
Improving Stream Load Balance through Shedding
Nikos R. Katsipoulakis

Amazon Web Services
Palo Alto, CA, USA

Email: nkatsip@amazon.com

Alexandros Labrinidis, Panos K. Chrysanthis
University of Pittsburgh

Pittsburgh, PA, USA
Email: {labrinid, panos}@cs.pitt.edu

Abstract—The increasing demand for real-time processing has
contributed to the rapid evolution of Stream Processing Engines
(SPEs). Low operational cost and timely delivery of results are
important objectives, whose achievement relies on efficient load
distribution. However, given the volatile nature of data, and
the limitations of existing stream partitioning techniques, those
objectives can not be met.

In this work we investigate the combination of load shedding
with partitioning to improve load balancing in SPEs. We pro-
pose a novel query and load distribution model, which trades
accuracy for balance load allocation in a controlled fashion.
Also, we present the design of a lightweight operator that is
compatible with current SPEs’ architectures and is based on our
model. Our operator, named ShedPart, identifies opportunities
for approximating parts of the input in order to achieve balanced
allocation. Our experimental evaluation indicates that ShedPart
can lead to up to an order of magnitude better performance with
real-world datasets.

I. INTRODUCTION

Data-intensive applications are prevalent in a plethora of
social and economic sectors. Their goal is to capture trends
by identifying patterns in data streams. Stream processing is
considered the most appropriate processing model, since it
follows a “push-based” approach that involves a static set of
continuous queries (CQs), applied on dynamic data streams of
unbounded size. Stream Processing Engines (SPEs) have been
developed to cover the needs for this type of processing.

A major challenge for SPEs is their inability to provide
the expected level of service during the whole lifetime of a
CQ, because the exact resources needed are unknown at query
submission time. Often, a CQ’s resource needs are estimated
based on historical information, without precise forecasting of
future data characteristics (i.e., input rate, volume etc.) [1].
As a result, SPE administrators can either over-provision
resources, which leads to high operational costs; or allocate
insufficient resources to cover the processing needs of a CQ.
Under such circumstances, either data get lost or results are
delayed. Ultimately, static resource allocation is precarious and
results in either loss of data or increased operational expenses.

Three major techniques have been developed to address
the challenge of resource provisioning in SPEs: (i) stream
partitioning [2], [3], (ii) load shedding [4], [5], [6], [7],
[8], and (iii) stream re-partitioning [9], [10], [11]. The first
balances load, the second selectively drops load, and the third
reconfigures resources in an online fashion. Each one of those

techniques comes with its pros and cons and is better suited
for different applications and congestion circumstances.

Often, re-partitioning is avoided due to the need to suspend
execution while resources are adjusted [9], [11], [12]. As a
result, partitioning and load shedding are preferred since they
do not disrupt CQ execution. Albeit, partitioning’s effect is
limited by available resources and sensitive to data charac-
teristics. It has been shown that partitioning can encounter
situations that do not allow for balanced load allocation and
end up in skewed load distribution [2]. In addition, rapidly
changing data necessitate the need to split keys during the
lifetime of a window, which results in increased latency [3]. On
the other hand, load shedding is geared towards applications
that can sustain reduced accuracy in the results. By dropping
data in a controlled fashion, an SPE’s performance can cope
with increased input data rate. In the past, load shedding
has been applied in a decentralized fashion that can result
in unnecessary drops in accuracy [8].

In order to overcome the shortcomings of previously pro-
posed techniques, we propose a novel solution that combines
partitioning with load shedding. In detail, our solution se-
lectively trades accuracy for balance in load allocation. Our
solution is based on a novel query model and a partitioning
framework, which aims at either avoiding or delaying the
need for re-partitioning. Furthermore, we present a lightweight
operator based on our model, that works in tandem with a
partitioning algorithm. This operator, named ShedPart (from
shed-partitioning) combines stream partitioning and load
shedding and trades results’ accuracy for load balance in
the finest granularity. ShedPart complements a partitioning
algorithm and detects opportunities for approximating part
of the result, given a user-defined accuracy specification. At
window completion, ShedPart produces selective drops of
tuples, which lead to a more balanced load allocation. Our
experiments with real datasets indicate that ShedPart is able
to improve performance and balance load by more than an
order of magnitude.

Contributions In summary, our contributions are:

• A query and partitioning model that offers the ability to
approximate results in order to achieve more balanced
load allocations.

• The design of ShedPart as a lightweight operator, compat-
ible with current SPEs. Our proposed design is optimized
to add insignificant overhead during execution, and is978-1-7281-6251-5/20/$31.00 c©2020 IEEE

120

2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW)

978-1-6654-4890-1/21/$31.00 ©2021 IEEE
DOI 10.1109/ICDEW53142.2021.00028

20
21

 IE
EE

 3
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 D
at

a
En

gi
ne

er
in

g
W

or
ks

ho
ps

 (I
C

D
EW

) |
 9

78
-1

-6
65

4-
48

90
-1

/2
0/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
D

EW
53

14
2.

20
21

.0
00

28

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

Rides(time, route, fare)
Q1 = Rides

.time(x -> x.time)

.windowSize(15, MINUTES)

.windowSlide(5, MINUTES)

.average(x -> x.fare)

.group(x -> x.route)

.parallelism(4);

-- ShedPart parameter API --
.error(10%)
.confidence(95%)

Figure 1: Example CQ with accurary specification (for Shed-
Part.

enhanced with mechanisms that prevent deterioration of
performance.

• An experimental analysis of ShedPart with real datasets.
The rest of the paper is organized as follows: Sec. II

presents background information on stream processing and
load shedding. Sec. III demonstrates our proposed model for
ShedPart, and Sec. IV presents the details of ShedPart. Sec. V
demonstrates the experimental results and Sec. VI concludes
our work.

II. PREREQUISITES

We focus on the current generation of SPEs, which adopt a
modular design targeted for modern cloud infrastructures. Ex-
amples of such SPEs include Flink, Kafka, Spark, and Storm.
A user submits a CQ Q in either declarative or functional
form. Q consists of data sources and transformations, which
are applied to produce the expected result. Input streams are
represented by Si, where 1 ≤ i ≤ N (N is the number of
input streams). Each Si is a sequence of tuples eXi

, with a
predefined schema Xi. Fig. 1 (above the ShedPart comment)
presents an example CQ in functional notation. In this CQ,
there is a single stream source (S1) named Rides, which
consists of tuples with three fields: a time used to order tuples
in a monotonically increasing timeline, a route, and a fare.

Transformations applied by a CQ are represented by opera-
tors, which are categorized in stateless and stateful, based on
their need to maintain state. We focus on stateful operators
as they can be a challenge for current SPEs. Due to the un-
bounded size streams, a stateful operator’s state is constrained
to a subset of past tuples, which is called a window. In the CQ
of Fig. 1, a stateless operator is time, which annotates each
tuple with a timestamp using the time field. The combination
of the window and grouped average operators are stateful
operators, since they buffer tuples until a window is complete
for processing.

The notion of a window Wr,s complements stateful opera-
tors, which are applied to a group of tuples whenWr,s’s condi-
tions are met. A logical window definition can be represented
as Wr,s : Si → {S1

i , . . . , S
w
i }, where w → ∞. Each Swi

represents the tuples of Si that belong to window w according
to W The range r indicates a window’s size, either in terms

of tuples or duration. The slide s denotes the progression
step. When s = r a window is called tumbling and there
is no overlap between consecutive windows. As a result, each
tuple is assigned to a single window, In contrast, when s < r
windows are called sliding, and consecutive windows overlap
(each tuple is assigned to d rse windows). In the CQ of Fig. 1,
the sliding window is defined by the functions windowSize
and windowSlide. The former sets the window’s range r to 15
minutes, and the latter sets the slide s to five minutes.

A. Execution Plan

A CQ’s execution is a Directed Acyclic Graph (DAG).
Each vertice denotes an operator of a CQ, and each edge
a data transfer. The left-most node of the execution plan
represents a data source, and the right-most node represents
the last operator of a CQ. Intermediate nodes are operators
imposed on flowing tuples. SPEs scale processing by utilizing
multiple workers. Depending on the available resources, an
SPE produces a physical execution plan. The parallelism of
an operator relies on the number of workers (V) assigned to
it, where each worker can be a machine, a process, and/or
a thread, depending on the parallelization granularity. With
the use of multiple workers for each transformation step,
data transfer operators are introduced in the DAG. The most
popular include data shuffling, partitioning, broadcasting, and
gathering. We focus on data partitioning, which is used to
scale stateful operators [2], [3].

As presented in [2], a stateful operator is a three stage
process, which starts with the partition of input data. Partition
is a function that takes a Swi and produces another sequence
of equal length, indicating the worker to which each ewXi

is
going to be sent (ewXi

indicates a tuple eXi
belonging to Swi):

P : Swi → {LvSw
i
, for 1 ≤ v ≤ V}. Each LvSw

i
denotes a sub-

sequence of Swi and is the part sent to worker v for processing.
V represents an operator’s parallelism degree for processing
the (partial) result for Swi .

To this end, an eXi
can be represented as a triplet (τXi

, kXi
,

pXi
), where τXi

is the attribute used to assign each eXi
to a

logical window, kXi
⊂ {Xi − τXi

} are the attributes utilized
in the partition process, and pXi ⊂ {Xi− (τXi +kXi)} are the
remaining attributes, which comprise eXi ’s payload.

In the example CQ of Fig. 1, the number of available
workers V is four (function parallelism). Even though a par-
titioning algorithm is not directly defined, the SPEs imposes
one with the use of the function group. As a result, tuples
will be partitioned using the route field of each tuple (i.e.,
kRides = route), and the payload is pRides = fare. Each
worker buffers tuples on the window operator, and for each
window calculates the group average.

B. Result Approximation in Stream Processing

Some applications do not require an exact result and can
make use of an approximation. The accuracy of a window
result is traded for performance, as long as there is a result’s
accuracy can be quantified. In the past, stream approximation
techniques allowed a user to submit a Q with an accuracy

121

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

Table I: Model Symbol Overview

V number of workers
Si input streams 1 ≤ i ≤ N
Xi = (τ, k, p) schema of Si

eXi
tuple of Si

Wr,s : Si → {S1
i , . . . , S

w
i } Si’s window definition with

range r and slide s
P : Sw

i → {Lv
Sw
i
, for 1 ≤ v ≤ V} partition function for Sw

i

LV
Sw
i

window load of worker V
Rw exact result for window w

R̂w approx. result for window w

ε : Rw, R̂w → R error between Rw and R̂w

α confidence level
I(P (Sw

i)) Imbalance calculated when
Sw
i is partitioned using P

Ng number of tuples of a group g
s2g values’ variance of group g’s

tuples

specification [7], [8]. This specification consists of an accuracy
measure ε and a confidence level α (i.e., the probability that
the error will be less or equal to ε). For a stateful operator,
we will represent the actual window result as Rw, and the
approximate window result as R̂w.

The production of R̂w entails that only a subset of Swi is
processed. In order to measure the difference between Rw
and R̂w, a metric ε : Rw, R̂w → e is introduced by the
user. Our focus is mainly on stateful operators that carry
aggregate operations (e.g., mean, sum) and are widely used
in SPEs. Those transform a window of input tuples to either a
scalar value or a vector of values (in case there is a group by
argument). First, an aggregate operation extracts a number of
attributes from eXi and feeds them to a transformation function
to produce Rw. In the event that Q carries a group statement,
a result is produced for each distinct group of Swi .

In the CQ of Fig. 1 the last two lines present the accuracy
specification of our work. The function error dictates that a
relative error of up to 10% is allowed, with a confidence of
α = 95%. Table I provides a summary of the symbols used
in our formulation.

III. PROPOSED MODEL

The effectiveness of P is measured using the imbalance
metric [2]:

I(P (Swi)) = |max
j

(LjSw
i
)− avg

j
(LjSw

i
)|, j = 1, . . . ,V (1)

If Swi carries tuples from G distinct groups, then the tuples
are divided in G groups based on their kXi

. In essence, if
Ng is the set of tuples of Swi that belong to a group g, then
N1 ∨ . . . ∨ NG = Swi . Imbalance’s first operand is the total
number of tuples of the most loaded worker w, whose total
load is equal to LwSw

i
=

∑
j |Nj |, where {j|eXi

∈ Swi ∧ kXi
=

{j}} and P (Nj)→ {w, . . . , w}. In order to reduce imbalance,
w’s load has to be reduced.

Lemma 1. For a given Swi , V workers, and a partition
algorithm P , imbalance I(P (Swi)) is reduced if and only if
the load of the most loaded worker w is reduced.

Executioner Thread

App.
logic

Partition
(Grouping)

Module

ShedPart

Partition Info

Figure 2: The ShedPart operator in an SPE worker.

We omit the proof of the Lemma due to space limitations.
Lemma 1 concludes that reducing the load of w results in
reducing imbalance. w’s load is the sum of the disjoint group
sets of its stored tuples. Hence, by reducing the individual sets
leads to reducing LwSw

i
. We propose to drop tuples from each

group in order to achieve the reduction of sets.
Dropping tuples leads to approximate results, which devi-

ate from previously proposed partitioning techniques. Con-
sequently, there is a need of an accuracy parameter, which
consists of an error εu and a confidence α [8]. In essence,
a stateful operation’s approximate window result R̂w should
not deviate by more than ε from Rw. w’s load reduction
needs to take place while the accuracy of R̂w is within user-
defined limits. In essence, the partition model should iterate
over w’s assigned groups, and examine if any of them can
have its aggregate result Rw be approximated. This entails
that for every group g assigned to w, for which Ng ⊆ Swi ,
one needs to identify a simple random sample ng ⊂ Ng so
that Pr(ε(Rw, R̂w) ≤ εu) = α.

Our model employs normal approximation to predict the
accuracy of R̂w. The total population’s variance (S2) is
estimated, in two steps: first by creating a simple random
sample of size n1 from which the value of s2 is gained; second,
estimate ng using s2 as S2’s estimator. For example, if a CQ
produces the arithmetic mean, s21 is the variance estimated
from the initial sample of size n1 and V = ε2

t2 , where t
is the inverse cumulative probability of the standard normal
distribution at α. Then, ng =

s21
V (1 + 2

n1
) The distribution of

the attribute values is assumed to be approximately normal,
therefore n1 needs to be fairly large. Any attempt to reduce
imbalance given εu and α, requires the estimation of S2 for
the attribute values used to produce Rw.

IV. SHEDPART

We propose Shedding-Partitioning operator (ShedPart),
which is based on our model and reduces imbalance by
searching for groups that qualify for approximation, given
(εu, α). Each SPE worker maintains a module that applies
the application logic (AL) (i.e., a stateful operation), and a
Partition Module (PM) that partitions produced tuples. Every
tuple produced by AL is passed to the PM, which determines
the destination of this tuple (i.e., apply P). Fig. 2 illustrates
this workflow. Often, the PM maintains additional information
for load-balancing purposes such as a routing index and

122

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Shed-Part algorithm
1: procedure SHEDPART(L,R,GI)
2: conclude = False, black_list = ∅
3: trim_info = INIT_MAP(∅)
4: sorted_group_map = SORT_GROUPS(R,GI)
5: repeat
6: conclude = True
7: w= MOST_LOADED_INDEX(L)
8: Gw=sorted_group_map.get(w)
9: if Gw 6= ∅ then

10: for all g ∈ Gw do
11: if g /∈ trim_info ∧ g /∈ black_list then
12: sg = GI.var(g)
13: ng = GI.freq(g)
14: s = SAMPLE_SIZE(ng, α, ε, sg)
15: if s < GI.freq(g) then
16: conclude=False
17: UPDATE_LOAD(w, g, L, s)
18: trim_info.add(g,s)
19: else
20: black_list.add(g)
21: else
22: return trim_info
23: until ¬conclude
24: return trim_info

partition info, which include the number of tuples and the
number of distinct groups sent to each worker [3].

ShedPart is part of a worker thread’s memory space and
it operates within the PM as a complementary load balanc-
ing mechanism. Its goal is to keep track of PM’s routing
decision and incrementally identify distinct groups that can
be approximated. At tuple arrival, ShedPart monitors the
PM’s decisions, and updates information for distinct groups’
sample size estimation incrementally. At watermark arrival,
ShedPart explores for opportunities to limit imbalance, by
iteratively scanning the most loaded worker’s groups. By the
time ShedPart concludes its exploration, it allows a window’s
watermark to reach the downstream operators, along with
information regarding shedding of tuples for individual groups.
ShedPart needs to keep track of each group’s frequency and
variance of values. In addition, the load of each worker needs
to be available, along with the routing index. Apart from each
group’s attribute values’ variances, the rest of the information
are readily available from PM.

A. Proposed Algorithm

ShedPart’s operation differs during (a) tuple and (b) water-
mark arrival [7].

Tuple Arrival: Every time a tuple is produced by AL and
is partitioned by the PM, ShedPart keeps track of values’
variance for each group g. Variance requires constant memory
and can be calculated incrementally. ShedPart’s overhead in
CPU and memory remains low, as only a sample of the values
is needed for the estimation of variance (Sec III).

Watermark Arrival:ShedPart explores Swi ’s groups for pos-
sible opportunities in reducing imbalance. The ShedPart al-
gorithm is depicted in Alg. 1 and consists of a main loop

(Lines 5- 23), which repeats as long as the most loaded worker
w’s load is being reduced. This outer loop emanates from
Lemma 1, and concludes if either all of w’s groups have been
examined (i.e., a resulting sample size ng ≥ Ng), or because
all of w’s groups have already been selected for approximation
(i.e., a sample size has been established). We have to point out
that on every iteration, the most loaded worker w is likely to
change.

Alg. 1 has the following input: L which is an integer array
of size V with the total number of tuples assigned to each
worker. This array is the same array (L) used by existing load
balancing algorithms [3]. The next argument of ShedPart is the
route index R : g → {w1, . . . , wm}, which maps each distinct
group g to (a) worker(s). Most of the times, R can be the hash
function(s) used for partitioning each group g. Finally, a map
GI : g → (Ng, s

2
g), which returns the frequency and estimated

values’ variance of each group. GI is the single additional
structure that ShedPart requires and has an amortized memory
overhead of O(G). This overhead can be further reduced by
using sketches (e.g., CountMin). The output of Alg. 1 is a
map trim_info : g → sg , which for a subset of groups returns
a sample size sg (Line 24). This value indicates that tuples
that belong to group g can have their result approximated by
a simple random sample of size sg .

First, an index named sorted_group_map is created, which
maps a list of of groups to each worker in descending order
of appearance (Line 4). The creation of this index allows
for faster execution and its creation carries a worst case
time complexity of O(G log G). Another auxiliary structure is
initialized, named black_list, which is a set that carries the
groups that have already been addressed. At every iteration
of the inner loop, w is located (Line 7). Then, w’s sorted
list of assigned groups are retrieved from sorted_group_map
(Line 8). In the event that there are no remaining groups
left, ShedPart concludes execution (Line 22). Otherwise, each
group g ∈ Gw is scanned (Line 10). If a group g is neither part
of trim_info nor black_list, then its sample size s is estimated
(Line 14). If s < Ng , then w’s load is updated (Line 17), a
record is added in trim_info (Line 18), and the outer loop’s
condition is updated (Line 16). On the other hand, if s ≥ Ng ,
then group g is added to black_list so that it is not revisited
in the future (Line 20).

Overall, the algorithm’s time complexity is affected by the
distribution of groups per worker, and values’ variance. The
worst runtime complexity materializes when all distinct group
values are visited. In this case the main loop will have a time
and storage complexity of O(G).

B. ShedPart Optimizations

We enhanced ShedPart with two optimizations, which alle-
viate its worst-case time and storage complexity.

1) Storage Optimization: we expand ShedPart’s internal
structure to separate group tracking based on each group’s
frequency. ShedPart has a parameter Tg , which is a frequency
threshold used to separate distinct groups of Swi into two
categories: the heavy hitters (i.e., groups that Ng ≥ Tg), and

123

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

Table II: Imbalance on DEBS.

50%ile 75%ile 99%ile Max
Storm 172 240 416.8 545
Shedpart 172 240 416.8 545

the cold groups (i.e., groups that Ng < Tg). This optimization
is similar to the one proposed in [13] and in [3].

ShedPart maintains an approximate data structure of, con-
stant size, to keep track of cold groups’ frequencies. Currently,
ShedPart uses a CountMin sketch [14], whose size is con-
trolled by the desired level of accuracy. In addition, ShedPart
maintains a hash table for each group’s tuple (Ng, s

2
g) H.

At tuple arrival, H is checked if it contains a record of the
tuple’s group. If one does not exist, the estimated count for g
is retrieved from the CountMin sketch, N̂g . If N̂g = 0 then
g’s record in the CountMin sketch is incremented. Otherwise,
ShedPart checks if N̂g ≥ Tg − 1. If the previous is true, g is
promoted to the heavy hitters groups, and a record is created
in H. Otherwise, the CountMin sketch is updated accordingly.

In our experience, we found that setting Tg ≥ |Sw
i |
G pro-

vides the best results. ShedPart aims to improve imbalance,
which appears in skewed datasets. The former is not the case
with uniform datasets, since the P manages to balance load
effectively. Until a group g makes it to H the attribute values
needed for s2g will be lost. However, this does not impact the
sample size estimation since it requires the variance of a subset
of the population. Finally, this optimization is used to limit the
time complexity of Alg. 1 as well, by considering only heavy
hitter groups during exploration.

2) Incremental Variance Monitoring: In our experience
with real datasets, we encountered situations where the overall
performance improvement from ShedPart was minimal. This
happened because the attribute values’ did not allow for
approximation. In those circumstances, executing ShedPart
increases total processing time. To this end, we enhanced
ShedPart to keep track of the percentage of tuples dropped
incrementally:

When a heavy hitter group’s variance is updated, its required
sampling size n̂g is updated as well. At watermark arrival, the
percentage |D−D̂||Sw

i |
100 is calculated, where D is the sum of

frequencies of all heavy hitter groups1 and D̂ is the sum of
the estimated sample sizes n̂g . If this percentage is lower than
T , which is ShedPart’s percentage parameter, then ShedPart
does not execute Alg. 1. This enhancement protects ShedPart
from unnecessary execution.

V. EXPERIMENTAL EVALUATION

We document the merits of ShedPart by experimenting
with real-world datasets. Specifically, we identify under which
circumstances ShedPart offers performance improvements.

1Each one incremented by Tg .

Table III: Imbalance on GCM.

50%ile 75%ile 99%ile Max
Storm 98050 150360 1571172.39 1763230
Shedpart 128 185 307.6 315

A. Experimental Testbed

1) ShedPart Implementation Details: We have implemented
ShedPart on Storm v1.2, as a windowed bolt that sits between
a data generator, and a Bolt performing a stateful operation.
When ShedPart’s watermark mechanism triggers, it performs
Alg. 1 and generates the sample sizes for each group for the
current window. It forwards this information to the down-
stream bolts to down-sample for the active window accord-
ingly, and also produces a watermark to trigger execution.

2) Experimental Setup: We conducted experiments on a
cluster of five Amazon EC2 r4.xlarge nodes. Each node ran
on Ubuntu Linux 16.04, OpenJDK Java v1.8, and python v2.7
and had access to four virtual CPUs of an Intel Xeon E5-2686
v4 and 32GBs of RAM. One node was set up as the master,
having a single-instance Zookeeper v3.4.10 server; each of
the remaining nodes ran a single Storm supervisor process,
which accommodated up to 4 workers. In all experiments,
we enabled Storm’s acknowledgment mechanism to guarantee
processing of all tuples. Also, we enabled Storm’s back-
pressure mechanism to guarantee in-order delivery of tuples
and avoid polluting measured times. We note that our setup
did not experience any late or out-of-order tuples. In order to
measure processing times with high precision, we used Storm’s
metrics API, which provides periodic reporting of runtime
telemetry for each worker.

The CQ execution plan of our experiments consisted of a
single source operator. This operator read data from a memory-
mapped file, and pushed tuples to ShedPart. In turn, ShedPart
distributed data to workers that executed a stateful aggregate
operation. Each worker pushed its results to an output file. All
of the experimental results are the arithmetic mean of seven
runs, without the maximum and the minimum reported values.
For all experiments, we used the relative error formula as our
error metric.

3) Experimental Datasets: In our evaluation we used real-
world streaming datasets. For each one of the real datasets,
we conducted a grouped aggregate operation on a predefined
event-time sliding window. Below, we provide additional de-
tails for each dataset:

• ACM DEBS 2015 Challenge dataset (DEBS): This
dataset features ride information from a New York City
Taxi company [15]. For this dataset we used one of
the two queries that come with it. The CQ we selected
features a 30 minute sliding window, with a 15 minute
slide, for calculating the average fare amount for each
route. Routes are created by dividing the New York City
area in a 300 by 300 cell grid.

124

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120 140
Timeline

0.0

0.5

1.0

1.5

R
un

ti
m
e
(n
an

os
)

×108
Storm Storm+ShedPart

Figure 3: Max parallel step runtime on GCM.

• Google Cluster Monitoring dataset (GCM): For this
dataset we used part of the task-events table and per-
formed Query 1 from [16], which requires the average
CPU time requested by different scheduling classes. In
order to examine ShedPart’s performance on larger win-
dows, we set the sliding window size to 60 minutes and
the slide to 30 minutes.

B. Impact on Imbalance

ShedPart’s main goal is to reduce imbalance among work-
ers. DEBS and GCM present significant differences in the
number of groups per window (up to four for GCM and 10
thousand on average for DEBS), and in the values’ variance.
As a result, ShedPart is expected to face different opportunities
to balance load on each dataset. For this set of experiments we
set εu = 10% and α = 95%. In addition, we set Tg = 3, and
T = 15%, and 4 workers for calculating the grouped mean.
Tables II and III depict the imbalance (Eq. 1) achieved with
Storm’s partition algorithm, and with ShedPart. We used FLD
grouping for Storm, which proved to be equivalently good
for those datasets. As far as DEBS is concerned, ShedPart
fails to improve on imbalance. This happens because values’
variance is high, and infrequent groups cover a significant
portion of the window. As a result, ShedPart is unable to
identify approximation opportunities, and imbalance remains
the same as Storm’s.

On the other hand, the GCM dataset features up to four
groups per window, and values maintain lower variance.
Therefore, ShedPart is able to approximate the result by using
a small set of tuples. This results in significant improvement
in terms of imbalance, as is shown in Table III. Furthermore,
we measured ShedPart’s impact on the most loaded worker’s
load. This aspect is important as it affects the time of the
partial-evaluation step of a stateful operation. As far as DEBS
is concerned, ShedPart is unable to limit the maximum load,
as it was unable to reduce imbalance. Turning to GCM,
ShedPart reduces the maximum worker load by two orders
of magnitude.

C. Overall Performance

In order to measure ShedPart’s impact on performance, we
measure the total window runtime in terms of ShedPart execu-

0 20 40 60 80 100 120 140
Timeline

0

100000

200000

300000

Ti
m
e
(n
se
c)

ShedPart Processing

Figure 4: Breakdown of time spent on each window, in terms
of ShedPart and processing (GCM).

tion and actual processing. Similar to the previous experiments
on those datasets we set εu = 10%, α = 95%, Tg = 3,
T = 15%, and the number of workers to 4. The reported times
represent the sum of ShedPart’s execution and the processing
time for each window.

The main challenge for ShedPart on DEBS is to detect
fast that approximation is infeasible. This is crucial because
DEBS features tens of thousands of groups per window, and
the iterations can impact performance. Also, DEBS is unable
to be accelerated because of the values and the frequency of
appearance of its groups. At watermark arrival, our ShedPart
implementation identifies that this is infeasible. Thus, ShedPart
does not run its algorithm and jumps directly to processing.
In our experiments, we documented no difference in the total
window runtime of Storm and ShedPart, which emanates from
the optimizations we introduced in ShedPart. As a result,
ShedPart spends no time exploring potential groups fit for
approximation, and proceeds with processing.

ShedPart leads to significant performance improvements
with GCM. Fig. 3 illustrates the total runtime for Storm and
Storm with ShedPart. ShedPart reduces the load on the most
loaded worker of each window. As a result, the total runtime
drops significantly. As shown in Fig. 3, in the windows be-
tween 50 and 65 there is a temporary increase in the frequency
of a particular group. Storm has to sustain this temporal skew
in input. On the other hand, with ShedPart this temporary
imbalance disappears. Fig. 4 presents the breakdown of Storm
with ShedPart. GCM features up to four distinct groups per
window, which results in insignificant time spent for ShedPart
execution. As shown in Fig. 4, all time is spent in processing
the result.

VI. CONCLUSION

In this paper, we presented ShedPart, which is a partitioning
algorithm leveraging load shedding to balance load in SPEs.
Shortcomings of existing partitioning algorithms motivate the
use of ShedPart, which can mitigate load imbalance under
certain circumstances.

ShedPart reduces imbalance by approximating part of the
output. It achieves this by implementing a novel query and
load distribution model, which enable trading accuracy for
load balance.

125

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

Our proposed ShedPart operator is lightweight and compat-
ible with current SPEs’ architectures. Experiments with real
datasets indicate that ShedPart can improve performance by
more than an order of magnitude.

REFERENCES

[1] B. Babcock, S. Babu, M. Datar et al., “Models and issues in data stream
systems,” in PODS, 2002, pp. 1–16.

[2] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis, “A holistic
view of stream partitioning costs,” PVLDB, vol. 10, no. 11, pp. 1286–
1297, 2017.

[3] A. Pacaci and M. T. Ozsu, “Distribution-aware stream partitioning for
distributed stream processing systems,” in BeyondMR, 2018, pp. 6:1–
6:10.

[4] N. Tatbul, U. Cetintemel, S. Zdonik et al., “Load shedding in a data
stream manager,” PVLDB, vol. 29, pp. 309–320, 2003.

[5] B. Babcock, M. Datar, and R. Motwani, “Load shedding for aggregation
queries over data streams,” in ICDE, 2004, pp. 350–361.

[6] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying fit: Efficient load
shedding techniques for distributed stream processing,” PVLDB, 2007.

[7] N. R. Katsipoulakis, A. Labrinidis, and P. K. Chrysanthis, “Concept-
driven load shedding: Reducing size and error of voluminous and
variable data streams,” in IEEE BigData, 2018, pp. 418–427.

[8] ——, “Spear: Expediting stream processing with accuracy guarantees,”
in ICDE, 2020, pp. 1105–1116.

[9] R. Castro Fernandez, M. Migliavacca et al., “Integrating scale out and
fault tolerance in stream processing using operator state management,”
in SIGMOD, 2013, pp. 725–736.

[10] T. N. Pham, N. R. Katsipoulakis, P. K. Chrysanthis, and A. Labrinidis,
“Uninterruptible migration of continuous queries without operator state
migration,” SIGMOD Record, vol. 46, no. 3, pp. 17–22, 2017.

[11] N. R. Katsipoulakis, C. Thoma, E. Gratta et al., “Ce-storm: Confidential
elastic processing of data streams,” in ACM SIGMOD, 2015, pp. 859–
864.

[12] M. Hoffmann, A. Lattuada, F. McSherry, V. Kalavri, J. Liagouris,
and T. Roscoe, “Megaphone: Latency-conscious state migration for
distributed streaming dataflows,” Proc. VLDB Endow., vol. 12, no. 9,
pp. 1002–1015, 2019.

[13] Y. Zhou, T. Yang, J. Jiang, B. Cui et al., “Cold filter: A meta-framework
for faster and more accurate stream processing,” in SIGMOD, 2018, pp.
741–756.

[14] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
The count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[15] Z. Jerzak and H. Ziekow, “The debs 2015 grand challenge,” in DEBS,
2015.

[16] A. Koliousis et al., “Saber: Window-based hybrid stream processing for
heterogeneous architectures,” in SIGMOD, 2016, pp. 555–569.

126

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 19:50:18 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T13:44:40-0400
	Preflight Ticket Signature

