of DC

High Number of DC

Very High Number of DC

0o 1 2 3 4 5 6 7 8
Number of concurrent DC functions

50000

40000

30000

Frequency

20000

10000

0o 1 2 3 4 5 6 7 8
Number of concurrent DC functions

50000

40000

30000

Frequency

20000

10000

0O 1 2 3 4 5 6 7 8
Number of concurrent DC functions

Fig. 6 Distribution of the number of overlapping DC functions
throughout the 24-h period (i.e., 2 means at a given second, there are
two DC functions that have non-zero value). Distributions are shown

content item when making scheduling decisions. The greedy
(G) and lottery-based algorithms (LOT-C, LOT-M) do not
prioritize deadline-driven content so deadlines are often
missed. Using an earliest deadline first protocol (EDF/G,
EDF/R) can help to meet deadlines, but it is not optimal
for acquiring utility. The EDF/Greedy algorithm follows
a very similar procedure to the Lookahead algorithm,
so it is not surprising that the two algorithms often
perform similarly. However, the Looakead algorithm tends
to slightly outperform the EDF/Greedy algorithm since EDF
can cause deadline-driven content to be played earlier than
would be optimal. These experiments have reiterated why
traditional scheduling methods will not work when dealing
with items whose value is dependent on time, especially
when there are deadlines.

7 Evaluation of self-adjusting UFs
7.1 Simulation data

We use bus arrival data to simulate real-world examples
of deadline-driven content items that would be played at a
display near a bus stop. The DC items for this simulated
display contain information related to the bus trips passing
through the stop, so the deadlines for the content items are
tied to the times when the buses arrive at the stop.

We collected bus arrival prediction data from the Port
Authority of Allegheny County TrueTime APIL* This API
reports predicted arrival times for all buses arriving within
the next 30 min for a given stop. We polled the API once
per minute to get the latest predictions. The data used in
our simulations are taken from the Forbes and Atwood stop
(#29) on July 8, 2019. This stop is fairly busy, with 8 routes
that pass through it.

Since the true “value” that these bus-related content items
provide to viewers is based on when the items are shown
with respect to the actual arrival time (not a prediction),
the “ground truth” utility function would be based on the

“https://truetime.portauthority.org/bustime/home.jsp

for workloads with a low number of DC content (left), medium number
(center left), high number (center right), and very high number (right)

actual arrival time of the bus. Although we do not have data
on the actual bus arrival times, we will treat the very last
prediction seen on the data stream as the actual arrival time
since it should be the most accurate (as this prediction is
collected less than a minute before the bus arrives). Note,
the Lookahead algorithm has no knowledge of a ground
truth utility function. We simply use this as an retrospective
evaluation metric to measure how well the static and self-
adjusting utility functions perform in a real-world scenario.

7.2 Static vs self-adjusting DC utility functions
(Table 3)

For each bus that passes through the stop, we would like to
show two different deadline-driven items on the simulated
display.

— Item A, an alert that the bus is currently arriving, should
be shown approximately 30 s before the bus arrives.

— Item B, information about where the bus is heading,
should be shown approximately 5 min before the bus
arrives.

Since the predicted bus arrival time will change over time,
the estimated deadlines for showing these content items will
also change over time.

Using static DC utility functions, the display owner
would write a script to watch the stream of bus arrival data.
When a bus is predicted to be less than 10 min away from
the stop, the script makes an API call to add an instance
of item B to the content library. When a bus is predicted
to be less than 5 min away, it adds an instance of item A
to the content library. The deadline for the utility functions
of these DC items is based on the bus arrival prediction at
the time when the item is first added to the content library.
The utility functions are never updated once they are in the
content library, even though there may be changes to the
predicted arrival times on the data stream.

Using self-adjusting DC utility functions, the display
owner would also write a script to watch the stream of bus
arrivals data. As soon as a new bus appears on the stream
(approximately 30 min before arrival), it makes an API call

@ Springer

https://truetime.portauthority.org/bustime/home.jsp

790

Pers Ubiquit Comput (2022) 26:781-794

Low Number of DC Medium Number of DC

Gce LA 5x10°8 c® LA®
0t EDFIG
z ®LoTC EDF/G 2
= = 4x10° @®L0T-C
E RRO®LOT-M E RR®
> 3x10° ° > LOT-M
2 ©RAND EDFR 0 3x10°1 RAND® EDF/R®
3 106 E
2x10f
£ & 2x10°
= z
o 1x10° © 1x10°
0
0 20 40 60 80 100 20 40 60 80 100

Deadlines met (%) Deadlines met (%)

Fig. 7 Utility acquired and deadlines met for running algorithms on
workloads with the UF overlap distributions shown in Fig. 6. Work-
loads with high numbers of DC items are more difficult to schedule

to add an instance of both item A and item B to the content
library. Whenever there is a change in the predicted arrival
time for this bus, the script makes an API call to update the
deadlines of the utility functions.

We ran two simulations of the Lookahead algorithm,
using the exact same DC items. The first simulation
uses the protocol for static DC functions described above
whereas the second simulation uses the protocol for self-
adjusting DC functions. Both simulations also include the
same four (static) AC items. After each simulation, we
measured the acquired utility and percentage of deadlines
met according to the “ground truth” utility functions,
described in Section 7.1.

The results of these simulations are shown in Table 3. The
self-adjusting utility functions were able to acquire more
utility than the static functions. This increase in total utility
can be attributed almost entirely to the increase in utility
acquired from the DC items. Using self-adjusting utility
functions, the Lookahead algorithm also meets 11.4% more
deadlines than with static functions.

7.3 Utility-based vs lottery-based scheduling
(Table 4, Fig. 9)

In Section 6, we showed that lottery scheduling does
not work well with deadline-driven content. However, the
lottery scheduling algorithm seems like an natural choice
if the main scheduling constraints are target playtime
percentages (as is the case when using the self-adjusting

Low Number of AC

Medium Number of AC

High Number of DC

Very High Number of DC
c®

5x10° LA® 6x10° LA®

c®

ity

5x10°

.
a0 eLoTC

RR® g L oT.M
RAND ®

LOT-C®
LOT-M®
RAND®®RR

EDF/G 108 EDF/G
3x10° EDFIR®
EDFIR® 3108
2x10°
2x108

Total Acquired Utili
Total Acquired Utility

6
1x10! 1x10

20 40 60

Deadlines met (%)

80 100 20 40 60

Deadlines met (%)

80 100

because more utility functions overlap, making it more difficult to find
an ordering of content that is optimal for all items

UF’s for AC items). To do this, the lottery scheduler would
simply allocate tickets to each item in proportion to its
target playtime percentage (normalized by the duration of
the content item). In this experiment, we demonstrate the
benefits of our utility-based approach over the lottery-based
approach for selecting AC items. For simplicity, we consider
a schedule without any DC items.

We created a content set with 5 items and rules that
describe their target playtime percentages. We simulated
both the lottery- and utility-based approaches for selecting
AC items on this content set for a 24-h period. For the self-
adjusting utility functions, parameter values of & = 5 min
and p = 10% were used. The results of this experiment are
shown in Table 4.

Both approaches are able to converge close to the target
playtime percentages. Although the lottery-based approach
comes slightly closer to the targets, we consider this to be
a negligible, unnoticeable difference to anyone observing
the display. There is, however, one noticeable difference in
the quality of the schedules that they create. The lottery-
based approach has inconsistent spacing between instances
of each content item, while the utility-based approach has
much more regular spacing. This means that it is much more
plausible to see a schedule such as “A A B B B A” with
lottery scheduling than it would be with the utility-based
approach (“A B A B A B” would be a better schedule).
Since the lottery scheduling decision is based on chance, it
is plausible to show the same content item multiple times
in a row, or to not show a particular item at all for a very

High Number of AC

Ge LA
4x10° EDF/G 5x10° ®RR
z RR@®LOT-C z ®LOT-C
= ®LOT-M B 4x10° @®L0T-M
3 30 3 ORAND
[RAND ® EDFR® 3
=1 5 3x10°
g 2x10° g
< <
= = 2x10
5 s
F 1x10° =
1x10°
0 o
20 40 60 80 100 20

Deadlines met (%)

40

G® | . c® LAl
6x10 EDF/G
EDF/G RR
2508 LOT-C
£ .0 LOT-M
=)
EDFR® goaof TP FOFRe
g‘ 3x10°
S
<
T 2x10°
(s}
°
1x10°
60 80 100 0 20 40 60 80 100

Deadlines met (%)

Deadlines met (%)

Fig. 8 Total acquired utility and percent of DC deadlines met for running scheduling algorithms on workloads with different numbers of AC
items. Small number (left), medium number (middle), and high number (right)

@ Springer

Pers Ubiquit Comput (2022) 26:781-794

791

Table 2 Performance of the Lookahead algorithm with different
window sizes when the longest duration content item was 60 s

Table4 Performance of the Lookahead algorithm using self-adjusting
UF’s vs a lottery-based approach for selecting AC items

Window Execution Deadlines Total utility Item Duration Target play Utility play Lottery play
size (s) time (ms) met (%) acquired time (%) time (%) time (%)

60 0.591 99.31 4,434,015 A 5 5 4.1 4.8%

90 0.817 98.61 4,534,079 B 10 25 24.3 24.7

120 1.148 99.31 4,614,187 C 15 12 104 12.1

150 1.634 98.96 4,648,108 D 20 25 25.1 25.6

180 1.883 99.65 4,651,114 E 40 33 36.1 32.8

long time. This would not be an ideal schedule, because
passerbys typically want to see a variety of content. With the
Lookahead algorithm and self-adjusting utility functions,
the likelihood of an item being shown is dependent on when
it was last shown, since the utility of the item depends on
the time since it was last shown. Because of this, the spacing
between instances of a particular item is much more regular.

To illustrate this, we measured the spacing between
instances of each content item in the schedules created
by the two approaches. Spacing is defined as the number
of seconds between the beginning of one instance of an
item to the beginning of the next instance of the same
item. The spacing distributions for each item (A through
E) for the two scheduling methods are shown in Fig. 9.
The distributions show that lottery scheduling creates a
schedule with a wide range of spacings. Oftentimes, an
item is shown twice consecutively and other times there is
a long gap without showing a particular item. With utility-
based scheduling, there is a much narrower distribution of
spacings concentrated around some medium value. Because
the utility-based approach has much more regular spacing
between instances of each item, it creates a higher quality
schedule.

7.4 Sensitivity of h and p (Fig. 10)

In the utility adjustment algorithm (described in
Section 4.2.2), parameter /& controls how often updates to
the scale factors occur. Parameter p controls how drastically
the utility function is stretched or compressed upon each
update. Together, these parameters control how quickly the
schedules are able to start adhering to the rules and how
stable the playtime proportions are over time.

Table 3 Performance of the Lookahead algorithm in a real-world
scenario using static vs self-adjusting DC functions

DC function Total utility DC utility Deadlines
type acquired acquired met (%)
Static 2,661,960 1,062,674 87.1
Self-adjusting 2,745,251 1,146,345 98.5

We ran a 24-h simulation of the Lookahead algorithm
using self-adjusting AC functions with different parameters
of h and p. The content items used in this experiment
are shown in Table 5. Again, for simplicity, we consider
a schedule with no DC items. The plots shown in Fig. 10
show the proportion of playtime that each item makes up for
each 10-min interval throughout the simulation. In general,
a larger i and smaller p mean it will take more time for the
scale factors to converge to the proportion rules. However,
a larger i and smaller p also tend to make the proportions
more stable over time.

These parameters are especially important to tune
correctly if the playtime percentages will be changing
throughout the day (demonstrated in Section 7.5). With
schedules that do not change throughout the day, a large A
and small p can be used with an initial simulation phase
that is run before the live scheduling begins. In this way, the
schedule will have the stability seen in bottom right plot of
Fig. 10, but without the initial period where the scale factors
are still tuning in order to meet the playtime percentages
(first 5 h of this plot).

7.5 Advanced scheduling using self-adjusting
functions (Fig. 11)

In this experiment, we demonstrate the use of all
components of our system together in order to create
an advanced schedule. We use the same deadline-driven
content items as in Section 7.2 with self-adjusting functions.
The anytime content items are the same as in Section 7.4,
however, the target playtime percentages change throughout
the day (10% A, 35% B, and 55% C before noon, and 10%
A, 55% B, and 35% C after noon). The utility adjustment
algorithm was used with parameters 2 = 5 min and p = 10%.

Using the Lookahead algorithm, the deadline-driven
content items are able to meet 98.2% of their deadlines. The
anytime content items are able to quickly adapt to the new
proportions when the rules change at noon (reaching the
new proportions in approximately 30 min). This can be seen
in Fig. 11.

@ Springer

792

Pers Ubiquit Comput (2022) 26:781-794

Fig.9 Distribution of item
spacings for the lottery-based
approach (top) and utility-based
approach (bottom) for selecting
AC items. Consistent spacing
between instances of an item
means passerbys see a variety of
content

Table 5 Items used for
sensitivity analysis of 4 and p

Fig. 10 Sensitivity of the utility
adjustment algorithm to
different values of & and p. Best
viewed in color

@ Springer

A - Lottery B - Lottery C - Lottery
>
1)
e
(]
>
o
o
[T
0 100 200 300 0 100 200 300 0 100 200 300
A - Utility B - Utility C - Utility
>
1)
[
[
>
o
o
[T
0 100 2&0 3&0 0 160 2(‘)0 3(‘)0 0 100 200 300
Time between Time between Time between

instances (sec)

instances (sec)

instances (sec)

D - Lottery E - Lottery

0 100 200 300 0 100 200 300
D - Utility E - Utility

0 100 200 300 0 100 200 300

Time between
instances (sec)

Time between
instances (sec)

Content item Duration Target play time (%)
A 5 10
B 20 35
C 15 55
h =5 min, p=10% h=5min, p=1%
100% 100%
o< pe”]
£E 80% £E 80%]
3 60% AN e e ey e 2 60%]
w (9] 1
E.S 40% 11 A A A AwAn At Ant A A A A AvAwAd E_E 40%'%%\/\,\/
2% 20% 2% 20%
oo A APAASA N AASAAS AN AASAA AT AAL A AL AT a o E N WSSV OSSO VD VN |
0% T T 0% r "
0:00 8:00 16:00 24:00 0:00 8:00 16:00 24:00
Time of day Time of day
h =10 min, p = 10% h =10 min, p=1%
100% 100%
oc oc]
EE 80% £E 80%]
3 60% 2 60%]
£2 ao%il | S8 0% |
23 20% FYviv YWy 2% 20%]
s A Am A A AR AR AN A P M A AN T & e e
0% T T 0% r :
0:00 8:00 16:00 24:00 0:00 8:00 16:00 24:00
Time of day Time of day

—— A (target=10%)

—— B (target=35%)

—— C (target=55%)

Pers Ubiquit Comput (2022) 26:781-794

793

100%
80% 1
60% -
40%-

20%:~W~W/\j\v/J\’\/WV\IV\M/\AA\/\/\AWVI‘AV\/WV\N

0% ; ;
0:00 8:00 16:00 24:00
Time of day

Play time during
previous 10 min

— A B — C

Fig. 11 Using the API to change playtime proportions throughout the
day. The target proportions are 10% A, 35% B, and 55% C before
noon, and 10% A, 55% B, and 35% C after noon. Best viewed in color

The ability to change the playtime proportions, can allow
display owners to create schedules that accommodate time-
sensitive or live content that is not necessarily deadline-
driven. This feature can be used to prioritize content items
based on their freshness or relevance throughout the day. For
example, the proportion of weather in the schedule could
increase when there is inclement weather approaching. The
proportion of a particular Twitter feed could decrease when
a certain hashtag is no longer trending.

8 Live deployment

We deployed a prototype of our scheduler at a public display
in the lobby of an academic building. The display is similar
to our motivating example, showing bus arrival information,
Twitter feeds, and weather information. We used the self-
adjusting utility function framework for both AC and DC
items. Images of the display are shown in Fig. 12. Further
work is necessary in order to make the system available to
general users.

Based on our experience, we believe there is a more
significant setup process for using this system compared
with more traditional schedulers. The display owner must
determine utility functions or rules for each item and also
write a script to integrate data feeds and make API calls
at the appropriate times. However, once this setup process
is completed, the display owner does not have to worry
about making manual changes to the schedule anymore. The
schedule will contain live content that is always fresh and

Fig. 12 A deployment of our
prototype system. Left: a page Bus arrivals: Forbes ave ESTutSE
showing bus arrival information. [61a
Center: an alert that a bus is
arriving soon. Right: a Twitter
feed page

3:04pM

relevant to the viewers, with no further action required by
the display owner. They can simply “set it and forget it.”

9 Scope and limitations

The display at the bus stop which shows an alert for each
arriving bus has been the primary inspiration for this work.
Other displays that wish to show deadline-driven content
may also find the work useful. We reiterate that deadline-
driven content has two specific properties: (1) the content
has a strict timing requirement, (2) the scheduler can be
made aware of the item in advance of when the item
should be shown. To the best of our knowledge, there are
currently no other algorithms that can schedule this type
of content in a non-preemptive manner. Although we have
found the framework useful for our own proposed use
case, it is currently unclear whether there is a widespread
demand for content of this type in other real-world public
displays.

There are also concerns about the usability of the
proposed framework. Specifying a good utility function
for each content item may prove to be challenging for
some display owners, as this can be an abstract concept.
We designed self-adjusting AC utility functions in order to
remove this burden from the display owner for AC items;
however, in all varieties of our framework, the display owner
must specify utility functions for the deadline-driven items.
We feel this is less of a concern since the notion of utility
over time is much more natural for deadline-driven items
given they have strict timing requirements, however, it is
a concern nonetheless. An additional concern is that the
display owner must have programming skills in order to
use the API effectively. Given these concerns, we believe
the system is not well suited for general-purpose public
displays, but rather highly specialized displays that wish
to show deadline-driven content. Some technical assistance
may be required to set up the system.

Although the full-fledged system proposed may only
be suitable for a limited number of real-life applications,
certain aspects of the framework may be useful for
general-purpose public displays. For instance, as shown
in Section 7.3, the self-adjusting AC framework can be
used regardless of the presence of DC items. Note that

| Bus ammivals: Forpee 5 RS Universi
+ Forbes Aveat Bouquetst 3,09pyy aratne O iSOG

3 mintes g

= Next Later

Pitt's Rory Cooper, Director of
@herlpitt is aleading innovatorinthe =
field of wheelchair mobilty technology. | | %

In October, his work was highlighted by, &3
@uspto. More here: A EM
hitpi/bitly/2qEaRXY #H2P.

#DayOfPersonsWithDisabilities

@ Springer

794

Pers Ubiquit Comput (2022) 26:781-794

without any DC items to consider, the Lookahead scheduler
reduces to a Greedy scheduler (always picking the item
with the highest utility density). This then becomes a tool
for creating high quality ratio-based schedules, which are
a common requirement for real-world public displays [1,
8]. Using this aspect of the system alone, display owners
only need to specify target ratios for each item, which could
easily be done through a user interface. More technology-
savvy display owners could make use of an API to make
changes to the ratios in response to certain information
or events (demonstrated in Section 7.5). Our proposed
algorithm will automatically handle the dynamicity in that
case.

10 Conclusion

In this paper, we have explored supporting deadline-
driven content on public displays in addition to traditional
content. Our experiments have shown that our utility-based
framework and Lookahead algorithm is effective for this
purpose and outperforms baselines on the proposed metrics.
Further work is necessary to determine whether there is a
widespread need for scheduling content of this type and
whether the system is practical for a general user. This is
part of our future work.

Funding information This work is part of the PittSmartLiving project
which is supported by NSF award CNS-1739413.

References

1. Clinch S, Davies N, Friday A, Clinch G (2013) Yarely:
a software player for open pervasive display networks. In:
Proceedings of the 2nd ACM International Symposium on
Pervasive Displays, PerDis ’13. ACM, New York, pp 25-30.
https://doi.org/10.1145/2491568.2491575

2. Davies N, Clinch S, Alt F (2014) Pervasive displays:
understanding the future of digital signage. Synthesis
Lect Mob Pervas Comput 8:1-128. https://doi.org/10.2200/
S00558ED1V01Y201312MPCO11

3. Elhart I, Langheinrich M, Davies N, José R (2013) Key chal-
lenges in application and content scheduling for open pervasive
display networks. In: 2013 IEEE International Conference on Per-
vasive Computing and Communications Workshops (PERCOM

@ Springer

Workshops), pp 393-396. https://doi.org/10.1109/PerComW.2013.
6529524

4. Elhart I, Langheinrich M, Memarovic N, Heikkinen T (2014)
Scheduling interactive and concurrently running applications in
pervasive display networks. In: Proceedings of The International
Symposium on Pervasive Displays, PerDis *14. ACM, New York,
pp 104:104-104:109. https://doi.org/10.1145/2611009.2611039

5. Jensen ED, Locke CD, Tokuda H (1985) A time-driven scheduling
model for real-time operating systems. In: RTSS

6. Labrinidis A, Qu H, Xu J (2007) Quality contracts for real-
time enterprises. In: Lecture Notes in Computer Science 4365:
Post Proceedings of First International Workshop on Business
Intelligence for the Real Time Enterprise. BIRTE 06 was held in
conjunction with the VLDB’06 Conference, Seoul, pp 143-156

7. Lee CB, Snavely AE (2007) Precise and realistic utility
functions for user-centric performance analysis of schedulers.
In: Proceedings of the 16th International Symposium on High
Performance Distributed Computing, HPDC *07. ACM, New
York, pp 107-116. https://doi.org/10.1145/1272366.1272381

8. Mikusz M, Clinch S, Davies N (2015) Are you feel-
ing lucky?: Lottery-based scheduling for public displays. In:
Proceedings of the 4th International Symposium on Perva-
sive Displays, PerDis ’15. ACM, New York, pp 123-129.
https://doi.org/10.1145/2757710.2757721

9. Miiller J, Exeler J, Buzeck M, Kriiger A (2009) Reflec-
tivesigns: Digital signs that adapt to audience attention. In:
Proceedings of the 7th International Conference on Perva-
sive Computing, Pervasive ’09. Springer, Berlin, pp 17-24.
https://doi.org/10.1007/978-3-642-01516-8_3

10. Ribeiro F, Jose R (2007) Proactive scheduling for situated
displays. In: Workshop on Ambient Intelligence Technologies and
Applications

11. Ribeiro F, Jose R (2010) Autonomous and context-aware
scheduling for public displays using place-based tag clouds, pp
131-138. https://doi.org/10.1007/978-3-642-13268-1_16

12. Ribeiro F, Jose R (2013) Smart content selection for public
displays in ambient intelligence environments. Int J Ambient
Comput Intell 5:35-55. https://doi.org/10.4018/jaci.2013040103

13. Ribeiro FRSG, José R (2009) Timeliness for dynamic source
selection in situated public displays. In: WEBIST

14. Storz O, Friday A, Davies N (2006) Supporting content scheduling
on situated public displays. Comput Graph 30(5):681-691.
https://doi.org/10.1016/j.cag.2006.07.002

15. Taniguchi Y (2018) Content scheduling and adaptation for
networked and context-aware digital signage: a literature survey.
ITE Trans Media Technol Appl 6(1):18-29. https://doi.org/10.
3169/mta.6.18

16. Taniguchi Y, Arai H, Tsutsuguchi K, Akutsu A (2014) Content-
schedule optimization of digital signage taking account of location
characteristics

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/2491568.2491575
https://doi.org/10.2200/S00558ED1V01Y201312MPC011
https://doi.org/10.2200/S00558ED1V01Y201312MPC011
https://doi.org/10.1109/PerComW.2013.6529524
https://doi.org/10.1109/PerComW.2013.6529524
https://doi.org/10.1145/2611009.2611039
https://doi.org/10.1145/1272366.1272381
https://doi.org/10.1145/2757710.2757721
https://doi.org/10.1007/978-3-642-01516-8_3
https://doi.org/10.1007/978-3-642-13268-1_16
https://doi.org/10.4018/jaci.2013040103
https://doi.org/10.1016/j.cag.2006.07.002
https://doi.org/10.3169/mta.6.18
https://doi.org/10.3169/mta.6.18

	Set it and forget it: utility-based scheduling for public displays
	Abstract
	Introduction
	Motivating example
	Requirements of an ideal scheduling algorithm
	Contributions of this work

	Related work
	Scheduler architecture
	Utility functions for content items
	Static utility function framework
	Self-adjusting utility functions
	Self-adjusting DC functions
	Self-adjusting AC functions

	Lookahead scheduling algorithm
	Evaluation of the Lookahead algorithm
	Evaluation environment
	Algorithms evaluated
	Workload generation
	Evaluation metrics
	Notice time (Fig. 4)
	Heights of AC vs DC functions (Fig. 5)
	Number of DC items (Figs. 6 and 7)
	Number of AC items (Fig. 8)
	Sensitivity of Lookahead window size (Table 2)
	Discussion

	Evaluation of self-adjusting UFs
	Simulation data
	Static vs self-adjusting DC utility functions (Table 3)
	Utility-based vs lottery-based scheduling (Table 4, Fig. 9)
	Sensitivity of h and p (Fig. 10)
	Advanced scheduling using self-adjusting functions (Fig. 11)

	Live deployment
	Scope and limitations
	Conclusion
	References

