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ABSTRACT

Effectively and accurately forecasting the congestion in indoor
spaces has become particularly important during the pandemic in
order to reduce the risk of exposure to airborne viruses. However,
there is a lack of readily available indoor congestion data to train
such models. Therefore, in this demo paper we propose EPICGen,
an experimental platform for indoor congestion generation to sup-
port congestion forecasting in indoor spaces. EPICGen consists of
two components: (i) Grid Overlayer, which models the floor plans
of buildings; and (ii) Congestion Generator, a realistic indoor con-
gestion generator. We demonstrate EPICGen through an intuitive
map-based user interface that enables end-users to customize the
parameters of the system and visualize generated datasets.
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1 INTRODUCTION

Modeling human mobility is a challenging task. One of the chal-
lenges is that while the underlying semantics of trajectories do
not vary widely between different individuals [3], each trajectory
remains very unique [7, 8]. Modeling human mobility is also an es-
sential task for many applications, including congestion forecasting,
which has become particularly important for indoor spaces during
the current COVID-19 pandemic. According to the US Centers for
Disease Control and Prevention (CDC), moving indoors through
congested pathways dramatically increases the risk of exposure to
airborne viruses! and, therefore, accurately forecasting the conges-
tion in buildings is crucial for Mobile Contact Avoidance Navigation
(MCAN) applications [6, 9].
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Figure 1: The EPICGen data exploration user interface
visualizes multiple timesteps of the congestion using an
interactive time slider. It depicts the Building Grid Layout on
a map and colors the cells based on the congestion density in
the cell (i.e., green cells have low to no congestion, red cells
are highly congested). Cells that contain doors (i.e., either
entrances/exits or room doors) have a thicker outline.

MCAN applications rely on indoor congestion forecasting mod-
els to effectively recommend paths that minimize the exposure risk
to airborne viruses. Congestion forecasting models, in turn, rely
on repositories of historical congestion data to accurately model
and forecast the congestion in buildings [1, 2]. However, such data
repositories are not readily available. To this end, we develop an ex-
perimental platform, dubbed EPICGen?, that implements an efficient
algorithm for generating realistic indoor congestion datasets.

EPICGen consists of two components: (i) the Grid Overlayer al-
gorithm, which models building floor plan elements, e.g., corridors,
doors, rooms; and (ii) the Congestion Generator, which generates
realistic indoor datasets given a building layout by simulating the
indoor trajectories of individuals. Additionally, EPICGen provides
an intuitive map-based user interface that allows end-users to cus-
tomize the parameters required for the generator, and visualize the
generated datasets as shown in Figure 1.

2EPICGen: An Experimental Platform for Indoor Congestion Generation.


https://doi.org/10.14778/3476311.3476349
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476349

The contributions of this demo paper are summarized as fol-
lows:

e We propose a novel partitioning scheme and algorithm,
called Grid Overlayer, that enables granular modeling of
congestion in buildings.

We propose a method to generate realistic indoor conges-
tion datasets using an efficient algorithm, dubbed Conges-
tion Generator.

We develop an intuitive map-based prototype system that
allows the end-user to parameterize the algorithms and
generate synthetic congestion datasets for any building
on-the-fly.

We showcase how our MCAN system, called HealthDist,
uses EPICGen to train congestion forecasting models in
order to effectively recommend paths through indoor build-
ings while minimizing the exposure to congested areas.

The remainder of the paper is structured as follows: Section 2
provides an overview of the system. Section 3 presents the demon-
stration artifact and scenarios.

2 SYSTEM OVERVIEW

EPICGen consists of two main components: (i) the Grid Overlayer
described in Section 2.1; and (ii) the Congestion Generator described
in Section 2.2. The Grid Overlayer is responsible for converting
floor plans into a data structure, the Building Grid Layout that can
model the congestion at a high spatial resolution. The Generator is
responsible for generating realistic congestion data given a Building
Grid Layout and simulation parameters.

Figure 2 illustrates an overview our EPICGen system. The first
step is to invoke the Grid Overlayer. Subsequently, the output of
the Grid Overlayer and a set of parameters are used to invoke the
Congestion Generator component. EPICGen extracts floor plans from
a variety of data sources and maintains a database in the back-end.
End-users can interact with the system, select floor plans, and
configure the algorithms through EPIC GUI, an intuitive map-based
interface.

2.1 Building Grid Layout

In order to model the congestion inside buildings at a granular level,
we develop the Grid Overlayer algorithm that divides the building
corridors into smaller segments. The benefit of this approach is
that each segment can be independently modeled, hence leading to
higher resolution datasets and visualization.

Given a floor plan of a building in a semi-structured format (e.g.,
GeoJSON), the Grid Overlayer algorithm overlays a uniform grid
over the building and detects those cells that overlap with corridors,
doors, and rooms generating a Building Grid Layout structure. The
Building Grid Layout does not retain every cell of the initial grid,
i.e., cells that do not overlap with the floor plan of the building are
discarded. Additionally, the cells are further split so that each cell
overlaps exactly one floor plan element.

The Grid Overlayer algorithm works as follows. First, the floor
plan of the building is spatially indexed, i.e., corridors (polygons),
rooms (polygons), and door locations (points) are loaded into a
spatial index, specifically an R-tree. A uniform grid that covers the
entire building is generated with a configurable cell size ¢. Next, the
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Figure 2: Overview of the EPICGen system showcasing the
order in which the components are invoked to generate realistic
congestion datasets.

grid cells are loaded into a second R-tree. Finally, a join operation
between the floor plan elements and the grid cells is performed
using the previously constructed spatial indexes. Cells that overlap
with at least one floor plan element, i.e., corridor, room, door, are
qualified for post-processing while all other cells are discarded.
During post-processing, the shape of the cells is adjusted to exactly
fit their intersection area with the floor plan elements. If a cell
overlaps more than one element, it is divided at the intersections
of the elements it overlaps.

Figure 3 illustrates an example of Grid Overlayer’s output. On the
left, the floor plan of the Sennot Square building at the University
of Pittsburgh is depicted. The corresponding generated Building
Grid Layout is shown on the right. Corridor cells are colored in gray
and outlined with dark gray lines. Other types of cells are omitted
for brevity.

2.2 Indoor Congestion Data Generator

Our real-world observations show that traffic inside academic build-
ings can be separated into two main categories: scheduled and pass-
through. This observation is also confirmed by the study in [4].
Scheduled traffic is the traffic that follows a specific schedule, e.g.,
class schedule. This means that short time before and short time
after a class, a spike of traffic appears in the building. Pass-through
traffic is generated by people who enter the building in one door
only to wander and exit at another. Therefore, we design and imple-
ment a congestion generator that addresses these two categories of
traffic. To achieve this, congestion is generated in two phases. The
first phase generates the pass-through traffic (browsers) whereas
the second phase generates the scheduled traffic (commuters). Both
phases require the Building Grid Layout (Section 2.1) as input along
with a date range of the simulation.

Phase 1 (Pass-through traffic): The rate of congestion gener-
ated by this type of traffic varies depending on the time of day. For
example, there is almost zero traffic during nighttime but a lot of
people will pass through the building during the daytime. Hence,



Figure 3: Floor plan of the Sennot Square building at the Uni-
versity of Pittsburgh campus (left) converted to a Building
Grid Layout (right).

the generator receives an additional input for this phase, namely
the arrival rate of people at different times of the day. For every time
step, the generator will randomly sample the number of people that
arrive at each building door and for each person a destination exit
door is selected. Then, assuming a constant walking speed (e.g., the
average walking speed is 1.4 m/s), the trajectory of each person is
simulated following the shortest path that is formed using corridor
cells. The congestion of each cell is updated accordingly.

Phase 2 (Scheduled traffic): To simulate the scheduled traffic
we require some sort of schedule for every room in the building,
i.e., the time classes start and end for different days of the week as
well as the audience size of each class. Hence, the generator accepts
this schedule as an input for this phase. Besides the schedule, the
generator requires an additional set of parameters, i.e., arrival rate
of students before the class begins, departure rate after the class
ends, and probability that a student is absent from class.

We simulate the arrival of students as a Gaussian distribution
with mean y, and standard deviation o, that samples the number
of minutes before the start time of the class the student enters the
building. Similarly, we simulate the departure of students from class
as a Gaussian distribution with mean p; and standard deviation o4
that samples the number of minutes after the end time of the class
the students leave the classroom. We also simulate the absence of a
student from class as a binomial distribution with p = a. Lastly, an
average walking speed v is assumed as above.

Although we introduce the proposed generator in the context of
academic buildings, the process can be generalized to almost any
kind of building. The only hard requirement is the floor plan of the
building. All other parameters (ug, 04, fig, 04, @, v) can be provided
by the user or estimated using other datasets, such as Wi-Fi access
point connection logs. For example, access point log files, which
are extracted from the network infrastructure of the University of
Southern California (USC), are analyzed to estimate and predict the
congestion in buildings during the pandemic in order to reduce the
spread of the virus. The logs tend to show a spike in the number of
connections a few minutes before the start of a class, and a drop in
the number of connected users right after a class finishes. These
spikes and drops can be correlated with the schedule in order to
estimate the parameters pq, 0g, 14, 04.

The scheduled traffic generator algorithm iterates over every
schedule item and generates the respective traffic. For every student
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Figure 4: Generated congestion for a corridor cell aggregated
into 5-minute intervals corresponding to Entrance 1 (top) and
at a corridor intersection (bottom) of Wesley W. Posvar Hall at
University of Pittsburgh.

in the class, we first draw a sample from the absence distribution to
decide if the student is attending the class. If the student is attending,
we additionally draw a sample from the arrival distribution to
decide how early that student is going to enter the building. An
entrance door is selected uniformly at random and the student’s
trajectory to the respective room is generated using a constant
speed of v m/s. The congestion of the cells that intersect with the
student’s path is updated accordingly. A similar process is employed
for the departure of students from the class. For every student that
was present, a departure time and an exit door are sampled and the
student is routed while the congestion of cells that intersect with
the path is updated. The final output is the congestion time series
of every corridor cell aggregated in 5-minute intervals.

Schedule Generator: In the case that a schedule does not ex-
ist for a building or if the end-user of our system is interested in
benchmarking a variety of scenarios, we propose a method to gen-
erate one. Three input parameters are required: (i) the audience
size distribution, which is assumed to be a Gaussian distribution
with mean pg and standard deviation oy; (ii) a set of event durations
(class, no class) along with their respective probabilities, which are
modeled as multinomial distribution; and (iii) the probability p.
that an event is a class or not. Optionally, the time of day when
classes begin and end, e.g., from 7AM to 9PM, can be provided.
Starting at the time that the schedule is configured to begin, e.g.,
7AM, we sample two pieces of information, namely the duration of
the next event § and whether the next event is a class or not. If the
next event is a class, the size of the audience is also sampled.

Figure 4 plots the generated congestion of two corridor cells
during the first week of February 2021. On the top, the congestion
of a corridor cell at the building’s entrance is shown while on the
bottom the congestion of an intersection cell is shown. Both cells
follow a realistic distribution in the sense that during the night-time
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Figure 5: The CAPRIO system uses EPICGen under the hood
to train accurate congestion forecasting models and recom-
mend routes that reduce exposure risk by avoiding congested
buildings.

only a very small number of individuals is observed whereas the
number of individuals increases during the day and peaks around
the beginning and ending of classes. As expected, the congestion at
the intersection is much higher than at the entrance. This happens
because individuals are very likely to walk by the intersection
irrespective of the entrance or exit they used.

3 DEMONSTRATION DESCRIPTION

During the demonstration, the attendees will be able to compre-
hend the key concepts of EPICGen, the visualization abstraction, as
well as the performance of our propositions by interacting with a
user-friendly interface. Below we will present more details on the
implementation of EPICGen, and then discuss our demo plan.

3.1 Demo Artifact

We have implemented EPICGen using an interactive map, integrat-
ing Grid Overlayer in the backend, which was developed using Play
Framework 2.73. The EPICGen web interface is implemented in
HTML5/CSS3 along with extensive usage of Leaflet*.

An illustrative congestion visualization interface is shown in
Figure 1. We implement a query sidebar that allows the user to
parameterize the components of EPICGen. Particularly, the query
sidebar has two main tabs: (i) the Grid Overlayer parameters tab that
enables the user to choose the building and grid size; and (ii) the
Congestion Generator parameters tab that enables the user to tune
the congestion generation. A submit button triggers the process
of modeling the building and generating the congestion using the
provided parameters.

The hardware stack of our EPICGen installation resides on a
dedicated server. The server is featuring 12GB of RAM with 4 Cores
(@ 2.90GHz). During the demonstration, we will connect over cable
or Wi-Fi to the EPICGen web service and enable the users to interact
with our intuitive web interface, as described next. We shall also
have video recordings at hand, in case the network is unstable at
the conference.

3Play Framework: https://www.playframework.com/
4Leaflet: https://leafletjs.com/
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3.2 Demo Plan

Equipment: The conference attendees will have the opportunity to
interactively engage with the EPICGen GUI using a standard laptop,
a tablet and smartphones we will bring along at the conference.

Datasets: We will pre-load floor plans for a variety of buildings
in the University of Pittsburgh campus to the EPICGen back-end.

Scenario 1: EPICGen’s server will be publicly available to allow
attendees to experiment with the parameters of the system and to
see the result in real time on the interface. We will provide visual
cues that will enable the audience to understand the benefits of our
propositions.

Scenario 2: Additionally, attendees will have the opportunity to
interact with our prototype HealthDist [6, 9] MCAN application,
which was built on top of our CAPRIO architecture [5]. We de-
veloped EPICGen to evaluate HealthDist’s accuracy of forecasting
the congestion in buildings and its effectiveness of recommending
paths that minimize the exposure risk to airborne viruses. Fig-
ure 5 shows the interface of HealthDist/CAPRIO comparing three
paths. The first path (green color) is recommended by Google Maps
and due to lack of indoor information it recommends an entirely
outdoor path. The second path (blue color) is recommended by
HealthDist/CAPRIO and is similar to the first path due to an acces-
sibility constraint that was imposed by the user. The last path (red)
is also recommended by HealthDist/CAPRIO with the difference
that no accessibility constraints are imposed. HealthDist/CAPRIO
paths leverage indoor information and congestion forecasting to
recommend indoor paths that reduce the viral exposure risk by
avoiding congested corridors.
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