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Abstract—CAPRIO is an indoor-outdoor pedestrian path rec-
ommendation system that optimizes for shortest distance. Its
path-finding algorithm, ASTRO, takes into account a set of user-
provided congestion constraints and as such can recommend
paths that can reduce the risk of COVID-19 exposure. In this
paper, we extend ASTRO to consider the changes on congestion
when providing path recommendations for overlapping requests.
Our new algorithm, called ASTRO-K, can provide K alternative
paths that satisfy the congestion constraints of all the path
requests within a short time-window. Our experimental eval-
uation is conducted using two real-world datasets and shows
that ASTRO-K can reduce the total average congestion of the
recommended paths up to 4.5X with the trade-off of up to 7%
increased total path time.

Index Terms—Top-k Paths, Constraint-based Path Finding,
Indoor-Outdoor Graphs, Congestion, COVID-19

I. INTRODUCTION

The COVID-19 pandemic has shown us that there is a
clear need for pedestrian path finding systems which can
recommend paths that reduce the exposure to viral infection
diseases. The exposure to viral airborne diseases is higher
in crowded and congested spaces, and hence avoiding them
reduces the risk of contracting a virus.

In our previous work, we proposed a solution to this prob-
lem of “physical distancing” with ASTRO [1], a constraint-
based path-finding algorithm which factors in the predicted
congestion of a space when constructing a path. ASTRO was
implemented as the core path finding algorithm in CAPRIO
[2]-[4], our indoor-outdoor pedestrian path recommendation
system that suggests the shortest distance path for a given
departure and arrival time between two locations.

By offering only one path per request, ASTRO may inad-
vertently contribute towards congestion problems by funneling
people into a single area.

In this paper, we introduce ASTRO-K, an extension of AS-
TRO which computes the top-k sufficiently distinct constraint-
satisfying paths for overlapping requests. Overlapping requests
have similar departure and arrival time between the same two
locations as shown in Figure 1. This provides CAPRIO with
more paths to choose from for overlapping requests submitted
within a short time-window and thus reduces the probability of
inadvertently contributing towards congestion. Our hypothesis
is that, by only recommending paths which are sufficiently
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Fig. 1: CAPRIO with top-5 alternative paths produced by our
ASTRO-K.

distinct, we are able to promote physical distancing and
decrease the recommendations’ contribution to congestion.
We evaluate ASTRO-K experimentally using two datasets
modeling the campus of the University of Pittsburgh and the
University of Cyprus. Our experiments show that ASTRO-K
can reduce the average congestion by increasing K. Specif-
ically, the average congestion of the recommended paths is
reduced by 4.5X for the PITT dataset with ' = 6 and 2.6X
for the UCY dataset with K = 3. This reduction in the average
congestion comes with the cost for the shortest distance. We
observe an increase of total path time up to 7%. Clearly, these
initial results are promising and support our hypothesis above.
Our main contributions are summarized as follows:

¢ We introduce ASTRO-K, an integration of the ASTRO and
ESX [5] algorithms, which to our knowledge is the first
algorithm for finding top-k sufficiently distinct constraint-
satisfying paths.

e« We conduct a preliminary experimental evaluation and
show that ASTRO-K can reduce the total average conges-
tion produced by the recommendations.

The rest of the paper is structured as follows. In the next
section, we formalize the problem and provide the necessary
background on ASTRO and ESX algorithms. In Section III, we
present ASTRO-K and in Sections IV and V the experimental
methodology and its evaluation respectively. In Section VI, we
discuss related work.
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II. PROBLEM FORMULATION & BACKGROUND

In this section, we define all the relevant information neces-
sary to understanding the ASTRO-K algorithm. This includes
a formulation of the problem (Section II-A), an explanation
of the underlying graph (Section II-B), definitions of the
constraints used by ASTRO and ASTRO-K (Section II-C), and
an overview of the ASTRO path finding algorithm (Section
II-D).

A. Problem Formulation

Given an Indoor-Outdoor graph, a source Outdoor vertex,
a terminal Outdoor vertex, a set of constraints, find the top-k
sufficiently distinct paths from the source outdoor vertex to the
terminal outdoor vertex which satisfy the given constraints.

B. Indoor-Outdoor Graphs

In order to understand the ASTRO-K algorithm, it is first
helpful to understand the underlying graph upon which the
algorithm is built. An Indoor-Outdoor graph G is constructed
using three main components: Indoor vertices, Indoor graphs,
Outdoor vertices. Indoor vertices are the bottom layer of an
Indoor-Outdoor graph and represent the doors allowing people
to enter and exit buildings. Indoor graphs are bidirectional
weighted graphs which are comprised of Indoor vertices and
edges represent the path between any two doors. Outdoor
vertices are comprised of Indoor graphs and represent build-
ings. Indoor-Outdoor graphs are bidirectional weighted graphs
comprised of Outdoor vertices and edges represent the paths
between buildings. Thanks to the nature of an Indoor-Outdoor
graph, ASTRO is able to seamlessly find paths inside and
outside of buildings.

C. Constraints

Definition 1: Outdoor Exposure (£) — the maximum amount
of time allowed to traverse any given edge between two
outdoor vertices.

Definition 2: Time Limit (1) — the maximum amount of
time allowed to traverse a path.

Definition 3: Congestion (C') — the maximum amount of
congestion which can be encountered while traversing between
two indoor vertices.

Definition 4: Path Similarity (6) — the maximum percentage
of total edge distance shared between any two paths in the
result set.

D. ASTRO

Before describing ASTRO-K, let us first review the original
algorithm, ASTRO. ASTRO is a constraint-based variant of the
A* algorithm. It is an optimal A* variant, which means that
ASTRO is guaranteed to have optimal edge selection when
traversing the graph [1].

Given an Indoor-Outdoor graph, ASTRO behaves like stan-
dard A*, traversing the graph over the Outdoor vertices but
then at each step also expands the current Outdoor vertex’s
Indoor graph to find the best ordered pair of Indoor vertices to
use as the entry and exit for the current Outdoor vertex. Unlike
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Algorithm 1 Modified ASTRO used in Algorithm 2

Input: s: source, t: terminal, O: Outdoor Vertices, F'r: Edges
Removed, II: Constraints;
Output: p: Best Path;
1: init Priority Queue OPEN, Set CLOSED

2: init Outdoor Vertex start with s

3: OPEN.push(start)

4: while OPEN not empty do

5. curr < OPEN.pop()

6:  if curr = NULL then

7 return ReconstructPath(curr)

8: if curr ¢ CLOSED then

9 CLOSED + CLOSED U {curr}

10: for 0, € {O — CLOSED} do

11: IndoorGraph < o;[IndoorGraph] — Egr
12: for in; € IndoorGraph do

13: 51 « Status(currfout], in;, curr(g))
14: for out; € {IndoorGraph — {in}} do
15: now = curr(g] + 51 [total]

16: 55« Status(ing, out;, now)

17: TS5 +53

18: g  currlg] + 5 [total)]

19: if g < 0;[g] and Check(II,¥) then
20: init Outdoor Vertex toAdd

21: OPEN .push(toAdd)

standard A* when an edge is expanded it may be pruned if it
no longer meets the constraints II = (E, T, C'). Pruning edges
in this manner allow us to avoid constructing the complete
Indoor-Outdoor graph which would be prohibitively expensive.

It is key to note that the unit of measure for both the exact
cost function g() and estimated cost heuristic h/() is zime rather
than distance. The exact cost g() for an Outdoor vertex is
the sum of the time it takes to traverse to the current vertex,
and the heuristic cost h() is an estimate of the amount of
time it will take to reach the terminal vertex from the current
vertex. This change in unit of measure is accomplished by
simply multiply the distance by the average walking speed of
a person (1.4m/s) [6], [7]. This change although simple is
critical to the algorithm as it allows ASTRO to dynamically
compute predicted congestion based on the estimated time of
arrival. Additionally, when indoor graphs are constructed, the
indoor edge weights are modified to account for the delay due
to congestion which is modeled as a function of the percentage
of the original indoor travel time. For example, if the original
indoor time ¢ = 10s and there is 50% congestion, then the
added congestion delay is Ss.

E. ESX

In contexts where distance is not the only factor which
need to be considered, such as within ASTRO-K, simply
finding the top-k shortest paths may not be the best option.
Chondrogiannis et al. [5] defined the /K Shortest Paths with
Limited Overlap problem, showed it was weakly NP-hard, and
proposed a number of solutions including the ESX algorithm.
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ESX is a performance-oriented heuristic algorithm that given
a graph (G, a number of paths to find K and maximum
similarity ratio ¢ will compute the K shortest paths that are
at most # similar. The algorithm essentially finds the best
path, begins to iteratively remove the costliest edge from the
previously found path and searches for the best path using the
updated graph until either: K paths are found or every possible
edge within the path it previously found was attempted to be
removed and thus can’t continue. The similarity of paths p;
and py can be defined as similarity = (E,, N Ep,)/Ep,
where I, is the edge set of path 7.

III. ASTRO-K

The major contribution of this paper is an extension of
the ASTRO path finding algorithm, dubbed ASTRO-K, which
enables the efficient computation of the top-k sufficiently
distinct paths for a given Indoor-Outdoor graph. This was
achieved via the integration of a modified ASTRO and a
modified version of the ESX algorithm.

While the idea behind ESX is perfect for our need to offer
multiple different enough paths to disperse congestion, we
are unable to modify the underlying Indoor-Outdoor graph.
Because of this constraint, both the ASTRO and ESX algo-
rithms were modified to suit these needs. ESX was modified to
leave the Indoor-Outdoor graph unchanged and instead achieve
the same result using a Removed Edge set, which is passed
through to ASTRO-K’s version of ASTRO. ASTRO-K’s version
of ASTRO was then modified to use this Removed Edge set.

The aspect of ASTRO-K employing a version of ESX can be
found in Algorithm 2. To begin, we initialize the result set P
with the best path given the constraints found using ASTRO
(Lines 1-2) and then proceed to add each edge of the path
found into the priority queue PQ (Lines 3-4). PQ is a min
priority queue based on the total time cost of the edge. From
here on (Lines 5-20) the algorithm loops until K paths have
been found or there are no more edges in the priority queue
PQ to remove from the graph. The loop starts by initializing
the current path p with the last path added to the result set P
(Line 6). Lines 7-15 loop until the PQ has run out of edges to
remove or a path that is sufficiently dissimilar is found. This
nested loop first initializes the current edge by popping off the
PQ (Line 8), makes sure it’s not within the Do Not Remove
Edge set Epnpr (Lines 12-13), adds the edge to the Removed
Edge set Er (Line 11) and then calls ASTRO to find the best
path given the removed edges and constraints (Line 12). If
ASTRO does not return a valid path, we remove the edge from
the Removed Edge set F'r and add it to the Do Not Remove
Edge set Epnygr (Lines 13-15). Once the nested while loop
is broken we must check if a suitable path was found (Line
16), if there was, add it to the result set and reinitialize the
priority queue with the edges of the path we just found (Lines
17-20). If this was not the case and the priority queue was
emptied, the outer loop will break and an incomplete set of
result paths will be returned. Note this does not mean that no
more sufficiently distinct constraint-satisfying paths exist, this
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Algorithm 2 ASTRO-K

Input: s: source, t: terminal, O: Outdoor Vertices, II: Con-
straints;
Output: P: Best Paths
1: init List P, Priority Queue PQ, Set Epnr, Set Er

2: P.append(ASTRO(s,t,0, Eg,11))
3: for e € P.tail() do

4 PQ.push(e)

5. while |P| < k and PQ not empty do
6: p < Ptail()

7. while PQ not empty and Sim(p, P) > 6 do
8: e < PQ.pop()

9: if e € Epnyg then

10: continue

11: Fr <+ ErU {6}

12: p < ASTRO(s,t,0, Eg,1II)

13: if p= NULL then

14: FEr <+ Er — {€}

15: EDNR%EDNRU{e}

16:  if Sim(p, P) < 0 then

17: P.append(p)

18: PQ.clear()

19: for e € p do

20: PQ.push(e)

21: return P

solution is adapted from a performance-oriented heuristic and
is thus not complete.

As described earlier, the implementation of ASTRO de-
scribed in Algorithm 1 which is used by ASTRO-K is varied
from the original. These variations can be seen via the input
parameters and the Indoor graph expansion. First, the parame-
ters have been expanded to include the Removed Edge set Er,
this allows for their use later on in the algorithm. Second, when
expanding an Outdoor vertices’ Indoor graph and initializing
out local copy (Line 11), the edges from the Removed Edge set
FERr are subtracted from the local copy rather than the global
Indoor-Outdoor graph. This allows us to keep the global state
identical while path finding with edges removed.

Example: To showcase ASTRO-K in action, consider the set of
buildings ({4, B,C, D, E, F'}) in Figure 2 where five people
want to find a path from the start to the goal, with congestion
tolerance level 2 (persons). Also, assume that initially the
congestion level in all buildings is 0. In the graph, both start
and goal are outdoor vertices with only one indoor vertex. The
buildings represent the outdoor vertices, and the red dots are
indoor vertices, which represent the doors.

Figure 2(a) shows that the ASTRO-K with K = 1 recom-
mends the same path for all five people, which has as a result
that the outdoor vertex B will become congested at level 5
since all of them are passing through that building in a short
period of time. This clearly violates the congestion constraint.

In the case of K = 2, ASTRO-K recommends two distinct
paths, which reduce the congestion of outdoor vertex B, yet
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(a) ASTRO-K with K = 1

(b) ASTRO-K with K = 2

(c) ASTRO-K with K =3

Fig. 2: ASTRO-K recommends 3 paths that can reduce the congestion based on the parameter KX = 3 to 5 people with congestion
tolerance level 2. For example, if 5 people request a path, ASTRO-K will disperse the people into K paths.

violate the congestion constraint even though only three of five
persons are passing through that building, and the other two
people are passing through building £ as shown in Figure 2(b).

Finally, ASTRO-K with K = 3 recommends three paths
resulting in a distribution of congestion where two persons
are passing through building B, two through F, and one
through C' and F’, hence meeting all five persons’ congestion
constraints.

IV. EXPERIMENTAL METHODOLOGY AND EVALUATION

This section provides details regarding the algorithm,
testbed, datasets, and metrics used for the evaluation of our
ASTRO-K algorithm.

Algorithm: ASTRO-K finds the top-k sufficiently distinct
constraint-satisfying paths so that we can spread the conges-
tion generated by best path recommendations. We evaluate
ASTRO-K’s performance in terms of average congestion and
number of people needed to violate the constraints while
varying the parameter /. We chose the origin and destination
points to be the points with the maximum euclidean distance
in each topology created by the following datasets.

Datasets:

o PITT: This is a realistic dataset that was created using
the University of Pittsburgh campus and consists of 9
buildings with each building having 2 to 6 doors (3 on
average) and up to 582 corridor cells (126 on average).
The average door-to-door corridor length is 69 meters.

o UCY: This is a realistic dataset that was created using the
University of Cyprus campus and consists of 9 buildings
with each building having 2 to 7 doors (4 on average) and
up to 396 corridor cells (106 on average). The average
door-to-door corridor length is 48.5 meters.

Testbed: Our evaluation is carried out on a dedicated machine
with Manjaro Linux. The server is featuring 16 GB of RAM
with 8 Cores (@ 1.80GHz), a 500 GB SSD.

Congestion Generation: We used camera analysis [8] on a 2-
hour session and extrapolated the congestion data using the
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University of Pittsburgh Fall 2019 schedule. Then, for both
PITT and UCY datasets, we generate congestion data using the
procedure EPICGen generator [9] with default experimental
parameters for simulating both pass-through and scheduled
traffic.

Metrics: Due to the limited pre-existing work on this exact
problem defined in Section II-A, we chose the following
two metrics to evaluate the performance and showcase the
importance of ASTRO-K.

« Average Congestion (C): measures the average percent-
age of congestion within a 3m? cell of a building during a
5-minute window. Percentage of congestion is determined
with respect to the maximum amount of people allowed
within a cell.

o Number of People (P): measure the amount of people
introduced within a 5-minute window.

Methodology: All of our experiments look the effect of K on
estimating C if 50 people were introduced into the Indoor-
Outdoor graphs modeling the PITT and UCY datasets. Partic-
ularity, the people are assigned to K paths using a priority
queue based on the minimum average congestion of each path
and adjusted after every assignment.

Let D be the average door-to-door distance for a dataset, w
be the constant walking speed of 1.4m/s, ¢ be the 3m? cell
size used in our congestion generator and S be the 5-minute
window for which congestion is predicted. For all experiments,
we model the congestion increment of a single person to a path
as inc = w%i*s, which can be understood semantically as the
average congestion a person will add to each grid cell within
a building with respect to a 5S-minute window of time.

V. EXPERIMENTAL RESULTS

We conducted three experiments to assess the effectiveness
of ASTRO-K in reducing the congestion and measure the
impact on the shortest distance/time when recommending its
returned distinct paths.
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Fig. 3: The average congestion of all the recommended paths
when K paths are found.
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Fig. 4: The number of people which were added to a network
before a path breaches the congestion constraint when K paths
are found.

A. Experiment 1: Average congestion per path

In the first experiment we study the average congestion
per path in respect with the number of recommended paths
(K). In Figure 3, we can clearly see that as the number of
paths found increases, the average C value for the K paths
dramatically reduces. Specifically, the average congestion of
the recommended paths is reduced by 4.5X for the PITT
dataset with K = 6 and 2.6X for the UCY dataset with K = 3.

Summary: ASTRO-K is able to effectively disperse conges-
tion introduced by recommended paths.

B. Experiment 2: Number of people

In the second experiment, we look at the maximum number
of people P going from the same source vertex to destina-
tion vertex that we are able to introduce into the Indoor-
Outdoor graphs for PITT and UCY datasets before the average
congestion reaches a constraint of 15% in respect with the
number of recommended paths (K). In Figure 4, we observe
that as K increases there is a clear increase in the amount
of people, which are able to be introduced into the paths
while not breaching the congestion constraint. Particularly, the
number of people which can follow the recommended paths
is increased by 5.9X for the PITT dataset with K = 6 and
2.8X for the UCY dataset with K = 3.

Summary: ASTRO-K is able to drastically increase the
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Fig. 5: The average time of all recommended paths when K
paths are found.

TABLE I: Average indoor, outdoor, and total time for 50
people varying K.

[Time | k=1 | k=2 | k=3 | k=4 | k=5 | k=6 |
Indoor | 23.94 | 41.62 | 49.88 | 5054 | 55.09 | 58.12
Outdoor | 377.215 | 364.52 | 358.12 | 365.88 | 369.60 | 373.25
Total 401.16 | 406.14 | 408.01 | 416.43 | 424.70 | 431.38

amount of people we are able to recommend paths to without
exceeding the constraints.

C. Experiment 3: Average time for all recommended paths

In this third experiment, we examine the average indoor,
outdoor, and total time of all the paths for 50 people in
respect with the number of recommended paths (K) using
PITT dataset to determine the trade-off of increasing K. Figure
5 and Table I show that as the number of paths found increases,
the average total time for the K paths increases as well.
Specifically, the average total time of the recommended paths
is increased by 7% for K = 6. Furthermore, the average indoor
time increases by 2.4X and the average outdoor time decrease
by 2% for K = 6.

Summary: ASTRO-K is able to effectively disperse conges-
tion with the trade-off of slightly increased total path time.

VI. RELATED WORK

In this section, we discuss the most recent strongly related
work of ASTRO-K. A taxonomy of this related work is shown
in Table II.

Top-k Sufficiently Distinct path finding: As described in
Section II-E, ASTRO-K adopted one of the approaches pro-
posed by Chrondrogiannias et al. to tackle this problem. Liu
et al.’s [12] also proves a formalization of the problem to be
NP-Hard and proposes a similar solution to the ESX algo-
rithm while performing an additional diversity lower bound
calculation at each step.

Constraint-based Path Finding: A formalization of
constraint-based path finding known as the Multi-Constraint
Path finding (MSP) problem is explored in Feng & Korkmaz
[10] and Hu et al. [11]. Feng & Korkmaz provide a com-
prehensive overview of the previous work on the problem as
well as propose two multi-constraint path finding algorithms
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TABLE II: Taxonomy of Related Work

| Paper [ Topk Constraints  Congestion |

ASTRO [1] No Yes Predictive

Feng & Korkmaz [10] | Partially Yes No

Hu et al. [11] No Yes No

Liu et al. [12] Yes No No
Saleem et al. [13] No No Real-Time
Walied et al. [14] No No Real-Time
Lin et al. [15] No No Real-Time
Shreyas et al. [16] No No Real-Time
Liu et al. [17] No No Predictive
ASTRO-K Yes Yes Predictive

which are able to find multiple paths. Hu et al. proposes a
more efficient MSP algorithm but is constricted to a single-
path. While MSP may be a similar problem it is not applicable
to ASTRO because both approaches would necessitate full
graph expansion which we explicitly want to avoid do to how
computationally expensive it is to fully construct the graph.
Congestion-Aware Indoor path finding: Congestion-aware
indoor path finding is a topic which is explored in many con-
texts and thus most works, while potentially similar in concept,
are trying to solve fundamentally different problems. Indoor-
localization [13], [14] and IoT [15], [16] approaches are good
examples of this. These are both efficient indoor path finding
approaches but are not applicable in the context of predictive
path finding [18] as performed by ASTRO and ASTRO-K due
to their real-time data updating the environment.

Liu et al. [17] proposes an algorithm for the same
kind of door-to-door congestion-aware path finding. While
ASTRO/ASTRO-K use a grid-based building model to predict
congestion within a grid cell, Liu et al. predict congestion by
modeling buildings in terms of the semantics of a space and
then simulating the movement of people via queues hyper-
parameterized using historical data. However, since the grid
cells designate a much smaller space than Liu et al.’s semantic
modeling approach, ASTRO/ASTRO-K is able to provide
paths considering congestion at a much finer granularity.

VII. CONCLUSIONS & FUTURE WORK

In the recent years, and more precisely since the outbreak
of the COVID-19 pandemic, the impact of crowded and con-
gested spaces on the spread of viral airborne diseases attracted
greater attention, which go beyond accessibility. In this paper,
we present a novel top-k sufficiently distinct extension of
ASTRO, dubbed ASTRO-K, which enables us to recommend
paths to more people without inadvertently congesting an area.
ASTRO-K is stateless, i.e., does not maintain a history of path
recommendations. It integrates a slight modification of the ESX
algorithm along with a modified version of our previous work
in order to accomplish this. Our experimental results show
that ASTRO-K is able to recommend paths in a manner that
reduces the average congestion of the paths.

Our proposed solution does not include balancing or
scheduling of route recommendations. This is the next step
of our work. We plan to use ASTRO-K as a core component
in the development of path scheduling algorithms that can
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recommend paths in a setting where multiple path discovery
requests need to be considered together. Finally, we also plan
to make the code open source as part of the CAPRIO! project.
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