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A Pipeline for Integrated Theory and Data-Driven
Modeling of Biomedical Data
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Abstract—Genome sequencing technologies have the potential to transform clinical decision making and biomedical research by
enabling high-throughput measurements of the genome at a granular level. However, to truly understand mechanisms of disease and
predict the effects of medical interventions, high-throughput data must be integrated with demographic, phenotypic, environmental, and
behavioral data from individuals. Further, effective knowledge discovery methods must infer relationships between these data types.
We recently proposed a pipeline (CausalMGM) to achieve this. CausalMGM uses probabilistic graphical models to infer the
relationships between variables in the data; however, CausalMGM'’s graphical structure learning algorithm can only handle small
datasets efficiently. We propose a new methodology (piPref-Div) that selects the most informative variables for CausalMGM, enabling
it to scale. We validate the efficacy of piPref-Div against other feature selection methods and demonstrate how the use of the full
pipeline improves breast cancer outcome prediction and provides biologically interpretable views of gene expression data.

Index Terms—Genomics, graphical models, feature selection, phenotype prediction

1 INTRODUCTION

SINCE the advent of high-throughput sequencing meth-
ods, a number of modeling approaches have been
developed to predict patient outcome from genomic data
[1], [2]. To understand the complex relationships between
genomics and outcomes, the genomic data should be inte-
grated with clinical and demographic information. Despite
the widespread success of machine learning methods, they
are often insufficient to model this data [3] because they
have highly correlated sets of variables (genes), and are
high-dimensional (i.e., have several orders of magnitude
more variables than samples). Furthermore, for biomedical
research both predictive power and model interpretability
are equally important. Often, biomedical researchers aim
to learn from their models, to generate promising new
hypotheses or prioritize future experiments.

Probabilistic Graphical Models (PGMs) are an effective
tool to build interpretable models [4]. These models repre-
sent a dataset as a graph where nodes correspond to fea-
tures and edges correspond to dependence relationships.
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Learning the structure of these models from data is a well-
studied problem for continuous or categorical data but not
for mixed data. Recently, several approaches have been pro-
posed to model mixed data [5], [6], [7], [8]. We proposed a
two-step approach called CausalMGM [8] to model a data-
set as a directed causal graph through an intermediate undi-
rected graph. CausalMGM was successful in modeling
clinical data for patients with chronic obstructive pulmo-
nary disease (COPD) [8], malignant nodules in the Iung [9],
identifying genetic biomarkers of response to cancer ther-
apy [10] and microbiota affecting pneumonia onset in ICU
patients [11]. However, three remaining issues of Cau-
salMGM need to be addressed: 1) Mixed graphical model
learning is computationally intractable on datasets with
more than 2,000 variables (e.g., genomic data), 2) interpret-
ing a large graphical model is difficult unless single varia-
bles of interest are queried, and 3) highly correlated data
can result in the formation of disconnected cliques in the
output graph, impeding model accuracy [12].

Time complexity can be addressed by selecting a subset
of variables to model (i.e., Feature Selection). The key is to
find the subset of features that maintain the maximum
information for target variable(s) of interest. Though these
approaches are applied to integrated biomedical data, they
fail to address the remaining challenges. High correlations
among features result in unstable prediction models and
harm interpretability of learned models [13].

Use of prior knowledge has been proposed as a way to
address these difficulties [2], [14], [15]. These sources allow
a researcher to choose the most biologically plausible model
among statistically equivalent models [13], [16]. However,
many proposed methods have shown no significant benefit
from using prior knowledge [2], [17]. Our hypothesis for
this is twofold. First, external data sources need to be evalu-
ated and weighted accordingly due to data provenance and
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Fig. 1. Pipeline proposed in this work to learn graphical model structure from mixed clinical and omics datasets.

context-specific information. For example, a biological path-
way used as a prior information source may not be active in
the context in which a genomic dataset was measured [7].
This source of information should be downweighted when
learning the final model. Second, multiple sources of prior
information should be integrated to achieve consistent and
robust results.

This motivates our pipeline for modeling integrated
genomic and clinical datasets (Fig. 1). The first step is based
upon a prior knowledge evaluation method we recently
developed for graphical structure learning [7]. We measure
the concordance between the data and each prior informa-
tion source and weight the sources accordingly. Then, the
information in the data and the prior knowledge are fused
to select parameters for a feature selection method (Pref-
Div) [18], [19]. Finally, the clusters selected by Pref-Div are
modeled as a graph using CausalMGM to represent the
dependencies between the clusters and outcome variables
of interest.

Our specific contributions are as follows:

e A novel method (piPref-Div) for variable and cluster
selection that combines a feature selection approach
[19] with an approach to evaluate and integrate prior
information [7] (Section 3.2).

An extensive evaluation of piPref-Div on synthetic
datasets (Section 5.1).

An evaluation of piPref-Div against state of the art
variable selection approaches for predictiing breast
cancer outcome (Section 5.2).

An evaluation of our full graphical modeling pipe-
line for breast cancer subtyping from transcriptomic
data (Section 5.3).

2 RELATED WORK

In this section, we survey feature selection methods for
genomic data. Then, we discuss methods to incorporate
prior knowledge. Finally, we discuss graphical model struc-
ture learning approaches for mixed datasets.

2.1 Feature Selection in Genomics

Feature selection methods identify a subset of features in a
dataset that collectively predict a target variable. They aim to

improve model training efficiency and to prevent overfitting.
Feature selection approaches fall into three broad classes: fil-
ter methods, wrapper methods, and embedded methods [3].
Filter methods select features using univariate ranking
scores such as a Wilcoxon test or a t-test between covariates
and a target variable. Wrapper methods use a predictive
model like the Support Vector Machine as a basis to select a
set of features that result in an accurate prediction model
[20]. Two popular wrapper methods are the recursive feature
elimination and greedy forward search, which select the best
feature to eliminate (or include, respectively) in a step-wise
fashion. Embedded methods are predictive models which
select features automatically as part of the learning proce-
dure. The most popular example is LASSO regression [21],
which uses an L; norm penalty to shrink coefficients in a lin-
ear regression.

One study investigated the performance of these techni-
ques to predict breast cancer relapse from genomic data [3].
They found that no method had consistently better accuracy
than random selection of features. This suggests that tai-
lored approaches are necessary to improve feature selection
from omics data.

2.2 Incorporating Prior Knowledge

The use of domain (prior) knowledge may improve these
approaches. Three main sources of prior knowledge have
been explored: gene ontology (GO) terms, protein-protein
interaction (PPI) networks, and biological pathways [1].

GO groups genes based on known biological functions
(e.g., cell cycle or angiogenesis). Several approaches have
leveraged GO terms as prior information to construct gene
clusters [22], [23], [24]. The main drawback of these methods
is the incompleteness of GO terms. Genes not found in a
functional group in the GO database are discarded. In addi-
tion, GO terms tend to define broad functional classes which
are difficult to interpret.

PPI networks encode protein interactions known to occur
in cells. Methods for gene selection have been built off of
these networks (reviewed and evaluated in [2]). These
approaches tend to 1) group genes based on the edges in the
network and penalize them together [14], [25], [26], [27] or
2) use the network information to determine gene impor-
tance [15], [20]. Pathway based approaches are similar, but
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they use biological pathways (network modules that carry
out a specific function). These are typically taken from a
pathway database such as KEGG or 12D [28], [29]. Biological
pathway-based feature selection (BPFS) is a step-wise
method that uses mutual information to the target variable
as a scoring criterion. BPFS reduces redundancy by avoid-
ing genes from similar pathways [30]. In [31], the authors
attempt to construct a single feature for each pathway by
aggregating information across multiple genes. A similar
approach is taken in [32] except that the pathways are con-
structed using the data. Multiple studies have found no sig-
nificant benefit in prediction accuracy using these methods;
however, they do appear to give more biologically interpret-
able signatures [2], [17].

2.3 Mixed Graphical Models

For data exploration applications, graphical models
enable a user to identify all direct associations for any
variable of interest. Genomic data is often integrated
with clinical, demographic, and epidemiological data.
Therefore, we focus upon approaches to learn undirected
graphical models from mixed datasets: mixed graphical
models (MGM). A MGM parametrizes the joint distribu-
tion of a mixed dataset as a graph G = (V, E), where V is
the set of variables and £ is the set of edges. In this type
of model, an edge exists between two variables X and Y
if X and Y are conditionally dependent given the rest of
the variables in the data.

Recently several methods have been proposed to learn
MGMs. Many of these works involve regression-based
methods to estimate the conditional dependencies among
pairs of variables and infer the edges in the graph. In these
approaches: 1) each variable in turn is considered as the tar-
get variable 2) a regression is performed using all other vari-
ables as predictors, and 3) edges are added to the model for
all significant regressors. In [33], the authors use a random
forest regression approach to rank edges for inclusion into a
graphical model among mixed variables. In [34], they
assume that the conditional distributions of each type of
variable come from the exponential family and use node-
wise regression approaches to estimate the parameters of
the model. Other similar techniques have been proposed
[35], [36], [37]. Also, in [38], the authors propose qp-graphs
which can be estimated from high dimensional data. How-
ever, this type of model assumes that there are no edges
between categorical variables; a limiting assumption for
clinical data.

Another way to estimate a MGM is the pseudolikelihood
approach [39]. This approach uses the product of conditional
distributions of the variables as a consistent estimator of the
true likelihood without computing the partition function.
Then a proximal gradient optimization is used to find maxi-
mum pseudolikelihood estimates of the parameters. Lee and
Hastie propose a MGM that generalizes a popular continuous
graphical model (Gaussian Graphical Model) and a popular
discrete model (Markov Random Field) [40]. They demon-
strate that using the pseudolikelihood approach shows better
empirical performance than using separate regressions. So,
we focus on this type of approach; and specifically to the
improved version presented in [5].

The parameterization of the joint distribution is done
according to Equation (1)
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where 0 represents the full set of parameters, z; represents
the sth of p continuous variables and y; represents the jth of
q discrete variables. B,; represents the edge potential
between continuous variables s and ¢, o, represents the con-
tinuous node potential for s, p,; represents the edge poten-
tial between continuous variable s and discrete variable j,
and finally ¢,; represents the edge potential between dis-
crete variables r and j. This model has the favorable prop-
erty that its conditional distributions are given by Gaussian
linear regression and Multiclass Logistic Regression for con-
tinuous and discrete variables respectively.

Learning this model over high dimensional datasets
directly is computationally infeasible due to the computa-
tion of the partition function. To avoid this, a proximal gra-
dient method is used to learn a penalized negative log
pseudolikelihood form of the model (Equation (2), product
of conditional distributions). To prevent overfitting, non-
zero parameters are penalized using the method described
in [5] (Equation (3)). Here, Ac¢ is a penalty parameter only
for edges between continuous variables (CC = Continuous-
Continuous), Acp and App are for mixed edges and edges
only using discrete variables, respectively. ||.||» refers to the
Frobenius norm of a matrix. To optimize this objective func-
tion the proximal gradient optimization method is used as
specified in [5]
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3 FEATURE SELECTION METHODS

In this section, we describe our computational methods for fea-
ture selection. First, we discuss our variable selection approach,
and then we discuss how we incorporate prior knowledge to
select parameters for this approach automatically.

3.1 Variable Selection: Preferential Diversity

The first step in our procedure is to choose a set of informa-
tive variables to model. We want to identify query results
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relevant to the user but also diverse to give a broad snap-
shot of the underlying data [19]. The problem was referred
to as the Top-K relevant and diverse set problem and is as
follows (Definition 1).

Definition 1. Top-K Relevant and Diverse Set. Given 0 <
r < 1 a radius of similarity, a set of variables V, an output size
k, a similarity function Sim(V;,V;), and a relevance function
Rel(V;).

maximize Z Rel(X;)
X;es

subject to S C'V
S| =k
Vi, jV; € SandV; € S — Sim(V;,V;) < r.
4)

Intuitively, we aim to find a set of variables S relevant to
the user with the constraint that no pair of chosen variables
are similar to one another. This is an appropriate choice
because graphical models can lose accuracy if redundant
variables are included in the model [12]. We propose a
method similar in principle to two filter methods: Correla-
tion-based feature selection [41] and minimum redundancy
maximum relevance (mRMR) feature selection [42]. Both of
these are greedy approaches. They select the feature that
optimizes an objective function that balances relevance and
diversity. The main differences in our approach are that we
require zero redundancy, and that we quantify redundancy
using prior knowledge. To ensure stability of the down-
stream model, we report the selected features as clusters of
redundant variables (instead of discarding them). This
allows the user to understand the redundancy in the data.

Another popular approach that follows this principle is the
Weighted Gene Correlation Network Analysis (WGCNA)
[43]. Briefly, this method aims to learn a weighted undirected
correlation network by converting correlation to edge weight.
With this network, they infer the dissimilarity between nodes
in the network, and use network characteristics (e.g., hub
nodes) to select important genes. This method differs in that it
infers a correlation network (instead of conditional depen-
dence), and it uses network characteristics instead of sum-
mary statistics to infer importance.

Here, we solve this problem using the Preferential Diver-
sity (Pref-Div) algorithm. Pref-Div is an iterative procedure
that first selects the top-K most relevant variables and adds
them to the result set R. Then, it determines whether any pair
of variables in R are redundant (as defined by the radius of
similarity, r and the similarity function Sim(V;,V;)), and
removes the lower relevance variable from the result set. The
most relevant K — | R| variables that have not been explored
are added to the result set. This procedure repeats until a set
of K relevant and diverse features are selected. For the full
procedure, we refer the reader to [19]. In this work, we make
one substantial modification to the original Pref-Div algo-
rithm. We compute all variables considered redundant
(within r distance) to each selected variable and return these
as clusters.

We instantiate the Pref-Div algorithm with the following
parameter choices. The output size k is user-determined
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Fig. 2. lllustration of procedure to limit tested parameter range. Figure
originally appeared in [7].

since the appropriate choice for this is based on computa-
tional resources available. Similarity scores between pairs of
features are given by Pearson correlation, and relevance of
each feature is given by Pearson correlation to a pre-defined
target. We note that having a target variable of interest is
not necessary, and unsupervised statistics such as variance
or domain knowledge can be used to determine relevance
scores. In the next section, we discuss how we select the
radius of similarity, A, using prior knowledge.

3.2 Prior Information Pref-Div: piPref-Div

To choose \*, we utilize a method we originally developed
to select hyperparameters to learn graphical models with
priors [7]. The main idea of the new method (Prior Informa-
tion Pref-Div or piPref-Div) is to compute a correlation
graph across many different correlation thresholds, A\*. A
correlation graph contains an edge between V; and V5 if the
correlation between V; and V5 is greater than the threshold.
This method proceeds in four main steps.

First, an appropriate parameter range is determined. We
identify a range where few edges are selected in the correla-
tion graph yet changing A slightly results in a large change
in the number of edges in the graph. Fig. 2 shows a plot of
the number of edges in the correlation graph versus A. Ini-
tially, a knee point is identified that best splits the curve
into two straight lines (Panel a). Then, this procedure is
repeated on each partition of the curve to compute two
additional knee-points (Panels b and c). The final parameter
range is the set between these two knee-points (Panel d).

Then, a subsampling approach [5] is used to compute
empirical probabilities of appearance for each edge by comput-
ing correlation graphs across the chosen range of thresholds
and random subsamples without replacement. The empirical
probability of each edge is its frequency of appearance.

Next, the information contained in the prior knowledge
sources are evaluated against these empirical probabilities
across all edges (Equation (5)). Each prior information
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Fig. 3. Subsampling procedure to determine empirical probabilities for every edge in the correlation graph. B(\, S) returns a correlation graph com-

puted upon dataset S with threshold A. Figure originally appeared in [7].

source (t.) gives knowledge in the form of a probability of
appearance for some fixed set of edges (wp'r). 1, quantifies
the “unreliability” of source t,. ¢} is the expected number
of times edge k should appear during the subsampling pro-
cedure according to source ¢,, and p,, is the actual number
of appearances for edge k

t
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Finally, posterior distributions are computed for each edge
(Fig. 3). For each edge k, a normal distribution is used to
approximate the probability of appearance for each prior
source (red, green, and blue curves in Panel a). Using a nor-
malized reciprocal of the scores computed in the previous
step, these normal distributions are combined into a
weighted mixture (black curve, Panel a). This mixture distri-
bution is approximated by the normal distribution which
has minimal KL-divergence to the mixture (Panel b). Finally,
this normal distribution is combined with a normal distribu-
tion from the empirical probabilities to get a posterior distri-
bution (Panel ¢, blue curve).

Since some edges may not have prior information from
any of the sources, separate \*s are calculated for edges
with and without prior information ()}, and A, , respec-
tively). A, , is chosen based upon stability of the correlation
graph across subsamples along with concordance to the
posterior distribution for each feature. A} is chosen the
same way, except that the posterior distribution is the one
computed from the data alone (pink curve, Panel c).

4 EXPERIMENTAL SETUP

Next, we describe the synthetic and real data used to evalu-
ate our approach, and the metrics we apply in our evalua-
tion. Lastly, we describe the prior knowledge sources used.

4.1 Simulated Datasets

Simulated datasets were used to evaluate algorithmic correct-
ness and to understand the impact of prior information sour-
ces. Data was generated from a linear Gaussian graphical
model. Edge coefficients were drawn uniformly at random
from the set [—1.5,—0.5] U [0.5, 1.5]. Error terms for each vari-
able were zero mean with variance randomly drawn from the

set [0.01,2]. Graphical structure was simulated using a
“clustered simulation” (Fig. 4). Here, each variable belonged
to one of C clusters. In these clusters, each pair of variables in
the cluster was connected by an edge. ¢ < C clusters had one
randomly chosen variable (light blue nodes) connected to the
target variable (relevant clusters). The remaining C' — c clusters
were disconnected from the rest of the network. Each cluster
consisted of an equal number of variables. To represent a mas-
ter regulator and force correlated structure, each cluster had a
single latent variable (pink nodes) that influenced the value of
all variables in the cluster.

Prior knowledge was simulated for reliable and unreli-
able prior sources. All prior sources give information based
on a beta distribution; however, the parameters of this dis-
tribution differ based on the type of prior and whether the
variables in question belong to the same cluster. An unreli-
able prior gives information drawn from Beta(4,4) for both
true and false edges (cluster memberships), whereas a reli-
able prior draws from Beta(10,2) for true edges, and
Beta(2,10) for false edges. The percent of edges with prior
information varies based on the experiment. To determine
whether prior information is available for each edge, each
edge gets a value b-~-U(0,1), and each prior information
source has a value ¢ € [0,1]. The prior gives information
about the relationship if b < c. In this way, the simulated
data reflects the fact that some relationships are more well-
studied than others.

We evaluate piPref-Div on its ability to incorporate unre-
liable prior information in order to select relevant clusters

Regulator 1 /_>

N
Regulator5krj

Fig. 4. Cluster Simulation to generate simulated datasets. Purple nodes
are master regulators of a cluster, blue nodes are causal parents of the
target variable, and the beige node is the target variable.
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TABLE 1
Gene Expression Datasets and Outcomes
Dataset Name Outcome Prevalence
Schmidt (2008) Metastasis-Free Survival 16.3%
Pawitan (2005) Relapse-Free Survival 28.6%
Wang (2005) Relapse-Free Survival 48.2%
Sotiriou (2006) Relapse-Free Survival 28.6%
Ivshina (2006) Metastasis-Free Survival 38.3%
Desmedt (2007) Relapse-Free Survival 39.4%

more accurately. The metric we use for evaluation of
selected clusters on simulated data is called cluster accuracy.
The goal of this metric is to compare the relevant clusters
output by piPref-Div to the truly relevant clusters in the
data generating graph, where a relevant cluster is a cluster
with at least one variable that is a parent of the target vari-
able. First, an optimal matching is computed between the
predicted and actual clusters using the Hungarian Algo-
rithm. The cost of assigning a predicted cluster to an actual
cluster is given by 1 - the Jaccard similarity between the
clusters. If multiple predicted clusters are best assigned to
the same actual cluster, these clusters are combined. Finally,
the average Jaccard similarity between the combined pre-
dicted clusters and their matched actual clusters are com-
puted as the score.

4.2 Gene Expression Datasets

To evaluate the performance of piPref-Div on real data, we
apply it to six publicly available breast cancer Affymetrix
HGU133A gene expression datasets [44], [45], [46], [47],
[48], [49]. These datasets have been used in several previous
analyses and represent a baseline to evaluate prediction
methods [2], [3], [17]. Each dataset consists of microarray
expression data for between 159 and 286 patients. For four
datasets, the target variable of interest was whether or not
the patient had relapse free survival (RFS) for 5 years. For
two sets, this information was unavailable and metastasis
free survival (MFS) was used instead [48], [49]. The out-
comes and prevalence for each dataset are given in Table 1.
Since our aim was to evaluate feature selection, and since
the class imbalance was not large, we did not perform any
under- or over-sampling techniques.

Our evaluation consists of a five-fold cross validation
within each dataset, where the entire model building pro-
cess (feature selection, prediction of target variable) is
repeated for each fold. We measure model generalizability
(discrimination) and stability. To measure discrimination,
we use area under the ROC curve (AUC) comparing the
probability predictions from each method and true binary
outcome of RFS and MFS for five years. To measure stabil-
ity, we use the average Tanimoto set similarity (intersection
divided by union) for the set of features selected in each
fold. There is no overlap between training and testing data-
sets in each fold, and so the results should be reliable meas-
ures of model generalizability.

To evaluate the potential of our full pipeline to discover
knowledge from data, a graphical model was learned from the
TCGA-BRCA RNA-Seq expression dataset using the MGM

algorithm. This data included gene expression measurements
from 784 breast tumor samples and 13,994 genes. Breast cancer
diagnosis and prognosis are commonly divided into five main
subtypes: Luminal A, Luminal B, HER2+, Triple-Negative,
and Basal. Breast cancer sub-type information for each tumor
sample was obtained from [50], which did not distinguish
between Triple-Negative and Basal. The main driving distinc-
tion for these subtypes is the presence or absence of hormone
receptors on the tumor cell surface, which can lead to varying
prognoses. In these experiments, we aim to identify clusters
distinguishing the four sub-types from expression data. To
determine stability of each of these clusters, a 10-fold cross val-
idation was performed, and the stability of each cluster was
the number of times a similar cluster (Tanimoto similarity >
0.85) was selected in each fold.

4.3 External Prior Knowledge Sources

Prior knowledge consisted of five distinct sources of infor-
mation. Physical gene distance represents the proportion of
chromosome distance covered by the space between these
two genes. It is defined as the base pair distance between
two genes on the chromosome. If two genes were on sepa-
rate chromosomes, then this value was set to zero. Other-
wise given gene G; from base pairs B} to B? and gene G;
from base pairs B} to Bf, and full chromosome length C,
the physical distance prior is given by Equation (6)

max (B?, BJQ) - min(B}, Bi)

PhyS(G“G]) =1- C

(6)

Gene family information was curated from the Human
Genome Organization (HUGO). Gene families are groups of
genes related by sequence and/or function. A single gene
can belong to multiple gene families. Thus, we represent
each gene as a vector of families with one-hot encoding. To
compute the similarity between these vectors, we use the
Jaccard similarity metric which is the number of families in
common divided by the total number of unique families
either gene belongs to. A similar approach is used for gene-
disease mapping from the DisGeNet [51]. This database
gives scores quantifying the level of knowledge that a
change in a gene is related to a disease. We use the guilt by
association principle to compute whether two genes are
related. We represent a gene by a vector of scores to the dis-
eases in the database, and we compute the cosine similarity
between two gene vectors. Since all scores are positive, this
metric is positive, and is used directly as a probability.
Finally, we use gene-gene similarity data from two sources:
Harmonizome [52] and STRING [53]. Harmonizome similar-
ity data was curated from the Molecular Signatures Database
[54] and consisted of correlation between gene expression
across several microarray and RNA-Seq experiments.
STRING curates gene-gene relationship scores based on sev-
eral factors such as: co-expression, literature co-occurrence,
experimental evidence, other databases, etc. STRING scores
were scaled from their (0, 1000) range to (0, 1). We analyzed
the quantity (Table 2 and similarities (Figs. 5 and 6) between
these prior sources. Though each individual source provides
relatively little information, the overlap between gene-gene
pairs from each source is also small, which shows that are
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TABLE 2
Characteristics of Prior Knowledge Sources
for Classification Experiment

Prior Source Prior Percentage

MSig DB Co-Expression 1.41%
STRING Co-Expression 3.38%
DisGeNet Gene-Disease Mapping 6.79%
Physical Gene Distance 5.94%
HUGO Gene Families 0.39%

highly complementary (Fig. 5). This also gives us a decent cov-
erage of all potential gene-gene interactions. However, we
also found that when the these sources give information about
the same gene-gene interaction, their scores are not highly cor-
related (Fig. 6). The most similar sources are the HUGO Gene
Families and the DisGeNet Gene-Disease mapping with a cor-
relation of 0.35.

5 RESULTS

We demonstrate the performance of piPref-Div on simu-
lated and real datasets. First, we evaluate its ability to deter-
mine reliable prior information sources and incorporate
those sources to select better clusters. Then, we evaluate the
method in terms of its ability to accurately predict outcome
for breast cancer patients, and lastly, we use our full pipe-
line to learn a graphical model of breast cancer subtype
discrimination.

5.1 Evaluation and Impact of Prior Knowledge

First, we tested the ability of piPref-Div to accurately evalu-
ate prior knowledge sources on various simulated datasets.
In total we had 15 datasets of 500 variables with 50 clusters,
25 relevant to the target, 5 prior knowledge sources (3 reli-
able), with a random amount of prior information. We
repeated this process for datasets with both 50 samples and
200 samples.

The results are presented in Fig. 7. Here, “Net Reliability”
(y-axis) refers to the sum of the probabilities given to true
edges minus the sum of the probabilities given to false edges
for each prior. The predicted weight for each prior knowledge
source, given by piPref-Div, shows a clear association to the
reliability score. A benefit of this approach is that this weight
does not appear to be dependent on the amount of prior

- STRING Coexpression

0.119 0.0975 0.0342
0.0497 0.0233 0.0137 0.0408 MSig Coexpression
- 0.1123 0.064 “ Gene-Disease Mapping
0.0602 0.0577 0.056 0.0808 Physical Distance
0.027 0.0114 0.0097 0.0054 HUGO Gene Families
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Fig. 5. Heatmap of correlation of prior knowledge between sources.
Each cell is the percentage of gene-gene pairs in the prior source of the
row that are also in the prior source in the column.

0.0988 0.0636 0.0313 STRING Coexpression

0.0988 0.2002 0.1344 MSig Coexpression

0.0636 0.2002 0.0928 Gene-Disease Mapping

0.0313 0.1344 0.0928 0.2109 Physical Distance

HUGO Gene Families

Fig. 6. Heatmap of overlapping prior knowledge between sources. Each
cell is the correlation between the probabilities given by each source for
all gene-gene pairs in the prior source of the row that are also in the prior
source in the column.

information. Even with little prior information (blue circles),
piPref-Div assigns an accurate weight to the knowledge
sources.

The next experiment investigated the impact of the
amount and quality of prior knowledge on the ability of
piPref-Div to identify relevant clusters of variables. In these
experiments, we test the method using the same experimen-
tal parameters as the previous section, except we use a
larger dataset with 3,000 variables, 300 clusters (75 rele-
vant). For each experimental setting, 15 graphs were gener-
ated and the results are presented cumulatively over these
graphs.

The results for the small datasets are given in Fig. 8. Sam-
ple size is the most significant factor in determining accu-
racy of the selected clusters. Prior information gives a
modest improvement in accuracy, but this benefit only
occurs with at least 50 percent of prior information and at
least 3 reliable sources out of 5. However, when all sources
are unreliable, there is no decrease in accuracy unless there
is a large amount of information present. Lastly, we note
that the benefit of prior information is drastically reduced in
large sample data (200 sample case). This is intuitive, as
with more data, correlation becomes a very stable measure,
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Fig. 7. Predicted Weight versus Net Reliability for each prior knowledge
source in simulated experiments for piPref-Div for (left) 50 samples and
(right) 200 samples.
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Fig. 8. Accuracy of predicted clusters for varying amount and reliability of
prior knowledge. Sample size was set to 50 (left) and 200 (right). Star
represents the best possible performance if optimal correlation thresh-
olds were selected.

and prior information can be ignored. The stars represent
the performance if the optimal correlation thresholds were
selected. These results indicate that regardless of sample
size, piPref-Div selected reasonable thresholds, close to
optimal. However, the distance between piPref-Div perfor-
mance and the optimal thresholds is the largest when there
is a large amount of prior information. This may suggest
that piPref-Div does not value the prior information enough
even when it is reliable and plentiful.

Lastly, we examined the ability of piPref-Div to detect
clusters from a larger graph (Fig. 9). Here, the pattern is sim-
ilar, except the impact of prior knowledge is more signifi-
cant. In particular, having just 25 percent of edges with
prior information gives a substantial increase in accuracy
over having no prior information at all. Again, this impact
is larger when the sample size is small. Increasing sample
size has a larger effect on this data. An increase from 50 to
200 samples results in an increase in accuracy from 0.65 to
over 0.8 for all amounts of prior.

5.2 Breast Cancer Outcome Prediction

To determine the performance of piPref-Div on real data-
sets, we applied the algorithm to the breast cancer datasets
described above. Three variations of piPref-Div were tested.
piPref-Div alone (PD), piPref-Div with and without prior
information (No Prior = NP) with clusters aggregated into
summarized features using principal component analysis
(PD-PCA, PDNP-PCA). For the Pref-Div approaches, an
inner 3-fold cross-validation loop was used to determine
the number of selected features (1,3,5, and 10 features were
tested). Genes with less than 0.5 standard deviation across
samples in the training set were removed from the dataset
prior to feature selection. Two methods that performed well
in a previous study were included in the analysis: Hybrid-
Huberized SVM (HH-SVM) and Recursive-Reweighted Fea-
ture Elimination (RRFE) [2].

The discrimination results are presented in Fig. 10.
Across the datasets, the consistent best performing methods
are PD-NP-PCA and PD-PCA (sea-green and light blue,
respectively). This suggests that cluster selection and repre-
senting individual features as clusters offers a benefit to
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Fig. 9. Accuracy of predicted clusters for varying amount and reliability of
prior knowledge on large datasets. Sample size was set to 50 (left) and
200 (right).

selecting single genes alone. However, this is dataset depen-
dent, as Pref-Div alone (PD, yellow box) matches these
methods on 2 of the datasets (Sotiriou and Desmedt) and
performs better on 1 dataset (Wang). Overall, these results
show no significant difference between using prior informa-
tion (PD, PD-PCA) and not using prior information (PD-
NPPCA). Using prior information with PCA clustering
shows a slight improvement on the Ivshina dataset, but
none of the others. We find that our approach performs
about the same in terms of AUC when compared to SVM-
RRFE, but our method tends to select significantly fewer
features.

Fig. 11 presents the stability of the learned models. The
results confirm previous work that identifying a stable
model for breast cancer outcome prediction is a difficult
problem [2]. In general, only the RRFE algorithm shows
somewhat consistent stability; however, we note that a
major contributing factor is that this algorithm uses on aver-
age 119 selected features, whereas HH-SVM averages
around 6 and the PD approaches average around 1 feature
(or cluster). Among, the Pref-Div based approaches, PD-
PCA with and without prior information show the most
consistent stability. On nearly all datasets they are on par
with RRFE despite choosing significantly fewer features.

To better understand how prior information impacts
piPref-Div, we show the detailed differences between piPref-
Div with (WP) and without (NP) prior information in the
breast cancer outcome experiments (Table 3). This shows that
regardless of prior information, piPref-Div has similar dis-
crimination on all six datasets. In addition, the correlation
between the predicted probabilities (Prediction Similarity)
and the average Jaccard similarity between the selected clus-
ters (Cluster Similarity) are high for piPref-Div with and with-
out prior information on all datasets. This implies that not
only do the methods select models with similar accuracy, but
the selected clusters themselves are highly similar.

5.3 Stratification of Breast Cancer Subtypes

Finally, we evaluate our full pipeline (variable selection then
graphical modeling) on its ability to mine interesting clusters
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related to breast cancer subtype. Based on the previous sec- (undirected graph) model was learned on a dataset consisting
tion, we chose to use PD-PCA for variable selection due to its  of only the selected clusters and the Subtype variable. To sum-

consistently high AUC and relatlvelg high stability. An MGM  marize clusters of genes into single names, the Ingenuity
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TABLE 3
Comparison of piPref-Div With (WP) and Without (NP) Prior Information in Breast Cancer Outcome Experiments
Dataset AUC (NP) AUC (WP) Cluster Size (NP)  Cluster Size (WP)  Cluster Similarity = Prediction Similarity
Sotiriou (2006) 0.667 0.669 76.3 76.9 0.78 0.94
Ivshina (2006) 0.604 0.641 39.3 40.0 0.57 0.67
Desmedt (2007) 0.582 0.579 14.3 15.6 0.71 0.71
Schmidt (2008) 0.742 0.735 42.0 35.0 0.86 0.73
Pawitan (2005) 0.726 0.718 314 65.3 0.79 0.79
Wang (2005) 0.528 0.511 42.1 37.8 0.93 0.87

Pathway Analysis regulator analysis was used, and the KEGG
Pathway database was queried (corrected p-values < 0.05
were chosen as candidates). Following this step, only specific
pathways and regulators were included as names of the
clusters.

The learned graphical model is presented in Fig. 12. We
found two clusters unable to be mapped coherently to any bio-
logical function (single gene representatives were TMEM41A,
and TSPAN15); however, these clusters were relatively unsta-
ble. The two most stable clusters were Fanconi Anemia/
Hereditary Breast Cancer pathway, and a set of genes regu-
lated by MYCN. Fanconi Anemia and the Hereditary Breast
Cancer pathways share common genes [55] and developing
breast cancer through a genetic basis tends to be associated
with ER+ breast cancer [56]. MYC family pathways and the
transcription factors themselves are known to be differentially
expressed across subtypes, and the MYCN factor in particular
has shown differences between triple-negative and other sub-
types [57]. FOXA1 along with GATA3 and ESRI1 are necessary
for maintaining a luminal phenotype of breast cancer [58].
AGR2 is upregulated by FOXA1 but only in an estrogen recep-
tor dependent manner [59]. This implies that the FOXA1-
AGR2 loop will only be upregulated in ER+ breast cancer.
Though it is unclear how KRT14 regulated genes distinguish
subtypes of breast cancer, it is known that upregulation of
KRT14 reduces the ability of breast tumors to metastasize and
invade the extracellular matrix [60]. Overall, we find that the
pipeline constructs and selects reasonable clusters that are dis-
criminative of breast cancer subtypes. The pipeline also gener-
ates novel candidate clusters for experimentation.

6 CONCLUSION

We presented a pipeline to learn graphical model structures
from large omics datasets. The pipeline builds upon previous

Fig. 12. Graphical model of breast cancer subtype. Size of each edge
represents the number of times a similar cluster was selected to be
related to Subtype in each of the cross-validation folds.

work by developing (1) a method to integrate and evaluate
prior information to select hyperparameters, and (2) a variable
selection method to identify relevant ye non-redundant sets of
features. We used this approach to return clusters of variables
instead of individual features, and to model these features as
a graphical model to find interesting relationships.

We evaluated our work on synthetic data and real breast
cancer data. On synthetic data, we found that our method
accurately evaluates the reliability of prior information and
utilizes this information to improve the selection of relevant
clusters. In addition, even when most prior information is
unreliable, the method’s performance was no worse than
having no priors, which agrees with previous observations
[7]. We found that the largest improvement with prior infor-
mation occured when there are few samples and a large
number of features. Overall, we found prior information to
modestly improve performance, but this may be necessary
to avoid poor performance with unreliable priors.

On classification experiments with microarray data, we
found that piPref-Div performs at par or better than other
state of the art approaches. Using PCA to summarize clus-
ters is superior to selecting single variables alone. piPref-
Div selects far fewer features to achieve similar or better dis-
crimination than state of the art approaches. In this context,
prior knowledge did not appear to change the selected fea-
tures. The simulated experiments show that a greater per-
centage of prior knowledge is necessary to have a
significant impact on the selected features, and these results
are reproduced on the breast cancer data. In addition, prior
information for these experiments was derived from normal
individuals, and it is unclear whether this information is
reliable due to the significant genomic dysregulation from
cancer. When using the full pipeline with graphical model-
ing to discriminate breast cancer subtypes, we were able to
identify biologically reasonable clusters. Two of the seven
clusters did not map to any known biological regulator or
pathway and constitute candidates for further investigation.

For future work, we aim to improve upon the accuracy
results with reliable prior information. It could be that using
the prior information solely to select hyperparameters is too
conservative and using the posterior distributions directly
can give better results with sparse priors. Since the priors
are already being appropriately weighted, the posterior dis-
tributions should be accurate. In addition, we aim to evalu-
ate the prediction accuracy of our pipeline on more recent
genomic data. The prior information sources used for the
biological experiments were relatively sparse. It is future
work to utilize the vast array of gene expression experi-
ments available to construct priors that provide a full repre-
sentation of the genome. Though the pipeline can be
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applied to integrated genomic and clinical datasets, in this
work we focused on genomic data for the evaluation. We
will explore integrated datasets with clinical variables in
future work.
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