
ASTRO-K: Finding Top-k Sufficiently Distinct
Indoor-Outdoor Paths

Vasilis Ethan Sarris
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA, USA

vas82@pitt.edu

Constantinos Costa
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA, USA

costa.c@cs.pitt.edu

Panos K. Chrysanthis
Dept. of Computer Science

University of Pittsburgh
Pittsburgh, PA, USA

panos@cs.pitt.edu

Abstract—CAPRIO is an indoor-outdoor pedestrian path rec-
ommendation system that optimizes for shortest distance. Its
path-finding algorithm, ASTRO, takes into account a set of user-
provided congestion constraints and as such can recommend
paths that can reduce the risk of COVID-19 exposure. In this
paper, we extend ASTRO to consider the changes on congestion
when providing path recommendations for overlapping requests.
Our new algorithm, called ASTRO-K, can provide K alternative
paths that satisfy the congestion constraints of all the path
requests within a short time-window. Our experimental eval-
uation is conducted using two real-world datasets and shows
that ASTRO-K can reduce the total average congestion of the
recommended paths up to 4.5X with the trade-off of up to 7%
increased total path time.

Index Terms—Top-k Paths, Constraint-based Path Finding,
Indoor-Outdoor Graphs, Congestion, COVID-19

I. INTRODUCTION

The COVID-19 pandemic has shown us that there is a

clear need for pedestrian path finding systems which can

recommend paths that reduce the exposure to viral infection

diseases. The exposure to viral airborne diseases is higher

in crowded and congested spaces, and hence avoiding them

reduces the risk of contracting a virus.

In our previous work, we proposed a solution to this prob-

lem of “physical distancing” with ASTRO [1], a constraint-

based path-finding algorithm which factors in the predicted

congestion of a space when constructing a path. ASTRO was

implemented as the core path finding algorithm in CAPRIO

[2]–[4], our indoor-outdoor pedestrian path recommendation

system that suggests the shortest distance path for a given

departure and arrival time between two locations.

By offering only one path per request, ASTRO may inad-

vertently contribute towards congestion problems by funneling

people into a single area.

In this paper, we introduce ASTRO-K, an extension of AS-
TRO which computes the top-k sufficiently distinct constraint-

satisfying paths for overlapping requests. Overlapping requests

have similar departure and arrival time between the same two

locations as shown in Figure 1. This provides CAPRIO with

more paths to choose from for overlapping requests submitted

within a short time-window and thus reduces the probability of

inadvertently contributing towards congestion. Our hypothesis

is that, by only recommending paths which are sufficiently

Fig. 1: CAPRIO with top-5 alternative paths produced by our

ASTRO-K.

distinct, we are able to promote physical distancing and
decrease the recommendations’ contribution to congestion.

We evaluate ASTRO-K experimentally using two datasets

modeling the campus of the University of Pittsburgh and the

University of Cyprus. Our experiments show that ASTRO-K
can reduce the average congestion by increasing K. Specif-

ically, the average congestion of the recommended paths is

reduced by 4.5X for the PITT dataset with K = 6 and 2.6X

for the UCY dataset with K = 3. This reduction in the average

congestion comes with the cost for the shortest distance. We

observe an increase of total path time up to 7%. Clearly, these

initial results are promising and support our hypothesis above.

Our main contributions are summarized as follows:

• We introduce ASTRO-K, an integration of the ASTRO and

ESX [5] algorithms, which to our knowledge is the first

algorithm for finding top-k sufficiently distinct constraint-

satisfying paths.

• We conduct a preliminary experimental evaluation and

show that ASTRO-K can reduce the total average conges-

tion produced by the recommendations.

The rest of the paper is structured as follows. In the next

section, we formalize the problem and provide the necessary

background on ASTRO and ESX algorithms. In Section III, we

present ASTRO-K and in Sections IV and V the experimental

methodology and its evaluation respectively. In Section VI, we

discuss related work.

372

2022 23rd IEEE International Conference on Mobile Data Management (MDM)

2375-0324/22/$31.00 ©2022 IEEE
DOI 10.1109/MDM55031.2022.00083

20
22

 2
3r

d
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 M
ob

ile
 D

at
a

M
an

ag
em

en
t (

M
DM

) |
 9

78
-1

-6
65

4-
51

76
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

M
DM

55
03

1.
20

22
.0

00
83

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:23:54 UTC from IEEE Xplore. Restrictions apply.

II. PROBLEM FORMULATION & BACKGROUND

In this section, we define all the relevant information neces-

sary to understanding the ASTRO-K algorithm. This includes

a formulation of the problem (Section II-A), an explanation

of the underlying graph (Section II-B), definitions of the

constraints used by ASTRO and ASTRO-K (Section II-C), and

an overview of the ASTRO path finding algorithm (Section

II-D).

A. Problem Formulation

Given an Indoor-Outdoor graph, a source Outdoor vertex,
a terminal Outdoor vertex, a set of constraints, find the top-k
sufficiently distinct paths from the source outdoor vertex to the
terminal outdoor vertex which satisfy the given constraints.

B. Indoor-Outdoor Graphs

In order to understand the ASTRO-K algorithm, it is first

helpful to understand the underlying graph upon which the

algorithm is built. An Indoor-Outdoor graph G is constructed

using three main components: Indoor vertices, Indoor graphs,

Outdoor vertices. Indoor vertices are the bottom layer of an

Indoor-Outdoor graph and represent the doors allowing people

to enter and exit buildings. Indoor graphs are bidirectional

weighted graphs which are comprised of Indoor vertices and

edges represent the path between any two doors. Outdoor

vertices are comprised of Indoor graphs and represent build-

ings. Indoor-Outdoor graphs are bidirectional weighted graphs

comprised of Outdoor vertices and edges represent the paths

between buildings. Thanks to the nature of an Indoor-Outdoor

graph, ASTRO is able to seamlessly find paths inside and

outside of buildings.

C. Constraints

Definition 1: Outdoor Exposure (E) – the maximum amount

of time allowed to traverse any given edge between two

outdoor vertices.

Definition 2: Time Limit (T) – the maximum amount of

time allowed to traverse a path.

Definition 3: Congestion (C) – the maximum amount of

congestion which can be encountered while traversing between

two indoor vertices.

Definition 4: Path Similarity (θ) – the maximum percentage

of total edge distance shared between any two paths in the

result set.

D. ASTRO

Before describing ASTRO-K, let us first review the original

algorithm, ASTRO. ASTRO is a constraint-based variant of the

A∗ algorithm. It is an optimal A∗ variant, which means that

ASTRO is guaranteed to have optimal edge selection when

traversing the graph [1].

Given an Indoor-Outdoor graph, ASTRO behaves like stan-

dard A∗, traversing the graph over the Outdoor vertices but

then at each step also expands the current Outdoor vertex’s

Indoor graph to find the best ordered pair of Indoor vertices to

use as the entry and exit for the current Outdoor vertex. Unlike

Algorithm 1 Modified ASTRO used in Algorithm 2

Input: s: source, t: terminal, O: Outdoor Vertices, ER: Edges

Removed, Π: Constraints;

Output: p: Best Path;

1: init Priority Queue OPEN , Set CLOSED
2: init Outdoor Vertex start with s
3: OPEN.push(start)
4: while OPEN not empty do
5: curr ← OPEN.pop()
6: if curr = NULL then
7: return ReconstructPath(curr)

8: if curr /∈ CLOSED then
9: CLOSED ← CLOSED ∪ {curr}

10: for oi ∈ {O − CLOSED} do
11: IndoorGraph← oi[IndoorGraph]− ER

12: for ini ∈ IndoorGraph do
13:

−→s1 ← Status(curr[out], ini, curr[g])
14: for outi ∈ {IndoorGraph− {in}} do
15: now = curr[g] +−→s1 [total]
16:

−→s2 ← Status(ini, outi, now)
17:

−→s ← −→s1 +−→s2
18: g ← curr[g] +−→s [total]
19: if g < oi[g] and Check(Π,−→s) then
20: init Outdoor Vertex toAdd
21: OPEN.push(toAdd)

standard A∗ when an edge is expanded it may be pruned if it

no longer meets the constraints Π = (E, T,C). Pruning edges

in this manner allow us to avoid constructing the complete

Indoor-Outdoor graph which would be prohibitively expensive.

It is key to note that the unit of measure for both the exact

cost function g() and estimated cost heuristic h() is time rather

than distance. The exact cost g() for an Outdoor vertex is

the sum of the time it takes to traverse to the current vertex,

and the heuristic cost h() is an estimate of the amount of

time it will take to reach the terminal vertex from the current

vertex. This change in unit of measure is accomplished by

simply multiply the distance by the average walking speed of

a person (1.4m/s) [6], [7]. This change although simple is

critical to the algorithm as it allows ASTRO to dynamically

compute predicted congestion based on the estimated time of

arrival. Additionally, when indoor graphs are constructed, the

indoor edge weights are modified to account for the delay due

to congestion which is modeled as a function of the percentage

of the original indoor travel time. For example, if the original

indoor time i = 10s and there is 50% congestion, then the

added congestion delay is 5s.

E. ESX

In contexts where distance is not the only factor which

need to be considered, such as within ASTRO-K, simply

finding the top-k shortest paths may not be the best option.

Chondrogiannis et al. [5] defined the K Shortest Paths with

Limited Overlap problem, showed it was weakly NP-hard, and

proposed a number of solutions including the ESX algorithm.

373

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:23:54 UTC from IEEE Xplore. Restrictions apply.

ESX is a performance-oriented heuristic algorithm that given

a graph G, a number of paths to find K and maximum

similarity ratio θ will compute the K shortest paths that are

at most θ similar. The algorithm essentially finds the best

path, begins to iteratively remove the costliest edge from the

previously found path and searches for the best path using the

updated graph until either: K paths are found or every possible

edge within the path it previously found was attempted to be

removed and thus can’t continue. The similarity of paths p1
and p2 can be defined as similarity = (Ep1

∩ Ep2
)/Ep1

where Epi
is the edge set of path i.

III. ASTRO-K

The major contribution of this paper is an extension of

the ASTRO path finding algorithm, dubbed ASTRO-K, which

enables the efficient computation of the top-k sufficiently

distinct paths for a given Indoor-Outdoor graph. This was

achieved via the integration of a modified ASTRO and a

modified version of the ESX algorithm.

While the idea behind ESX is perfect for our need to offer

multiple different enough paths to disperse congestion, we

are unable to modify the underlying Indoor-Outdoor graph.

Because of this constraint, both the ASTRO and ESX algo-

rithms were modified to suit these needs. ESX was modified to

leave the Indoor-Outdoor graph unchanged and instead achieve

the same result using a Removed Edge set, which is passed

through to ASTRO-K’s version of ASTRO. ASTRO-K’s version

of ASTRO was then modified to use this Removed Edge set.

The aspect of ASTRO-K employing a version of ESX can be

found in Algorithm 2. To begin, we initialize the result set P
with the best path given the constraints found using ASTRO
(Lines 1-2) and then proceed to add each edge of the path

found into the priority queue PQ (Lines 3-4). PQ is a min

priority queue based on the total time cost of the edge. From

here on (Lines 5-20) the algorithm loops until K paths have

been found or there are no more edges in the priority queue

PQ to remove from the graph. The loop starts by initializing

the current path p with the last path added to the result set P
(Line 6). Lines 7-15 loop until the PQ has run out of edges to

remove or a path that is sufficiently dissimilar is found. This

nested loop first initializes the current edge by popping off the

PQ (Line 8), makes sure it’s not within the Do Not Remove

Edge set EDNR (Lines 12-13), adds the edge to the Removed

Edge set ER (Line 11) and then calls ASTRO to find the best

path given the removed edges and constraints (Line 12). If

ASTRO does not return a valid path, we remove the edge from

the Removed Edge set ER and add it to the Do Not Remove

Edge set EDNR (Lines 13-15). Once the nested while loop

is broken we must check if a suitable path was found (Line

16), if there was, add it to the result set and reinitialize the

priority queue with the edges of the path we just found (Lines

17-20). If this was not the case and the priority queue was

emptied, the outer loop will break and an incomplete set of

result paths will be returned. Note this does not mean that no

more sufficiently distinct constraint-satisfying paths exist, this

Algorithm 2 ASTRO-K

Input: s: source, t: terminal, O: Outdoor Vertices, Π: Con-

straints;

Output: P : Best Paths

1: init List P , Priority Queue PQ, Set EDNR, Set ER

2: P.append(ASTRO(s, t, O,ER,Π))
3: for e ∈ P.tail() do
4: PQ.push(e)

5: while |P | < k and PQ not empty do
6: p← P.tail()
7: while PQ not empty and Sim(p, P) > θ do
8: e← PQ.pop()
9: if e ∈ EDNR then

10: continue
11: ER ← ER ∪ {e}
12: p← ASTRO(s, t, O,ER,Π)
13: if p = NULL then
14: ER ← ER − {e}
15: EDNR ← EDNR ∪ {e}
16: if Sim(p, P) < θ then
17: P.append(p)
18: PQ.clear()
19: for e ∈ p do
20: PQ.push(e)

21: return P

solution is adapted from a performance-oriented heuristic and

is thus not complete.

As described earlier, the implementation of ASTRO de-

scribed in Algorithm 1 which is used by ASTRO-K is varied

from the original. These variations can be seen via the input

parameters and the Indoor graph expansion. First, the parame-

ters have been expanded to include the Removed Edge set ER,

this allows for their use later on in the algorithm. Second, when

expanding an Outdoor vertices’ Indoor graph and initializing

out local copy (Line 11), the edges from the Removed Edge set

ER are subtracted from the local copy rather than the global

Indoor-Outdoor graph. This allows us to keep the global state

identical while path finding with edges removed.

Example: To showcase ASTRO-K in action, consider the set of

buildings ({A,B,C,D,E, F}) in Figure 2 where five people

want to find a path from the start to the goal, with congestion

tolerance level 2 (persons). Also, assume that initially the

congestion level in all buildings is 0. In the graph, both start

and goal are outdoor vertices with only one indoor vertex. The

buildings represent the outdoor vertices, and the red dots are

indoor vertices, which represent the doors.

Figure 2(a) shows that the ASTRO-K with K = 1 recom-

mends the same path for all five people, which has as a result

that the outdoor vertex B will become congested at level 5

since all of them are passing through that building in a short

period of time. This clearly violates the congestion constraint.

In the case of K = 2, ASTRO-K recommends two distinct

paths, which reduce the congestion of outdoor vertex B, yet

374

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:23:54 UTC from IEEE Xplore. Restrictions apply.

(a) ASTRO-K with K = 1 (b) ASTRO-K with K = 2 (c) ASTRO-K with K = 3

Fig. 2: ASTRO-K recommends 3 paths that can reduce the congestion based on the parameter K = 3 to 5 people with congestion

tolerance level 2. For example, if 5 people request a path, ASTRO-K will disperse the people into K paths.

violate the congestion constraint even though only three of five

persons are passing through that building, and the other two

people are passing through building E as shown in Figure 2(b).
Finally, ASTRO-K with K = 3 recommends three paths

resulting in a distribution of congestion where two persons

are passing through building B, two through E, and one

through C and F , hence meeting all five persons’ congestion

constraints.

IV. EXPERIMENTAL METHODOLOGY AND EVALUATION

This section provides details regarding the algorithm,

testbed, datasets, and metrics used for the evaluation of our

ASTRO-K algorithm.

Algorithm: ASTRO-K finds the top-k sufficiently distinct

constraint-satisfying paths so that we can spread the conges-

tion generated by best path recommendations. We evaluate

ASTRO-K’s performance in terms of average congestion and

number of people needed to violate the constraints while

varying the parameter K. We chose the origin and destination

points to be the points with the maximum euclidean distance

in each topology created by the following datasets.

Datasets:
• PITT: This is a realistic dataset that was created using

the University of Pittsburgh campus and consists of 9

buildings with each building having 2 to 6 doors (3 on

average) and up to 582 corridor cells (126 on average).

The average door-to-door corridor length is 69 meters.

• UCY: This is a realistic dataset that was created using the

University of Cyprus campus and consists of 9 buildings

with each building having 2 to 7 doors (4 on average) and

up to 396 corridor cells (106 on average). The average

door-to-door corridor length is 48.5 meters.

Testbed: Our evaluation is carried out on a dedicated machine

with Manjaro Linux. The server is featuring 16 GB of RAM

with 8 Cores (@ 1.80GHz), a 500 GB SSD.

Congestion Generation: We used camera analysis [8] on a 2-

hour session and extrapolated the congestion data using the

University of Pittsburgh Fall 2019 schedule. Then, for both

PITT and UCY datasets, we generate congestion data using the

procedure EPICGen generator [9] with default experimental

parameters for simulating both pass-through and scheduled

traffic.

Metrics: Due to the limited pre-existing work on this exact

problem defined in Section II-A, we chose the following

two metrics to evaluate the performance and showcase the

importance of ASTRO-K.

• Average Congestion (C): measures the average percent-

age of congestion within a 3m2 cell of a building during a

5-minute window. Percentage of congestion is determined

with respect to the maximum amount of people allowed

within a cell.

• Number of People (P): measure the amount of people

introduced within a 5-minute window.

Methodology: All of our experiments look the effect of K on

estimating C if 50 people were introduced into the Indoor-

Outdoor graphs modeling the PITT and UCY datasets. Partic-

ularity, the people are assigned to K paths using a priority

queue based on the minimum average congestion of each path

and adjusted after every assignment.

Let D be the average door-to-door distance for a dataset, w
be the constant walking speed of 1.4m/s, φ be the 3m2 cell

size used in our congestion generator and S be the 5-minute

window for which congestion is predicted. For all experiments,

we model the congestion increment of a single person to a path

as inc = D
w∗φ∗S , which can be understood semantically as the

average congestion a person will add to each grid cell within

a building with respect to a 5-minute window of time.

V. EXPERIMENTAL RESULTS

We conducted three experiments to assess the effectiveness

of ASTRO-K in reducing the congestion and measure the

impact on the shortest distance/time when recommending its

returned distinct paths.

375

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:23:54 UTC from IEEE Xplore. Restrictions apply.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

UCY PITT

A
ve

ra
ge

 C
on

ge
st

io
n

k=1
k=2
k=3
k=4
k=5
k=6

Fig. 3: The average congestion of all the recommended paths

when K paths are found.

 0

 5

 10

 15

 20

 25

 30

UCY PITT

N
um

be
r

of
 p

eo
pl

e

k=1
k=2
k=3
k=4
k=5
k=6

Fig. 4: The number of people which were added to a network

before a path breaches the congestion constraint when K paths

are found.

A. Experiment 1: Average congestion per path

In the first experiment we study the average congestion

per path in respect with the number of recommended paths

(K). In Figure 3, we can clearly see that as the number of

paths found increases, the average C value for the K paths

dramatically reduces. Specifically, the average congestion of

the recommended paths is reduced by 4.5X for the PITT

dataset with K = 6 and 2.6X for the UCY dataset with K = 3.

Summary: ASTRO-K is able to effectively disperse conges-

tion introduced by recommended paths.

B. Experiment 2: Number of people

In the second experiment, we look at the maximum number

of people P going from the same source vertex to destina-

tion vertex that we are able to introduce into the Indoor-

Outdoor graphs for PITT and UCY datasets before the average

congestion reaches a constraint of 15% in respect with the

number of recommended paths (K). In Figure 4, we observe

that as K increases there is a clear increase in the amount

of people, which are able to be introduced into the paths

while not breaching the congestion constraint. Particularly, the

number of people which can follow the recommended paths

is increased by 5.9X for the PITT dataset with K = 6 and

2.8X for the UCY dataset with K = 3.

Summary: ASTRO-K is able to drastically increase the

 0

 100

 200

 300

 400

 500

Indoor time Outdoor time Total time

S
ec

on
ds

k=1
k=2
k=3
k=4
k=5
k=6

Fig. 5: The average time of all recommended paths when K
paths are found.

TABLE I: Average indoor, outdoor, and total time for 50

people varying K.

Time k=1 k=2 k=3 k=4 k=5 k=6

Indoor 23.94 41.62 49.88 50.54 55.09 58.12
Outdoor 377.215 364.52 358.12 365.88 369.60 373.25
Total 401.16 406.14 408.01 416.43 424.70 431.38

amount of people we are able to recommend paths to without

exceeding the constraints.

C. Experiment 3: Average time for all recommended paths

In this third experiment, we examine the average indoor,

outdoor, and total time of all the paths for 50 people in

respect with the number of recommended paths (K) using

PITT dataset to determine the trade-off of increasing K. Figure

5 and Table I show that as the number of paths found increases,

the average total time for the K paths increases as well.

Specifically, the average total time of the recommended paths

is increased by 7% for K = 6. Furthermore, the average indoor

time increases by 2.4X and the average outdoor time decrease

by 2% for K = 6.

Summary: ASTRO-K is able to effectively disperse conges-

tion with the trade-off of slightly increased total path time.

VI. RELATED WORK

In this section, we discuss the most recent strongly related

work of ASTRO-K. A taxonomy of this related work is shown

in Table II.

Top-k Sufficiently Distinct path finding: As described in

Section II-E, ASTRO-K adopted one of the approaches pro-

posed by Chrondrogiannias et al. to tackle this problem. Liu

et al.’s [12] also proves a formalization of the problem to be

NP-Hard and proposes a similar solution to the ESX algo-

rithm while performing an additional diversity lower bound

calculation at each step.

Constraint-based Path Finding: A formalization of

constraint-based path finding known as the Multi-Constraint

Path finding (MSP) problem is explored in Feng & Korkmaz

[10] and Hu et al. [11]. Feng & Korkmaz provide a com-

prehensive overview of the previous work on the problem as

well as propose two multi-constraint path finding algorithms

376

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:23:54 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Taxonomy of Related Work

Paper Top-k Constraints Congestion

ASTRO [1] No Yes Predictive
Feng & Korkmaz [10] Partially Yes No

Hu et al. [11] No Yes No
Liu et al. [12] Yes No No

Saleem et al. [13] No No Real-Time
Walied et al. [14] No No Real-Time

Lin et al. [15] No No Real-Time
Shreyas et al. [16] No No Real-Time

Liu et al. [17] No No Predictive
ASTRO-K Yes Yes Predictive

which are able to find multiple paths. Hu et al. proposes a

more efficient MSP algorithm but is constricted to a single-

path. While MSP may be a similar problem it is not applicable

to ASTRO because both approaches would necessitate full

graph expansion which we explicitly want to avoid do to how

computationally expensive it is to fully construct the graph.

Congestion-Aware Indoor path finding: Congestion-aware

indoor path finding is a topic which is explored in many con-

texts and thus most works, while potentially similar in concept,

are trying to solve fundamentally different problems. Indoor-

localization [13], [14] and IoT [15], [16] approaches are good

examples of this. These are both efficient indoor path finding

approaches but are not applicable in the context of predictive

path finding [18] as performed by ASTRO and ASTRO-K due

to their real-time data updating the environment.

Liu et al. [17] proposes an algorithm for the same

kind of door-to-door congestion-aware path finding. While

ASTRO/ASTRO-K use a grid-based building model to predict

congestion within a grid cell, Liu et al. predict congestion by

modeling buildings in terms of the semantics of a space and

then simulating the movement of people via queues hyper-

parameterized using historical data. However, since the grid

cells designate a much smaller space than Liu et al.’s semantic

modeling approach, ASTRO/ASTRO-K is able to provide

paths considering congestion at a much finer granularity.

VII. CONCLUSIONS & FUTURE WORK

In the recent years, and more precisely since the outbreak

of the COVID-19 pandemic, the impact of crowded and con-

gested spaces on the spread of viral airborne diseases attracted

greater attention, which go beyond accessibility. In this paper,

we present a novel top-k sufficiently distinct extension of

ASTRO, dubbed ASTRO-K, which enables us to recommend

paths to more people without inadvertently congesting an area.

ASTRO-K is stateless, i.e., does not maintain a history of path

recommendations. It integrates a slight modification of the ESX
algorithm along with a modified version of our previous work

in order to accomplish this. Our experimental results show

that ASTRO-K is able to recommend paths in a manner that

reduces the average congestion of the paths.

Our proposed solution does not include balancing or

scheduling of route recommendations. This is the next step

of our work. We plan to use ASTRO-K as a core component

in the development of path scheduling algorithms that can

recommend paths in a setting where multiple path discovery

requests need to be considered together. Finally, we also plan

to make the code open source as part of the CAPRIO1 project.

VIII. ACKNOWLEDGMENTS

This paper was part of the capstone of the first author.

This work was partially funded by NIH award U01HL137159

and by the Pittsburgh Foundation. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of any of the sponsors.

REFERENCES

[1] C. Anastasiou, C. Costa, P. K. Chrysanthis, C. Shahabi, and
D. Zeinalipour-Yazti, “ASTRO: reducing COVID-19 exposure through
contact prediction and avoidance,” ACM Trans. Spatial Algorithms Syst.,
vol. 8, no. 2, pp. 1–31, 2022.

[2] C. Costa, X. Ge, and P. K. Chrysanthis, “CAPRIO: context-aware path
recommendation exploiting indoor and outdoor information,” in IEEE
Intl. Conf. on Mobile Data Management, 2019, pp. 431–436.

[3] ——, “CAPRIO: graph-based integration of indoor and outdoor data for
path discovery,” Proc. VLDB Endow., vol. 12, no. 12, pp. 1878–1881,
2019.

[4] C. Costa, X. Ge, E. McEllhenney, E. Kebler, P. K. Chrysanthis, and
D. Zeinalipour-Yazti, “Capriov2.0: A context-aware unified indoor-
outdoor path recommendation system,” in IEEE Intl. Conf. on Mobile
Data Management, 2020, pp. 230–231.

[5] T. Chondrogiannis, P. Bouros, J. Gamper, U. Leser, and D. B. Blumen-
thal, “Finding k-shortest paths with limited overlap,” VLDB J., vol. 29,
no. 5, pp. 1023–1047, 2020.

[6] R. Bohannon, A. W. Andrews, “Normal walking speed: a descriptive
meta-analysis,” Physiotherapy, vol. 97, no. 3, pp. 182–189, 2011.

[7] R. L. Knoblauch, M. T. Pietrucha, and M. Nitzburg, “Field studies of
pedestrian walking speed and start-up time,” Transportation Research
Record, vol. 1538, no. 1, pp. 27–38, 1996.

[8] C. Feliciani and K. Nishinari, “Measurement of congestion and intrinsic
risk in pedestrian crowds,” Transportation Research Part C: Emerging
Technologies, vol. 91, pp. 124–155, 2018.

[9] C. Anastasiou, C. Costa, P. K. Chrysanthis, and C. Shahabi, “Epicgen:
An experimental platform for indoor congestion generation and fore-
casting,” Proc. VLDB Endow., vol. 14, no. 12, pp. 2803–2806, 2021.

[10] Gang Feng, Turgay Korkmaz, “Finding multi-constrained multiple short-
est paths,” IEEE Trans. Computers, vol. 64, no. 9, pp. 2559–2572, 2015.

[11] X. Hu, K. Wang, J. Wang, K. Wang, Y. Hu, and S. Wang, “Multi-
constrained routing optimization algorithm based on DAG,” in Conf. of
the IEEE Industrial Electronics Society, 2018, pp. 5906–5910.

[12] H. Liu, C. Jin, B. Yang, and A. Zhou, “Finding top-k shortest paths with
diversity,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 3, pp. 488–502,
2018.

[13] A. Saleem, K. A. Jabri, A. A. Maashri, W. A. Maawali, and M. Mesbah,
“Obstacle-avoidance algorithm using deep learning based on rgbd im-
ages and robot orientation,” in Intl. Conf. on Electrical and Electronics
Engineering, 2020, pp. 268–272.

[14] A. M. Walied, A. Onsy, S. A. Maged, and S. Hammad, “Path planning
in a dynamic indoor environment for mobile robots using q-learning
technique,” in Intl. Mobile, Intelligent, and Ubiquitous Computing Conf.,
2021, pp. 373–380.

[15] C. Lin, G. Han, J. Du, T. Xu, L. Shu, and Z. Lv, “Spatiotemporal
congestion-aware path planning toward intelligent transportation systems
in software-defined smart city iot,” IEEE Internet Things J., vol. 7, no. 9,
pp. 8012–8024, 2020.

[16] S. J, H. Singh, J. Bhutani, S. Pandit, S. N. N, and D. Kumar S M,
“Congestion aware algorithm using fuzzy logic to find an optimal routing
path for iot networks,” in Intl. Conf. on Computational Intelligence and
Knowledge Economy, 2019, pp. 141–145.

[17] T. Liu, H. Li, H. Lu, M. A. Cheema, and L. Shou, “Towards crowd-
aware indoor path planning,” Proc. VLDB Endow., vol. 14, no. 8, pp.
1365–1377, 2021.

[18] U. Demiryurek and C. Shahabi, “Predictive path planning,” in Encyclo-
pedia of GIS. Springer, 2017, pp. 1630–1640.

1CAPRIO: https://db.cs.pitt.edu/caprio/

377

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:23:54 UTC from IEEE Xplore. Restrictions apply.

