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Abstract—In this demo paper, we present the new module
of our HealthDist system that performs contact tracing in a
privacy-preserving manner and considers the COVID-19 expo-
sure risk. This is achieved by answering a new spatio-temporal
query, dubbed ST-Aggregate Join, which calculates the COVID-
19 exposure risk of an individual on their devices. It utilizes a
special-purpose access structure to record the trajectories of users
on their devices and optimize the ST-Aggregate Join processing.
We demonstrate interactively using a smartphone application
how our system can provide effective contact tracing within
a university campus. We also illustrate how our new module
is working through an intuitive web interface that shows the
exposure risk of a person by coloring the trajectory of the infected
person and the person(s) in high risk in a preloaded real dataset.

Index Terms—indoor, outdoor, congestion forecasting, contact
tracing, spatio-temporal aggregate join

I. INTRODUCTION

COVID-19 is an airborne disease, which is highly con-

tagious with the larger percentage of infected people not

exhibiting symptoms. With the rise of new COVID-19 variants,

such as Delta and Omicron, governments around the world

have reiterated the need for face masks, social distancing,

contact tracing (CT) and isolation [1]. The US Centers for

Disease Control and Prevention (CDC)1 has broadly defined

the following three criteria for two people to be declared as

came to close contact indoors and outdoors: (i) they both need

to be within six feet away (≈1.8 meters) without wearing

masks; (ii) one of the two persons is infected and this is

starting two days before the infected person has developed

symptoms; and (iii) the cumulative total time is 15 minutes

or more [2]. The first two requirements establish a contact

whereas the third one captures the exposure to the virus.

Existing CT applications (e.g., [3], [4]) focus on a single

contact with duration constraints while ignoring the cumulative

duration of multiple contacts. As a result, these applications

are unable to assess the exposure risk, measured as viral

load or quanta accumulation over a period of time (e.g., a

day). In this paper, we present a solution for efficient contact

tracing, that considers both contacts and their cumulative

1CDC: https://www.cdc.gov/
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Fig. 1. Example of ST-Aggregate Join processing

duration, implemented as a new module of our innovative

HealthDist system [5]. HealthDist was designed as part of

the CovidReduce2 project to implement a holistic approach of

proactive (contact avoidance) and retroactive (contact tracing)

functionalities without violating privacy. In the first version of

HealthDist we implemented safe path recommendations and

a scenario analysis tool 3, which can calculate the infection

exposure based on the user’s input. The new module, called

Exposure Risk Detection, also uses the scenario analysis tool in

calculating the exposure risk based on the contact cumulative

durations and operates along the lines of SmartTrace [6] to

preserve privacy and achieve scalability.

There are two forms of spatial intersection that must be con-

sidered when attempting to perform contact tracing: (i) direct
contact, and (ii) indirect contact. Direct contact occurs when

an infected and susceptible person share the same location,

while indirect contact occurs when the two individuals share

the same location at different times within a given interval. The

new Exposure Risk Detection module needs to calculate an

2CovidReduce: https://covidreduce.org
3Scenario Analysis: https://bit.ly/3HLhiJY
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Fig. 2. e-Racoon access method memory and storage layout for a user (i.e., useri) that has occupied the zones 1, 2, 3, and 4 on a Monday (M).

individual’s total risk of COVID-19 exposure by considering

the durations of all contacts both direct or indirect. This is

achieved by answering a new spatio-temporal query, dubbed

ST-Aggregate Join, which calculates the COVID-19 exposure

risk of an individual on their devices.

The processing of ST-Aggregate Join is illustrated in Fig-

ure 1, where there are three trajectories {A,B,C} repre-

senting three different people walking in a building. Each

trajectory consists of multiple points (i.e., A = {a1, . . . , a11},

B = {b1, . . . , b11}, C = {c1, . . . , c11}). Now assume that

one person was infected with COVID-19 and the infected

trajectory is B (i.e., the green dotted line). According to

the CDC guidelines to find the contacts we need to con-

sider a spatial window (i.e., the green dashed circles) and

a temporal window denoted with the two non-filled points

with a dashed outline and connected with a dashed line. By

visually examining the example, we can easily identify the

direct contacts, which are {a5, c9} and the indirect contacts,

which are {a2, a6, c1, c5, c8, c10}, but not the total duration

of all the contacts. The accumulated duration of the contacts

define the degree of exposure. In the example assuming the

following, A has 3-second stops (i.e., a point with 3 seconds

duration) and C has 1-second stops, A has the highest risk of

exposure with accumulated duration of contact of 9 seconds,

compared to C, which has 5 seconds.

ST-Aggregate Join processing is optimized by utilizing a

special-purpose access structure, which is a modified version

of the Racoon spatio-temporal index [7]. e-Racoon records

the trajectories of users on their device using interval trees to

encode the locations and the durations of the trajectories.

The rest of the paper is structured as follows. In Section II

we introduce e-Racoon, which is a modified version of Racoon

and describe how the ST-Aggregate Join works. Section III

presents the new Exposure Risk Detection module and the mo-

bile app, and Section IV describes the demonstration scenario.

II. SYSTEM ARCHITECTURE

The extended version of our system builds upon our previ-

ous architecture that consists of the Data Layer, Processing
Layer, and Application Layer and incorporates the Exposure
Risk Detection module to the Processing Layer [5].

The Data Layer is responsible for managing input data from

various data sources such as local or distributed files, data

streams, or external APIs.

The Processing Layer is responsible for the core function-

alities and services of the system such as processing data

for path recommendations, performing localization based on

BLE devices, providing congestion information, and detecting

potential exposure between intersecting trajectories.

The Application Layer represents the user interface and

provides access to the Building Manager, BLE Manager, and

Exposure Risk Detection Processing Layer modules for easy

development with an open API. This layer utilizes a Leaflet

JS map library and the LeafletPlayback plugin to abstract the

complexity of the system from the user.

A. Infection Notification

If an individual tests positive for COVID-19, the user is

expected to notify the system’s Centralized Trusted Authority

(CA) with their encrypted IDs and trajectories as shown in

Figure 2. The trusted agent will periodically query users by

sending the trajectories of infected individuals. Each user

(local device) will determine the overall duration the individual

was exposed to the infected trajectories and return this value

to the CA along with their trajectories if found as infected.
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B. e-Racoon Access Method

We extend the Racoon index presented in [7], to have the

access method shown in Figure 2. e-Racoon facilitates efficient

access to spatial and temporal information. We abstract spatial

information in the system as zones, which are predefined areas

in the Euclidean space. As a result, when a localization service

samples a point at a user’s device, the location coordinates

are translated into a specific zone. Consequently, we represent

time in our system by intervals, that captures the duration of

occupancy in a certain zone. They are abstracted in the form:

[tarr, tdep], where tarr and tdep are the timestamps of arrival

at and departure from a zone, respectively.

The access method is a multi-level index that stores zones

and intervals. The first level is spatial, where we store zones

that users occupy. The second level is a temporal level, which

stores the days that users have occupied zones on. That is,

accessing the first two levels leads to a pointer that points at

a data structure that stores the time intervals during which

a user occupied a particular zone on a particular day. We

choose Interval trees to be the augmented data structure. It

is implemented using a Red–black tree to achieve tree self

balancing. At each node of the interval tree, we store the zone,

the time interval, and three pointers. We store the interval in

order to answer exposure measuring queries, two pointers are

needed for the left and right children nodes of the Red–black

tree, and the third pointer points at the node which contains

the interval that temporally proceeds the stored one, hence we

call it a temporal pointer. Note that the third pointer points at

a node that exists in a different tree, since a user has to change

their location to mark the time of departure of that zone.

We keep a global pointer head and a global pointer tail,
where the head points at the very first node stored in the

structure (first interval in the trajectory), and the tail points

at the most recent node stored in the structure (latest interval

in the trajectory). The most recent node will have an interval

that has its tdep marked as ‘∞’ until a subsequent node is

ready to be inserted.

The purpose of having all the nodes globally linked linearly

is to achieve efficient spatio-temporal data streaming. That is,

in case an infected user wants to send their trajectory to the

CA, traversing the linearly linked nodes would make that task

efficient. For example, in case useri in Figure 2 becomes

infected, they need to send their trajectory data to the CA,

then the CA would forward that trajectory to the rest of the

non-infected users in the system. In that case, useri would

traverse all the nodes through the global pointer ‘head’ and

serialize the structure.

Figure 2 shows the memory and storage layout of useri
where i is the ID of the user. We notice that the user

occupied the zones 1, 2, 3, and 4 at different times. The raw

trajectory points that are sampled by the device’s localization

service are stored in the secondary storage after translating

the location information to zones. This is done for historical

records purposes. When sampling consecutive points in the

same zone (e.g., a user that is working in their office), we only

Fig. 3. The Exposure Risk Detection web interface shows the performance
of our techniques and the COVID-19 exposure for three people (blue and
orange trajectories) and one infected person (red trajectory) who are using
public transportation in the University of Cyprus area.

store one node, and the end interval of it is marked ‘∞’ until

the users change their zone. Then, the timestamp of leaving

that zone becomes the tdep of the interval and the tarr of the

subsequent interval.

The communication between the CA and the users is

done as depicted in Figure 2. The CA sends the infected

trajectory that was streamed to the CA in the format

{(zone, day, [tarr, tdep]), ...} as shown in the figure. However,

in order to reduce energy consumption in communication and

processing at the local devices, the communication of infected

trajectories between the CA and users is carried out in two

rounds. The first round is when the CA sends the zones and the

days that belong to the infected user (i.e., {(zone, day), ...}).

Then, each user in the system (excluding the infected ones)

replies to that request by the zones and the days that overlaps

with the infected one in the same format. Correspondingly, the

second round starts by having the CA streaming the intervals in

the format {(zone, day, [tarr, tdep]), ...} for all the zones that

the infected user occupied and overlapped with each particular

user. Lastly, each user checks their in-memory structure for

interval overlaps. In case an overlap occurs, the user sends

back the zones and the days of the overlapping intervals in the

same format. At the CA, the intervals are turned into durations

of contact, which answers the exposure measuring query.

III. IMPLEMENTATION

The original prototype of HealthDist, consists of the

HealthDist Back-end, HealthDist Smart Clients, and

HealthDist BLE Infrastructure, which was developed using

Play Framework 2.7 and MongoDB 4.4. We have extended

the HealthDist Smart Clients to utilize the e-Racoon Index,

which was developed in C++11. The Exposure Risk Detection
web interface is implemented in HTML5/CSS3 along with

extensive usage of Leaflet and the LeafletPlayback plugin.
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Fig. 4. (left) HealthDist Smart Client application for several University of Pittsburgh campus buildings, (left center) Smart Client application with an infection
detected in a campus building, (center) user interface for entering information for a room in Posvar Hall, (right center) user interface for setting default values,
(right) calculated risk of exposure using the parameters provided in the previous images.

1) Exposure Risk Detection Interface: The Exposure Risk

Detection interface (shown in Figure 3) allows users to in-

teract with a contact tracing scenario using trajectories from

the SmartTrace dataset [6]. The red trajectory represents an

infected individual while orange trajectories represent individ-

uals with a high risk of exposure due to direct and indirect

contacts with an infected person. Any individuals that were

not in contact with an infected individual are displayed as blue

trajectories and gray points indicating points that have not yet

been visited. Users are able to select a trajectory to display its

total exposure rate using the Bus Ride Half Density scenario

from the Scenario Analysis tool of HealthDist. Users are able

to visualize contacts spatially through the use of traces on the

Leaflet JS map library and adjust the position of each trajectory

as a function of time with the LeafletPlayback plugin.

2) Smart Clients: We have extended the HealthDist Smart
Clients (shown in Figure 4) to utilize the results from the ST-
Aggregate Join discussed in Section II to calculate a user’s

risk of exposure to COVID-19. In the two leftmost images of

Figure 4, users are able to select a building for calculating

their risk of exposure and any buildings with a reported case

of infection are colored red. In the next central image, users

are able to insert parameters used to calculate potential risk

such as the number of times they visited the room and the

percentage of people that were wearing masks. The duration

of exposure is automatically inserted as a result of the ST-
Aggregate Join, which returns a user’s duration of exposure.

Finally in the rightmost image, the results of computing

a user’s potential risk based on the provided parameters and

duration of exposure are calculated and displayed on the user

interface. The results are categorized based on the type of

mask that the user wears and a daily result is presented to

indicate the total daily quanta for the user.

We further extended our Smart Clients by adding a new

API endpoint to improve the scalability of the Building

Management on local devices and support a spatial overlap

query returning the geoJSON data of any buildings that overlap

with the device’s viewport.

IV. DEMONSTRATION SCENARIO

During the demonstration, attendees will be able to visualize

the Exposure Risk Detection module through a user-friendly

interface and the benefits of utilizing our novel index for

calculating the COVID-19 exposure risk.

Equipment: The conference attendees will have the oppor-

tunity to interactively engage with the exposure risk detection

web-interface using laptops, tablets, and smartphones.

Datasets: We will pre-load a variety of datasets collected

from the University of Pittsburgh (PITT) and the University

of Cyprus (UCY) to illustrate how the exposure risk detection

works using our interactive map based interface. PITT dataset

consists of six trajectories of 27 points on average, and UCY

consists of four trajectories of 70 points on average.

Scenarios: A HealthDist server will be available to allow

attendees to interact with the original prototype and its web

interface, and the new mobile application for exposure risk

detection.
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