
ViewSeeker: An Interactive View Recommendation Framework

Xiaozhong Zhanga, Xiaoyu Gea, Panos K. Chrysanthisa, Mohamed A. Sharafb

a Department of Computer Science, University of Pittsburgh, USA
b Department of Computer Science, United Arab Emirates University, UAE

Abstract

View recommendations have emerged as a powerful tool to assist data analysts in ex-
ploring and understanding big data. Existing view recommendation approaches proposed a
variety of utility functions in selecting useful views. However, the suitability of the utility
functions and their tunable parameters for an analysis is usually dependent on the analysis
context, such as the user, the data and the analysis task. In order to provide context-
aware view recommendation, we formulate a new Interactive View Recommendation (IVR)
paradigm, where the system interacts with the user to discover the utility functions that
are most suitable in the current analysis context. We further develop an IVR framework,
coined ViewSeeker, which leverages user feedback on intelligently selected example views
to discover the most suitable utility functions. Finally, we implemented a prototype of
ViewSeeker and verified its efficiency and effectiveness using two real-world datasets.

1. Introduction

The ubiquitously available information sources and the advancements in data storage and
acquisition techniques have led to an aggressive increase in the data volumes available for
data analysis. One major challenge in utilizing these abundantly available data is discovering
insights from them effectively and efficiently. Examples of an “insight” include the structure,
patterns, and causal relationships. To explore these massive and structurally complicated
datasets, data analysts often utilize visual data analysis tools, such as Tableau, Qlik, Lyra,
Amazon Quicksight, Microsoft Power BI, Google Fusion Tables etc. [1]. However, the
effectiveness of these tools depends on the user’s expertise and experience. Coming up with
a visualization that shows interesting trends/patterns is a non-trivial issue. Commonly, the
analyst needs to examine the relationships among various attributes and consider various
aggregate functions before any useful visualizations can be discovered. This approach is
typically ad-hoc, labor-intensive, and not scalable, especially for high-dimensional databases.

To address such shortcomings, several methods for recommending visualizations have
recently been proposed (e.g., [2–8]). These methods automatically generate all possible

∗All authors are corresponding authors.
Email addresses: xiz151@pitt.edu (Xiaozhong Zhang), xig34@pitt.edu (Xiaoyu Ge),

panos@cs.pitt.edu (Panos K. Chrysanthis), msharaf@uaeu.ac.ae (Mohamed A. Sharaf)

March 22, 2021

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2214579621000551
Manuscript_baa2adae098a27e6945b1f4e6cc32cb0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2214579621000551

views of data, and recommend the top-k interesting views, according to some utility function
(e.g., deviations, data variance, usability) that measures the interestingness of the view.
However, the suitability of the utility functions and their tunable parameters for an analysis
is usually dependent on the analysis context, such as the user, the data and the analysis
task. Thus, existing view recommendation methods with a-priori defined utility functions
cannot adapt to the analysis context.

In order to provide context-aware view recommendation, we formulate a new Interactive
View Recommendation (IVR) paradigm, in which the system interacts with the user to
determine the most suitable utility functions. Specifically, an IVR system interacts with the
user in an iterative fashion, and uses the user feedback to gradually refine its estimation of
the suitability of the utility functions, with the goal of determining the most suitable utility
functions in the current analysis context.

There are a number of ways to determine the utility function suitability from user feed-
back, such as using decision rules or machine learning. In this paper, we propose an IVR
framework, called ViewSeeker, which adopts the machine learning model-based approach.
ViewSeeker supports two forms of adaptation: utility function tuning and utility function
integration1. Utility function integration uses active-learning technique [13] to select example
views for labeling and to predict the contribution of each utility function in a multi-objective
"ideal" utility function in the current analysis context. Utility function tuning is an addi-
tional functionality of ViewSeeker, which interacts with the user to determine the most
suitable parameters of a utility function in the current analysis context.

To verify the effectiveness and efficiency of ViewSeeker, we implemented a prototype
system and experimentally evaluated it using a dataset of diabetic patients [14] and a census
dataset from the U.S. labor force survey [15].

To summarize, the contributions of this paper are the following:

1. Formulate the new human-in-the-loop, Interactive View Recommendation (IVR)
paradigm for context-aware view recommendations.

2. Propose ViewSeeker, an IVR framework with deviation-based utility function tuning
and integration functionality, with the goal of efficiently discovering the ideal utility
function that is most suitable in the current analysis context.

3. Implement a prototype system of the proposed ViewSeeker, and verify its effectiveness
using two real-world datasets.

Outline The rest of the paper is structured as follows. Section 2 introduces the IVR
paradigm and the ViewSeeker framework. Section 3 presents the utility function tuning
functionality of ViewSeeker. Section 4 presents the utility function integration functionality
of ViewSeeker. Section 5 describes our experimental evaluation. Section 6 discusses related
works and Section 7 presents our conclusions.

1Utility function tuning is the main contribution of this paper whereas utility function integration com-
bines and extends the functionality presented in our previous work [9–12].

March 22, 2021

2. Problem Formulation

In this section, we first discuss how views can be constructed through SQL queries and ex-
plain how the interestingness of a view may be captured through a predefined utility function.
Then, we formally present the proposed Interactive View Recommendation (IVR) paradigm,
and our IVR framework ViewSeeker that address the Context-Aware View Recommendation
(CoVR) problem, which motived our work.

2.1. Views & Data Visualization Recommendation
In the context of structured databases, a view (i.e., histogram or bar chart) essentially

represents an SQL query with a group-by clause over a database D [2, 6]. Under the
typical multi-dimensional data models, data can be modeled as a set of measure attributes
M = {m1,m2,m3, ...} and a set of dimension attributes A = {a1, a2, a3, ...}. The measure
attributes (e.g., the number of items sold) are the set of attributes that contain measurable
value and can be aggregated. The dimensional attributes (e.g., brand, year, color, size) are
the set of attributes on which measure attributes are viewed. Finally, let F = {f1, f2, f3, ...}
be the set of standard SQL aggregate functions that are applied to generate an aggregate
query/view with a group-by clause. Thus, we can represent each view vi as a triple
(a,m, f), such that one aggregate function f is applied on dimension attribute a over the
corresponding measure attribute m. Consequently, the View Space (VS), i.e., the total
number of possible views is:

V S = |A| × |M | × |F | (1)

Clearly, VS can be large, especially for high-dimensional data. In order to recommend
the set of k most interesting views from a large number of views, utility scores are required to
rank the views. To compute such utility scores, existing literature has proposed several utility
functions (UFs). Some commonly used UFs include deviation [2], accuracy [5], usability [5]
and p-value [16]. The typical view recommendation problem can be defined as follows:

Definition 1. (View Recommendation Problem) Given a database D, a user-specified
query Q, a set of results R produced by Q, a UF u(), and the number of the preferred view
recommendations k. Find the top-k views {v1, v2, ..., vk} constructed from R that have the
highest utilities according to u() among all possible views.

2.2. Context-Aware View Recommendation
The above definition of a typical view recommendation problem assumes that the UF

u() is defined a priori [17–20]. However, clearly such a predefined static UF cannot adapt to
the different contexts encountered during different data analysis session. That is, the most
suitable utility function at a time depends on the specific analysis context, with respect to
the user, the data and the analysis task. For example, consider an initial data analysis
when the user first explores the data. UFs recommending views that show interesting data
characteristics such as skewed data distributions or significant attribute correlations, would
be suitable to help the user get familiar with the data. However, for targeted analysis task,
in which the user tries to find an explanation to a specific problem (e.g., a drop in sales),

March 22, 2021

then UFs recommending views that show peculiarities (e.g., views with uncommon trends,
views with outliers, etc.) would be suitable to help the user discover potential explanations.
Hence, it is clear that a predefined UF u() is highly unlikely to always be the most suitable
UF in all the different data analysis contexts.

Additionally, even for a single specific context, the interestingness of a view is hardly
captured by a single UF, and is often determined by a combination of multiple UFs. For
example, both data characteristics and visual quality affect the view interestingness at the
same time. A view that may display interesting data patterns but is too cluttered to be
easily understood would not be insightful. Neither would a view that is easy to understand
but shows no interesting patterns. As such, in this work, we posit that a predefined single
or composite UF u() cannot always accurately capture the different aspects of the view
interestingness in all analysis contexts.

In light of the above observations, we formalize the Context-Aware View Recommendation
(CoVR) problem.

Definition 2. (Context-Aware View Recommendation) Given a database D, a user-
specified query Q, a set of results R produced by Q, a set of n possible UFs U =
{u1(), u2(), ..., un()}, and the number of the preferred view recommendations k. Find the
ideal UF u∗(), which can be any combination of the functions in U and is most suitable
in the current analysis context, and accordingly recommend the top-k views {v1, v2, ..., vk}
constructed from R based on u∗().

Since the number of possible UFs in U could be large, it is clearly more preferable and
more effective to allow the ideal UF u∗() to be discovered automatically by the system than
hand-crafted by the user.

2.3. Interactive View Recommendation
In order to discover the ideal UF u∗() in the CoVR problem, information about the

analysis context needs to be collected accurately and quickly. In our work, we advocate
for an Interactive View Recommendation paradigm where the system collects the context
information and discovers the ideal UF u∗() through user interaction, namely based on user
answers to interactive questions.

Definition 3. (Interactive View Recommendation) Given a database D, a user-specified
query Q, a set of results R produced by Q, a set of n possible UFs U = {u1(), u2(), ..., un()},
and the number of the preferred view recommendations k. Find the ideal UF u∗(), which
can be any combination of the functions in U , interactively based on user feedback, and
accordingly recommend the top-k views {v1, v2, ..., vk} constructed from R based on u∗().

ViewSeeker [9–12] is our proposed realization of the IVR paradigm. ViewSeeker is a
framework that uses machine learning techniques to discover the ideal UF u∗() and supports
two forms of adaptation: UF Tuning and UF Integration. UF Integration is the main func-
tionality of ViewSeeker, which uses active learning to select example views for user labeling
and learns the ideal UF u∗() based on user feedback on the example views. As an IVR
framework, ViewSeeker currently supports a variety of example view selection strategies,

March 22, 2021

user feedback types, and view interestingness prediction models, which can be chosen based
on user analysis expertise, user data familiarity, etc.

UF Tuning is ViewSeeker’s second form of adaptation, which is useful when the most
suitable parameters of a UF u() vary greatly in different analysis contexts. During UF
Tuning, ViewSeeker interacts with the user to tune the parameters of a UF u() so that
the parameters most accurately capture the data analysis context. In this paper, we
focus on tuning the widely used deviation-based UFs [2, 21]. Deviation-based UFs adopt a
reference parameter representing common scenarios for a view, and the view interestingness
is measured by the distance between the view and the reference. A predefined reference is
not likely to capture common scenarios for all views accurately in all analysis contexts. For
instance, a reference in which gender ratio is at 1:1 is likely to capture the common scenario
for gender ratio among kindergarten kids, but not kindergarten teachers. UF tuning can
be used in such cases to properly set the reference, such that it most accurately captures
the common scenarios for the views.

Clearly, IVR is a much more challenging problem than the traditional view recommen-
dation problem, and ViewSeeker faces a search space much larger than the traditional view
search space VS (Eq. 1). In particular, ViewSeeker’s search space includes in addition to
VS, the search spaces of UF tuning and UF integration. In the following two sections, we
discuss UF Tuning and UF Integration, which form the two phases of ViewSeeker, in detail.

3. ViewSeeker - Utility Function Tuning

As stated above, ViewSeeker addresses the CoVR problem in two phases, each of
which provide a different level of adaptation. UF Tuning is the first and optional phase
of ViewSeeker, in which the system interactively customize the individual UFs so that they
most accurately capture the user’s intention. ViewSeeker currently supports the tuning
of the deviation-based UFs [2, 5, 7, 21], which are widely used UFs in view recommenda-
tion works. ViewSeeker tunes the deviation-based UFs by customizing the reference in the
calculation of the UFs to improve the accuracy of their view interestingness estimation.

3.1. Deviation-based utility function
We first introduce how deviation may be measured based on a view. For clarity, we call

each original view a target view vTi , which is represented as a triple (a,m, f) applied to a
subset of the data DQ that is produced by a given user query Q (as discussed in Section 2.1).
In order to define the deviation, we create a helper view called the reference view vRi for
each target view, which represents common scenarios for the target view. One way to create
the reference view is to visualize the results of grouping the data in the whole database D
with the same set of triple (a,m, f) used by the target view. An example of a target view
with its reference view under this approach is illustrated in Figure 1. The target view on
the right (black) shows the player 3-point attempt rate of a selected NBA team and the
reference view on the left (gray) shows the player 3-point attempt rate of all teams in the
league in a particular year [22]. The comparison of the two views shows that the selected

March 22, 2021

Figure 1: A target view and its corresponding reference view.

team outperformed the league average and could explain why it won the championship [5, 6].
The difference between the two views can be expressed in term of deviation.

Deviation measures the difference between the target view and the reference view with an
underlying assumption that the greater the difference, the higher the utility is. In the case of
histograms or bar charts, measuring the difference between two views vTi and vRi essentially
equals measuring the distance between the two normalized probability distributions P (vTi)
and P (vRi). The conversion from a view to a probability distribution is illustrated in Eq.
2. Specifically, we normalize each view vi by individually dividing the aggregate value of
each bin in vi by the sum of the aggregated values of all bins in vi, such that the sum of
aggregated values of all bins in vi would become 1.

P (vi) = 〈g1
G
,
g2
G
, ...,

gb
G
〉 (2)

where P (vi) is the probability distribution after normalization; gi are individual values in
each bin; G =

∑b
i=1 gi is the sum of the values in all bins; and b is the number of bins in the

dimension attribute a.
After normalizing vTi and vRi , the utility score u(vi) of a view vi computed from deviation

can be defined as:
u(vi) = DT (P (vTi), P (vRi)) (3)

where DT is the distance function that measures the distance between two distributions
(e.g., Euclidean, Earth Movers Distance).

3.2. Reference View Generation
For a target view vTi , there are two commonly used approaches to generate a reference

view vRi that represents common scenarios for vTi , which we refer to as the Global approach
and the Local approach.

The Global approach relies on the global information (i.e., the whole dataset D) to
generate the reference view. As illustrated in the NBA example above (Figure 1), for a target
view vTi , the reference view vRi under this approach is generated by applying the aggregate
query (i.e., the triple (a,m, f)) of vTi on the whole dataset D. The Global approach is a

March 22, 2021

Figure 2: A view of kinder-
garten teacher gender ratios.

Figure 3: A view of unit sales
by country.

widely used data-driven approach. The state-of-the-art view recommendation work SeeDB
[2] adopts the Global approach as its default reference specification.

The Local approach relies on the local information (i.e., the target view vTi) to generate
the reference view. For a target view vTi , the Local approach first sorts the aggregate values
in vTi in descending order to form a value sequence X = {x1, x2, ..., xn}. Then it fits a
descending power-law line (i.e., exponential function) to X, and uses the fitted line as the
reference view for vTi . Figure 3 illustrates an example of the reference view vRi (the dashed
line) generated by the Local approach on the values of the unit sales by country in vTi .
The state-of-the-art view recommendation work QuickInsights [16, 21, 23] adopts the Local
approach as its reference specification for bar charts.

Since the reference views in both approaches are predefined, they cannot always accu-
rately capture the common scenarios for the target view, causing inaccurate reference view
generation, and in turn inaccurate view interestingness estimation. We use the below two
example to illustrate the issue.

For the Global approach, consider the case in Figure 2. The target view vTi shows the
gender ratio of kindergarten teachers DQ, and the reference view vRi shows the gender ratio
of the whole dataset D. The Global approach would recommend this view because there
is a large deviation between vTi and vRi . However, since it is well known that currently
female teachers constitute a dominant proportion of kindergarten teachers, this view could
very likely be uninteresting to the user. On the contrary, the Global approach would not
recommend this view if the gender ratio for kindergarten teachers is close to 1:1, because
the deviation between vTi and vRi would be very small in this case. However, such a view
would very likely interest the user because it contradicts the user’s prior knowledge.

For the Local approach, consider again the case inspired by [23] in Figure 3. The target
view vTi shows the unit sales by country, and the reference view vRi is generated by the fitted
power-law line (the dashed line) on the values in vTi . The Local approach would recommend
this view because there is a large deviation between vTi and vRi . However, if the user is well
aware of the large sales gap between US and the other countries, this view could become
uninteresting to the user. On the contrary, the Local approach would not recommend this
view if the US has a lower unit sales (e.g., 50M), because the deviation between vTi and vRi
would be small in this case. However, such a view would very likely interest the user because

March 22, 2021

the user would expect a larger sales gap based on their prior knowledge.
From the above two examples, we see that the predefined references in the Global and

Local approaches may not always accurately capture the common scenarios for the target
views. Therefore, we propose a novel approach called Expectation Acquisition and Propa-
gation (EAP), which leverages user domain knowledge to generate reference views vRi that
capture more accurately the common scenarios for the target views vTi .

3.3. Expectation Acquisition & Propagation
In order to generate reference views vRi that capture more accurately user prior knowledge

(i.e., expectation) for target views vTi , we propose the two-step Expectation Acquisition &
Propagation (EAP) algorithm.

In the Expectation Acquisition (EA) step, ViewSeeker displays several example target
views to the user, and asks the user to specify their expectation for the target views. The
user can specify their expectation by providing the expected aggregated values for the groups
directly on each target view. Ideally, the user should be presented with each target view,
and asked to specify their expectation. However, such an EA-only approach is obviously not
scalable. Therefore, we propose the second Expectation Propagation (EP) step to reduce
user labeling effort. Specifically, in the EP step, ViewSeeker generates user expectation
estimates (i.e., reference views) vRi for the unlabeled target views vTi based on the speci-
fied expectations in the EA step and recommends the vTi ’s that deviate largely from the
corresponding vRi ’s.

The hypothesis under EAP is that the attribute correlations in user domain knowledge
about DQ (i.e., the data subset) is similar to the attribute correlations in DQ, therefore EAP
can use the attribute correlations in DQ and user expectation specified on a target view to
estimate user expectation for other target views.

In the following subsections, we will use an example data subset to illustrate the EA
step and the EP step, which can be further divided into the EPaD process (Expectation
Propagation across Dimensions) and the EPaM process (Expectation Propagation across
Measures). In describing these steps, we will use the following notation. Recall that each
target view is the result of applying a triple (a,m, f) on the query subset DQ. In order to
distinguish between different target views, we replace the subscript i with the actual triple
for vTi , such that the vTi with the triple (a,m, f) is now noted as vTa,m,f , and the corresponding
reference view is now noted as vRa,m,f . Further, we use the superscript R for any reference
view that is either specified directly by the user or estimated by the EAP algorithm, and
the superscript T for any view that is generated directly from the query subset DQ.

3.3.1. Expectation Acquisition
Consider an example data subset DQ from certain labor force survey as show in Table

1. The data subset has two dimensions a1 (Education/Edu) and a2 (Occupation/Occ), two
measures m1 (Wage Income/WI) and m2 (Total Income/TI), and contains six records.

Assume that EA selects a target view vTa1,m1,AV G (vTEdu,WI,AV G shown in Table 2) for user
expectation labeling. (The example selection strategy will be discussed in Section 3.3.4).
Further, assume that the user indicates that this view is interesting because the user is

March 22, 2021

Table 1: Example Data Subset DQ

Education Occupation Wage Income Total Income
Bachelor Engineer 190 250
Bachelor Engineer 210 270
Master Engineer 300 360
Master Scientist 100 120
PhD Scientist 140 155
PhD Scientist 160 175

Table 2: vTEdu,WI,AV G

Education AVG(Wage Income)
Bachelor 200
Master 200
PhD 150

Table 3: vREdu,WI,AV G

Education AVG(Wage Income)
Bachelor 200
Master 200
PhD 300

surprised that PhD holders have a lower wage income than that of Bachelor and Master
degree holders. The user also indicates their expectation that PhD holders should have a
wage income of at least 300. In other words, the EA step has elicited the user’s expectation
for the target view vRa1,m1,AV G (vREdu,WI,AV G) as shown in Table 3.

3.3.2. EP Across Dimensions (EPaD)
Recall that the goal of EP is to use the user expectation specified in the EA step (e.g.,

vRa1,m1,AV G) to generate user expectation estimate (i.e., reference views) vRi for other target
views vTi , so that target views vTi that deviate largely from the corresponding reference views
vRi would be recommended. EPaD assumes that correlation between dimension attributes in
user domain knowledge is similar to the corresponding correlation in the data subset, such
that EP could use the latter and the specified user expectation on certain target views to
estimate user expectation for other target views.

The overall workflow of EPaD, for example from a1 (Education) to a2 (Occupation) can
be divided in three steps. If we assume that EP needs to generate user expectation estimate
vRa2,m1,AV G (vROcc,WI,AV G) from vRa1,m1,AV G, the reference view generation steps are:

vRa1,m1,AV G

Step 1−−−→ vRa1,m1,SUM

Step 2−−−→ vRa2,m1,SUM

Step 3−−−→ vRa2,m1,AV G. (4)

The intuition of the need of the intermediate transformation to vRa1,m1,SUM is because the
number of records in each group of a1 represents the impact of this group on downstream
views in the path, such that a larger group will have a larger impact. However, this impact
information is not reflected by the average aggregate view. So EP needs to multiply the
average view by the corresponding counts of the groups to form a sum view to capture the
impact of the groups. The details of each estimation step are as follows:

Step 1 (vRa1,m1,SUM generation) The specified user expectation (i.e., reference view) can be
represented as a vector as vRa1,m1,AV G = (g1, g2, ..., gp), where p is the number of groups in the

March 22, 2021

dimension a1. In the example dataset, vRa1,m1,AV G = vREdu,WI,AV G = (200, 200, 300). Then,
EP first generates vRa1,m1,SUM using Eq. 5.

vRa1,m1,SUM = vRa1,m1,AV G � vTa1,m1,COUNT = (g1c1, g2c2, ..., gpcp) (5)

where vTa1,m1,COUNT = (c1, c2, ..., cp) is a helper view which contains the counts for each
group in a1, and � is the element-wise multiplication operator. In the example dataset,
vTa1,m1,COUNT = vTEdu,WI,COUNT = (2, 2, 2), so the corresponding calculation is:

vREdu,WI,SUM = vREdu,WI,AV G � vTEdu,WI,COUNT = (200, 200, 300)� (2, 2, 2) = (400, 400, 600)

The corresponding result is shown in Table 4.

Step 2 (vRa2,m1,SUM generation) In order to generate vRa2,m1,SUM , EP would create a helper
view on DQ with two grouping attributes a1 and a2, which can be represented as a matrix
as shown in Eq. 6.

V T
a1,a2,m1,SUM =

s11 . . . s1q
...
sp1 . . . spq

 (6)

where p and q are the group numbers for dimension a1 and a2 respectively and spq is the
aggregate result for the 2-attribute group pq. The corresponding matrix in the example
dataset is:

V T
Edu,Occ,WI,SUM =

400 0
300 100
0 300


Then, EP would normalize each row in V T

a1,a2,m1,SUM to get V T
a1,a2,m1,SUM,normed as shown in

Eq.7.

V T
a1,a2,m1,SUM,normed =


s11
G1

. . . s1q
G1...

sp1
Gp

. . . spq
Gp

 (7)

where Gi =
∑q

j=1 siq for i = 1...p. The corresponding matrix for the example dataset is:

V T
Edu,Occ,WI,SUM,normed =

400/400 0/400
300/400 100/400
0/300 300/300

 =

 1.0 0.0
0.75 0.25
0.0 1.0


Then, EP can generate vRa2,m1,SUM using Eq. 8.

vRa2,m1,SUM = vRa1,m1,SUM ·V T
a1,a2,m1,SUM,normed = (g1c1, g2c2, ..., gpcp)·


s11
G1

. . . s1q
G1...

sp1
Gp

. . . spq
Gp

 = (t1, t2, ..., tq)

(8)

March 22, 2021

Table 4: vREdu,WI,SUM

Education SUM(Wage Income)
Bachelor 400
Master 400
PhD 600

Table 5: vROcc,WI,SUM

Occupation SUM(Wage Income)
Engineer 700
Scientist 700

Table 6: vROcc,WI,AV G

Occupation AVG(Wage Income)
Engineer 233
Scientist 233

Table 7: vTOcc,WI,AV G

Occupation AVG(Wage Income)
Engineer 233
Scientist 133

The corresponding calculation for the example dataset is:

vROcc,WI,SUM = vREdu,WI,SUM ·V T
Edu,Occ,WI,SUM,normed = (400, 400, 600)·

 1.0 0.0
0.75 0.25
0.0 1.0

 = (700, 700)

In other words, EP splits the income sum in each group in a1 (Education) and sums up the
splits by the groups in a2 (Occupation). The corresponding result is shown in Table 5.

Step 3 (vRa2,m1,AV G generation) Finally, EP generates vRa2,m1,AV G using Eq. 9.

vRa2,m1,AV G = vRa2,m1,SUM � vTa2,m1,COUNT = (t1, t2, ..., tq)� (c1, c2, ..., cq) = (
t1
c1
,
t2
c2
, ...,

tq
cq

) (9)

where vTa2,m1,COUNT = (c1, c2, ..., cq) is another helper view, which contains tuple counts for
the groups in a2, and � is the element-wise division operator. For the example dataset,
vTa2,m1,COUNT = vTOcc,WI,COUNT = (3, 3) and the corresponding calculation is:

vROcc,WI,AV G = vROcc,WI,SUM � vTOcc,WI,COUNT = (700, 700)� (3, 3) = (233, 233)

The result is shown in Table 6. The corresponding target view vTOcc,WI,AV G generated directly
from the dataset is shown in Table 7. It can be seen that there is a large deviation between
the estimated user expectation for scientist wage income (i.e., 233) and the actual value
(i.e., 133), which means that the target vTOcc,WI,AV G could be interesting to the user, the user
could expect the scientist to have a higher wage income.

EP for views with aggregate function SUM and COUNT works similar as above with
aggregate function AVG. EP between views with the aggregate function SUM can be per-
formed using Eq. 8, with the difference that vRa1,m1,SUM is directly specified by the user in
this case. EP between views with the aggregate function COUNT can be performed by
changing the aggregate functions in the partial process from vRa1,m1,SUM to vRa2,m1,SUM above
(i.e., Eq. 6 - 8) to COUNT, such that the EP proceeds as shown in Eq. 10.

vRa2,m1,COUNT = vRa1,m1,COUNT · V T
a1,a2,m1,COUNT,normed (10)

where vRa1,m1,COUNT is specified directly by the user.

March 22, 2021

To summarize, EPaD (EP across dimensions) leverages the correlation between dimen-
sion attributes to propagate specified expectation on certain target view to other target
views, such that the target views that deviate largely from the corresponding expectation
estimates (i.e., reference views) would be recommended.

3.3.3. EP Across Measures (EPaM)
In this section, we will introduce the EP across measures (EPaM) process. EPaM assumes

that correlation between measure attributes in user domain knowledge is similar to the
corresponding correlation in the data subset, such that EP could use the latter and the
specified user expectation on certain target views to estimate user expectation for other
target views.

Consider, same as in EPaD, EA has elicited user expectation vRa1,m1,AV G (vREdu,WI,AV G),
and EP needs to use it to generate user expectation estimate vRa1,m2,AV G (vREdu,TI,AV G). This
is EP across dimensions from m1 (Wage Income) to m2 (Total Income).

The overall EP process is described in Eq. 11.

vRa1,m2,AV G = vTa1,m2,AV G ⊕ (vRa1,m1,AV G 	 vTa1,m1,AV G)� σT
a1,m1

� rTa1,m1,m2
� σT

a1,m2
(11)

where vTa1,m1,AV G and vTa1,m2,AV G are the target views, ⊕ and 	 represent element-wise ad-
dition and subtraction respectively, σT

a1,m1
contains the standard deviations of m1 for each

group in a1, σT
a1,m2

contains the standard deviations of m2 for each group in a1, and rTa1,m1,m2

contains the Pearson correlation coefficients between m1 and m2 for each group in a1.
It can be seen from Eq. 11 that the EP process proceeds in the same way for each group

in a1, so for simplicity, we will introduce the EP process for an example group g1 (PhD) in
a1 (Education). Therefore, Eq. 11 becomes:

vRg1,m2,AV G = vTg1,m2,AV G + (vRg1,m1,AV G − vTg1,m1,AV G)/σT
g1,m1

∗ rTg1,m1,m2
∗ σT

g1,m2
(12)

where subscript g1 represents the group.
The corresponding calculation for the example dataset is:

vRPhD,TI,AV G = vTPhD,TI,AV G + (vRPhD,WI,AV G − vTPhD,WI,AV G)/σT
PhD,WI ∗ rTPhD,WI,TI ∗ σT

PhD,TI

We discuss the calculation step by step in the follow. First, EP starts with:

∆R
PhD,TI,AV G = (vRPhD,WI,AV G − vTPhD,WI,AV G)/σT

PhD,WI = (300− 150)/10 = 15

where vRPhD,WI,AV G and vTPhD,WI,AV G are the third rows in Table 3 and 2 respectively. σT
PhD,WI

is the standard deviation for wage income of PhD in Table 1.
Then EP proceeds with:

∆R
PhD,TI,AV G = ∆R

PhD,WI,AV G ∗ rTPhD,WI,TI = 15 ∗ 1.0 = 15

where rTPhD,WI,TI is the Pearson correlation coefficient between WI and TI for PhD in Table
1.

March 22, 2021

Table 8: vREdu,TI,AV G

Education AVG(Total Income)
Bachelor 260
Master 240
PhD 315

Table 9: vTEdu,TI,AV G

Education AVG(Total Income)
Bachelor 260
Master 240
PhD 165

Finally, EP finishes with:

vRPhD,TI,AV G = vTPhD,TI,AV G + ∆R
PhD,TI,AV G ∗ σT

PhD,TI = 165 + 15 ∗ 10 = 315

where vTPhD,TI,AV G and σT
PhD,TI are the mean and standard deviation for total income of

PhD in Table 1.
In other words, the EP process first calculates the difference between vRPhD,WI,AV G and

vTPhD,WI,AV G, then propagates the difference to another measure TI based on correlation
between WI and TI (i.e., rTPhD,WI,TI), finally adds the estimated difference to vTPhD,TI,AV G to
form expectation estimate vRPhD,TI,AV G for TI. The standard deviations σT

PhD,WI and σT
PhD,TI

are in place to remove the influence of the scale differences between the two measures.
After estimating user expectation for other education groups, EP would generate the

reference view vREdu,TI,AV G as shown in Table 8, and the corresponding target view vTEdu,TI,AV G

is shown in Table 9. We see that the average total income for PhD in vTEdu,TI,AV G (i.e., 165)
is much lower than that in the user expectation estimate vREdu,TI,AV G (i.e., 315), indicating
that this view might be interesting to the user because the user could expect a higher total
income for PhD.

EP between views with the aggregate function SUM can be done in a similar fashion as
shown in Eq. 13.

vRa1,m2,SUM = vTa1,m2,SUM ⊕ (vRa1,m1,SUM 	 vTa1,m1,SUM)� σT
a1,m1

� rTa1,m1,m2
� σT

a1,m2
(13)

where vRa1,m1,SUM is specified by the user.
EP between views with the aggregate function COUNT directly copies the user expec-

tation, as shown in Eq. 14.

vRa1,m2,COUNT = vRa1,m1,COUNT (14)

where vRa1,m1,COUNT is specified by the user.
To summarize, EPaM (EP across measures) leverages the correlation between measure

attributes to propagate specified expectation on certain target view to other target views,
such that the target views that deviate largely from the corresponding expectation estimates
(i.e., reference views) would be recommended.

3.3.4. Example Selection Strategy
As discussed, Expectation Propagation (EP) can be done across both dimensions and

measures, which means that ideally, EP can estimate user expectations for all the target
views by asking the user to label one target view for each aggregate function. Therefore, the

March 22, 2021

Algorithm 1 ViewSeeker - Deviation-based Utility Function Tuning
Require: A data subset DQ specified by a query
Ensure: Customized deviation-based utility functions C = {u1(), u2(), ..., un()}
1: Target view set T ← generateV iews(DQ)
2: Reference view set R← {}
3: for all f ∈ {COUNT, SUM,AV G} do
4: Choose one example vTa,m,f from T for expectation labeling to get vRa,m,f

5: R← R ∪ {vRa,m,f}
6: for all a′ ∈ A do
7: if a′ 6= a then
8: Expectation propagation from vRa,m,f to vRa′,m,f

9: R← R ∪ {vRa′,m,f}
10: end if
11: for all m′ ∈M do
12: if m′ 6= m then
13: Expectation propagation from vRa′,m,f to vRa′,m′,f

14: R← R ∪ {vRa′,m′,f}
15: end if
16: end for
17: end for
18: end for
19: C ← generateCustomizedFunctions(T,R)
20: Return C

strategy to select the example view for labeling in the Expectation Acquisition (EA) step is
critical to the effectiveness of the EAP algorithm. In our work, we have adopted a simple yet
effective example selection strategy. Specifically, for each aggregate function, EA chooses
the view with the dimension attribute that has the largest group count among all dimension
attributes as the example view under the assumption that a target view with more groups
provides more useful information about user expectation. The example selection strategy is
captured in Eq. 15.

aselected = argmax
a

(|a|) (15)

where |·| represents the group count operator. If multiple views have the dimension attribute
with the largest group count, EP selects the first view based on view attribute order in the
table.

3.4. Runtime Complexity of Deviation-based UF Tuning
Algorithm 1 shows ViewSeeker’s four steps to tune deviation-based utility functions:

i) Generation of all target views based on DQ (Line 1); ii) Selection of an example target
view for each aggregate function and elicitation of user expectations on the view (Line 3-
5); iii) Generation of user expectation estimate for other target views (Line 6-18); and iv)
Formulation of the customized deviation-based UFs C = {u1(), u2(), ..., un()} (Line 19-20).
The customized deviation-based UFs C are passed to ViewSeeker’s second phase to use them
to calculate the deviation scores for each target view vTi based on the difference between vTi
and the corresponding reference view vRi .

March 22, 2021

Table 10: UF Tuning Time Complexity

Part # Part Name # Operations
1 View generation AMFNQ

2 Helper view/matrix generation AAMFNQ

3 EP across dimension attributes AFGG
4 EP across measure attributes AMFG

To analyze the runtime complexity of deviation-based UF Tuning phase of ViewSeeker,
we have divided the EAP process into four parts and evaluated the time complexity in
terms of number of operations for each part. Our analysis was based on Algorithm 1 and
the EAP equations, and the cost for each part is summarized in Table 10. The meanings of
the symbols in the table are: A is the number of dimension attributes, M is the number of
measure attributes, F is the number of aggregate functions, NQ is the number of records in
the query subset DQ, G is the average number of groups in each dimension attribute.

For the view generation part, ViewSeeker needs to scan the query subset to generate
a view for each (a,m, f) triple, which results in a complexity of AMFNQ. For helper
view/matrix generation, the dominating part is the generation of the helper matrices. Since
each matrix has two dimension attributes, the total number of matrices would be AAMF ,
thus the complexity is AAMFNQ. EP across dimensions needs to propagate user expec-
tation to AF views, and EP to each view has a complexity of GG, resulting in a total
complexity of AFGG. EP across measures needs to propagate user expectation to AMF
views, and EP to each view has a complexity of G, resulting in a total complexity of AMFG.

We compare the theoretical complexities of the above parts to the experimentally mea-
sured runtime costs in Section 5.

3.5. Tuning of Other Utility Functions
Although the idea of tuning the UF based on analysis context is the same for all the UFs,

the specific ways to tune the UFs are different. EAP is suitable for the tuning of the UFs
whose calculation involves a reference representing common scenarios for the target view,
for example, the deviation-based UFs [2, 21].

Other UFs evaluating other aspects of the view interestingness may require other methods
for tuning. For example, UFs measuring visual quality of the view [8, 17] may incorporate
context information such as user visual literacy to improve accuracy. Tuning of other UFs
is part of our future work.

4. ViewSeeker - Utility Function Integration & View Recommendation

UF Integration is the second phase of ViewSeeker, in which the system leverages user
interaction to integrate the various UFs, including the customized ones in the previous phase,
to discover the ideal utility function u∗() that is most suitable in the current analysis context.

Algorithm 2 shows the overall workflow of ViewSeeker. The UF Tuning phase (Line 1)
is optional and occurs first if the user is interested in generating customized UFs, specifically

March 22, 2021

Algorithm 2 ViewSeeker
Require: The data subset DQ specified by a query
Ensure: The view interestingness estimator IE
1: Customized utility functions C ← tuneUtilityFunctions(DQ)
2: Unlabeled example set U ← generateExamples(DQ, C)
3: Labeled example set L← obtain initial set of example labels
4: IE ← initialize view interestingness estimator IE using L
5: FE ← initialize example informativeness estimator FE using L
6: loop
7: Choose one x from U using FE
8: Solicit user’s label on x
9: L← L ∪ {x}
10: U ← U − {x}
11: IE ← refine IE using L
12: FE ← refine FE using L
13: T ← recommend top views using IE
14: if the user is satisfied with T or the user wants to stop then
15: Break
16: end if
17: end loop
18: Return the most recent IE

the currently supported customized deviation-based UFs. The UF Integration phase follows
the UF Tuning phase and has three main stages.
Stage 1: View Generation, in which ViewSeeker generates the unlabeled example set (Line
2). The customized UFs are used in this stage to generate the internal learning representation
of the examples.
Stage 2: Initial Example Acquisition, in which ViewSeeker acquires user labels on some ex-
amples to initialize the view interestingness estimator (IE) and the example informativeness
estimator (FE) (Line 3-5). The concept of the informativeness of an example is adopted
from active learning [13] to refer to the benefit of the label on an example to the improvement
of IE, such that the most informative example could be selected for user labeling.
Stage 3: Interactive View Recommendation, in which ViewSeeker interacts with the user
to refine the estimators and provides view recommendation based on IE predictions (Line
6-18). We elaborate on the three stages of the UF Integration phase next.

4.1. View Generation
In this first stage, ViewSeeker generates the unlabeled example set U , unless the target

view set T from the UF Tuning phase is available, in which case ViewSeeker reuses it as U .
ViewSeeker also generates an internal representation for each view as the learning rep-

resentation for the following stages. The features in the internal representation for a view
are the UF scores. For the UFs that ViewSeeker’s UF Tuning currently does not support,
ViewSeeker uses their default calculation methods to generate the scores without tuning. If
customized deviation-based UFs were generated by the UF Tuning phase, ViewSeeker uses
the customized UFs to calculate the UF scores.

March 22, 2021

Table 11: Technology Summary for UF Integration Phase

Example form Feedback type IE model FE strategy IE ranking score
Single view Binary Binary classifier Least confident PIE(y = positive|v)
Single view Likert-scale Multi-class classifier Least confident

∑C
i=1 (wi × PIE(y = ci|v))

Single view Real number Regression model QBC sIE(v)
View pair Pairwise comparison Learning-to-rank QBC sIE(v)

4.2. Initial Example Acquisition
In the second stage, ViewSeeker would acquire an initial set of user feedback on several

randomly selected examples to initialize the view interestingness estimator IE and the ex-
ample informativeness estimator FE. ViewSeeker currently supports two example forms
and four types of user feedback. Both example form and feedback type can be selected based
on user analysis expertise and user data familiarity.

The first example form displays a single view at a time for labeling, while the second
example form displays a pair of views at a time for labeling.

For the example form of a single view, ViewSeeker offers three feedback types: binary,
Likert-scale, and real number. The binary feedback asks the user to indicate if the example
view is interesting or not. The Likert-scale feedback asks the user to label the example view
on a scale of 1 to 5, with 5 being most interesting and 1 being least interesting. The real
number feedback requires the user to label the example view with a real number between
0.0 and 1.0, with 1.0 being most interesting and 0.0 being least interesting.

For the example form of a pair of views, the supported feedback type is pairwise com-
parison. Given a pair of example views, the pairwise comparison feedback asks the user to
indicate if the first view is more interesting or less interesting than the second view.

After the user labeling to some examples, ViewSeeker use the labels to initialize IE and
FE.

4.3. Interactive View Recommendation
In the third stage, ViewSeeker interacts with the user in an iterative fashion to refine

the IE and uses it to provide view recommendation. It can be seen from Algorithm 2 that
there are four steps in each iteration: 1) Example Selection: ViewSeeker selects examples
from U based on the informativeness estimate from FE (Line 7). 2) User Label Acquisi-
tion: ViewSeeker acquires user labels on the examples (Line 8). 3) Estimator Refinement:
ViewSeeker uses the labeled example set L to refine IE and FE (Line 9-12). 4) View
Recommendation: ViewSeeker uses the latest IE to make view recommendations (Line
13-16). If the user is satisfied with the view recommendation in Step 4, then the loop stops;
otherwise, the loop starts from Step 1 again.

Each feedback type requires a different set of methods and technologies for IE model,
FE strategy, and IE ranking algorithm. These are summarized in Table 11 and discussed
below.

March 22, 2021

4.3.1. Example Selection
ViewSeeker uses FE for example selection in Step 1. The example informativeness

prediction of FE is based on the view interestingness prediction of IE. The view inter-
estingness estimator IE is in the form of a machine learning model, and ViewSeeker uses
different model types for different feedback types.

For binary feedback, the IE is in the form of a binary classifier, such as the logistic
regression model. For Likert-scale feedback, the IE is in the form of a multi-class classifier,
such as the decision tree model. For real number feedback, the IE is in the form of a
regression model, such as the linear regression model. For pairwise comparison feedback,
the IE is in the form of a learning-to-rank model [24].

The example informativeness estimator FE is essentially a strategy to utilize the pre-
diction from IE (or a committee of IEs) to estimate the informativeness of the unlabeled
examples, such that the most informative example could be selected for user labeling. This
strategy is named query strategy in active learning literature [13]. ViewSeeker again uses
different query strategies for different feedback types.

For binary and Likert-scale feedback, ViewSeeker supports any query strategies that are
suitable for classification problem, such as the uncertainty sampling strategy [13]. For real
number feedback, ViewSeeker supports any query strategies that are suitable for regression
problem, such as the query-by-committee strategy [13]. For pairwise comparison feedback,
ViewSeeker supports any query strategies that are suitable for the learning-to-rank problem.
The following are the default example query strategy for each feedback type.

An example query strategy for binary or Likert-scale feedback is the least confident
strategy under the category of uncertainty sampling strategies. The least confident strategy
selects the view whose class label the IE is least confident about, according to Eq. 16.

v∗LC = argmax
v

1− PIE(ŷ|v) (16)

where v∗LC is the example to select, and ŷ = argmaxyPIE(y|v) is the class label with the
highest posterior probability under the model IE. In other words, the most informative
example for a binary classifier is the example whose positive class posterior probability is
closest to 0.5. And the most informative example for a multi-class classifier is the example
whose highest posterior probability in any class is the lowest.

An example query strategy for the real number feedback is the query-by-committee strat-
egy (QBC). QBC builds a committee of IEs, and estimates the informativeness of the
example based on the disagreement among the committee members. The members of the
committee are built with slightly different hyper-parameters or trained with slightly different
training sets, such that they would provide different predictions for the same example.

Recall that for real number feedback, the IE is in the form of a regression model. There-
fore the committee for real number feedback is a committee of regression models. Each
regression model in the committee ci can be trained with the labeled set L and predict
a score sci(v) for a view v. One way to measure the disagreement among the committee
members is to measure the variance of their predictions, as shown in Eq. 17.

v∗QBC = argmax
v

V ar(〈sc1(v), sc2(v), ..., scC (v)〉) (17)

March 22, 2021

where V ar(·) is the variance operator, and C is the number of committee members.
QBC can also be used for the pairwise comparison feedback as proposed by our previ-

ous work [12]. Each learning-to-rank model in the committee for the pairwise comparison
feedback ci can be trained with the ordered view pairs in the labeled set L and predict a
ranking score sci(v) for a view v. One way to measure the disagreement among the commit-
tee members for an example (i.e., a pair of view (v1, v2)) is to measure the variance of their
predictions for the ranking score gap between the two views (i.e., sci(v1)− sci(v2)) as shown
in Eq. 18.

(v1, v2)
∗
QBC = argmax

(v1,v2)

V ar(〈sc1(v1)− sc1(v2), sc2(v1)− sc2(v2), ..., scC (v1)− scC (v2)〉) (18)

4.3.2. Estimator Refinement
After the example selection and the following user label acquisition for the examples,

ViewSeeker would use the latest labeled example set L to refine the IE and FE. Specifically,
ViewSeeker would use the vector representation of the labeled views as the input features
and the user labels as the input labels to train a new IE and a new FE. Note that, for the
QBC query strategy, ViewSeeker would usually keep a separate IE as the formal IE for
view recommendation outside the FE, which is in the form of a committee of IEs.

4.3.3. View Recommendation
The last step in each user interaction loop is view recommendation. The interestingness

estimator IE uses different methods to generate view interestingness estimate for different
feedback types.

For binary feedback, IE uses the positive class probability PIE(y = positive|v) as the
interestingness estimate for a view v because it reflects the classifier’s belief of v’s interest-
ingness.

For Likert-scale feedback, IE uses the weighted sum of the weight and probability of
each class as the interestingness estimate for a view v as shown in Eq. 19:

I =
C∑
i=1

(wi × PIE(y = ci|v)) (19)

where I is the interestingness estimate, C is the class number, wi and PIE(y = ci|v) are the
weight and probability of each class.

We use linear spacing to define the class weights, such that for a 5-class classifier, the
5 classes have weights of 0, 0.25, 0.5, 0.75, and 1.0 for class 1 to 5, respectively. It can be
seen that I would be a real number between 0.0 and 1.0. Similar to binary feedback, our
definition of the interestingness estimate changes in the same direction as the model’s belief
of v’s interestingness. For example, if the probability of class 3 decreases and the probability
of class 4 increases, it means that the model’s belief of v’s interestingness increases, and so
does the interestingness estimate.

For real number and pairwise comparison feedback, the IE’s predicted score sIE(v) can
be directly used as the interestingness estimate for the view v.

March 22, 2021

If the user is satisfied with the view recommendation, then the user interaction stops;
otherwise, the ViewSeeker would start a new loop by selecting new examples for user label-
ing.

5. Experimental Evaluation

In this section, we present two sets of experiments. The first set of experiments is to
evaluate the UF Integration phase without the involvement of the UF Tuning phase. The
second set of experiments is to evaluate the combined effectiveness of the UF Tuning and
the UF Integration phases. We built a ViewSeeker platform in Python and the experiments
were performed on a Core i5 server with 8GB of RAM. All our experiment settings are listed
in Table 12.

5.1. Evaluation of Utility Function Integration
5.1.1. Experimental Settings

Datasets We used two datasets: the DIAB dataset and the CENSUS dataset. The
DIAB dataset is a real-world dataset of diabetic patients [14]. We removed the attributes
that have a large amount of missing data. After preprocessing, the data set has 100 thousand
records, 7 dimension attributes, and 8 measure attributes. The CENSUS dataset contains
microdata from the U.S. labor force survey [15]. We removed the “not in universe” records
and records with zero income. After preprocessing, the dataset has 100 thousand records, 5
dimension attributes, and 5 measure attributes. All measure attributes in the two datasets
are normalized to a real number range between 1 and 100.

Query Simulation We use the following steps to generate each query subset DQ. 1)
Randomly select a dimension attribute a, 2) Randomly select a group g in a, 3) Select all
records in g as DQ. For example, if a is gender and g is female, then DQ would be all
female records. We used the above method to generate 10 random query subsets DQ, and
the reported results are the average from running 10 different experiments using those 10
query subsets.

Individual Utility Functions In our experiment, we have used eight individual utility
functions. The first five utility functions are deviation-based UFs: Kullback-Leibler diver-
gence (KL), Earth Mover Distance (EMD), L1 distance (L1), L2 distance (L2), and the
maximum deviation in any individual bin (MAX_DIFF). The remaining three utility func-
tions represent the usability [5], accuracy [5], and p-value [16]. Usability refers to the quality
of the visualization in terms of providing the analyst with an understandable, uncluttered
representation, which is quantified via the relative bin width metric. Accuracy refers to
the ability of the view to accurately capture the characteristics (i.e., distribution) of the
analyzed data, which is measured in terms of Sum Squared Error (SSE). The p-value is a
statistical term defined as “the probability of obtaining a result equal to or more extreme
than what is observed, with the given null hypothesis being true” [25]. In the problem of
view recommendation, the null hypothesis refers to the reference view, and the extremeness
of the results refers to the interestingness of the target views.

March 22, 2021

Table 12: Testbed Parameters

Experiment Set UF Integration UF Tuning and Integration
Total number of records (|D|) 100K (DIAB), 100K (CENSUS)
Average query set size (|DQ|) 43K (DIAB), 47K (CENSUS) 36K (DIAB), 39K (CENSUS)
Average reference set size (|DR|) N/A 36K (DIAB), 39K (CENSUS)
Difference ratio between DQ and DR N/A 10%, 20%, 30%
Number of dimension attributes (A) 7 (DIAB), 5 (CENSUS)
Number of measure attributes (M) 8 (DIAB), 5 (CENSUS)
Number of aggregate functions 5 3 (COUNT, SUM, AVG)
Total view count 280 (DIAB), 125 (CENSUS) 168 (DIAB), 75 (CENSUS)
Number of individual utility functions 8
Feedback type for UF integration Real number
View interestingness estimator Linear regressor
Example informativeness estimator Query-by-committee
Number of views presented per iteration 1
Evaluation metrics Top-k accuracy EEE, Runtime, Top-k accuracy
The number of views to recommend (k) 5,10,15,20
Runs for each configuration 10 (with different DQ) 10 (with different DQ and DR)

It should be noted that, in general, users may customize the UFs, including adding new
ones, for a personalized analysis. The current set of UFs mentioned above are selected to
illustrate the effectiveness of ViewSeeker.

Since this set of experiments does not involve UF tuning, the default calculation methods
of the individual UFs were used to generate the learning representation of the views. The
reference views in the deviation-based UFs are calculated using the Global approach as
discussed in Section 3. All UF scores were normalized to a range between 0.0 and 1.0 across
all views to avoid learning and prediction bias due to the range difference in the original UF
scores.

User Simulation We simulated different data analysis contexts, where each context is
associated with an ideal utility function (IUF). Each IUF represents how the user perceives
the interestingness of views under each simulated context. That is, IUF acts as the ground
truth u() for that context. Similar to all our utility functions, the output of each IUF
is a real number between 0.0 and 1.0, with 0.0 being not interesting and 1.0 being very
interesting. We designed 11 diverse IUFs that included 3 single-component UFs and 8
multi-component (i.e., multi-objective) composite UFs (Table 13). We chose the components
in multi-component IUFs carefully such that they represent different characteristics of the
candidate views. For example, EMD measures the absolute differences across the bins; KL-
divergence measures the relative entropy between the two distributions; Usability represents
the visual quality of a view, etc.

Evaluation Metrics We evaluated the performance of ViewSeeker in the aspect of
recommendation accuracy. Specifically, we measured the number of labeled examples needed
for the IE to reach an 100% recommendation accuracy. Here we define the accuracy as the
size of the intersection between the top-k views recommended by ViewSeeker and the top-
k views recommended by the IUF. For two sets of top-k views V p and V ∗ produced by

March 22, 2021

Table 13: Simulated Ideal Utility Functions

Ideal Utility Functions
1 1.0 * KL
2 1.0 * EMD
3 1.0 * MAX_DIFF
4 0.5 * EMD + 0.5 * KL
5 0.5 * EMD + 0.5 * L2
6 0.5 * EMD + 0.5 * p-value
7 0.3 * EMD + 0.3 * KL + 0.4 * MAX_DIFF
8 0.3 * EMD + 0.3 * L2 + 0.4 * MAX_DIFF
9 0.3 * EMD + 0.3 * p-value + 0.4 * MAX_DIFF
10 0.3 * EMD + 0.3 * KL + 0.4 * Usability
11 0.3 * EMD + 0.3 * KL + 0.4 * Accuracy

ViewSeeker and the IUF, respectively, the accuracy is calculated as:
|V p ∩ V ∗|

k
.

5.1.2. Experimental Results
Figures 4 and 5 show the number of example views that need to be labeled in order for

the view interestingness estimator IE to reach an 100% accuracy in the top-k recommended
views. Here, the x-axis is the k in top-k (i.e., the number of views on which the accuracy
calculation is based), and the y-axis is the number of example views presented, capturing
the user effort required for the accuracy to reach 100%.

Specifically, Figures 4a and 5a are for one-component IUFs (i.e., average result over IUF
1-3 in Table 13). Figures 4b and 5b are for two-component composite IUFs (i.e., average
result over IUF 4-6). Finally, Figures 4c and 5c are for three-component composite IUFs
(i.e., average result over IUF 7-11).

From these results, we can observe that ViewSeeker is extremely effective in discovering
the set of ideal top-k views: for k ranging from 5-20, on average only 6-11 labels were
required before ViewSeeker reached an accuracy of 100% for both DIAB and CENSUS
datasets. Clearly, this indicates that only a small amount of user effort is needed before a
satisfactory set of results can be obtained by ViewSeeker’s UF integration functionality.

To the best of our knowledge, currently there are no existing solutions that provide the
same functionality as ViewSeeker to act as a baseline for performance evaluation. How-
ever, to further study the performance of ViewSeeker, we compare it to a set of alterna-
tive baselines that are based on predefined UFs, as shown in Figure 6. Particularly, while
ViewSeeker tries to accurately estimate the ideal utility function for a certain context, each
of those baselines assumes that ideal utility function to be one of the eight predefined indi-
vidual utility functions discussed in the previous section (e.g., KL, EMD, L1, etc). Figure
6 shows the average accuracy achieved by those baselines vs. ViewSeeker across all of our
11 IUFs when evaluated on both the DIAB and CENSUS datasets. As the figure shows,
ViewSeeker outperforms all baselines with an average accuracy improvement of 86.9% over
the baseline average, and 24.6% over the best performing baselines (i.e., EMD and L1).
This demonstrates the ViewSeeker’s capability to achieve a high recommendation accuracy
improvement against predefined UFs with a very small amount of additional user effort.

March 22, 2021

(a) Single-Component u∗() (b) Two-Component u∗() (c) Three-Component u∗()

Figure 4: Recommendation accuracy for DIAB dataset with different ideal utility functions u∗().

(a) Single-Component u∗() (b) Two-Component u∗() (c) Three-Component u∗()

Figure 5: Recommendation accuracy for the CENSUS dataset with different ideal utility functions
u∗().

Figure 6: Maximum achievable accuracy by baselines and ViewSeeker

5.2. Evaluation of Utility Function Tuning and Integration
5.2.1. Experimental Settings

Datasets We used the same datasets as the previous experiment set.
User Simulation for UF Tuning Assume that the whole dataset is called D, and

the data subset specified by the query (i.e., query set) is called DQ. To simulate the user
expectation, we generated a new data subset called the reference setDR, which represents the
user’s prior knowledge ofDQ, such that views generated fromDR represent user’s expectation
for the corresponding views generated from DQ. We generate DQ and DR in the following
way: 1) Randomly select a dimension attribute a. 2) Randomly select a group g in a. 3)

March 22, 2021

Select all records in g as a sample S. 4) Randomly select two subsets of records DQ and DR

from S, such that |DQ| = |DR| and DQ ∪DR = S.
The difference ratio between DQ and DR is used to describe the degree of difference

between the two subsets and is defined as |DQ−DR|
|DQ|

.
The two partially overlapping subsets DQ and DR from a group in a dimension represent

two subsets that have similar data characteristics but are not identical. This is usually
the situation for user prior knowledge about certain group of records, such that the user’s
expectation of the group aggregate characteristics may agree with most but not all of the
group aggregate characteristics expressed by the records retrieved by the query.

After generating DQ and DR, for each view vi (i.e., a (a,m, f) triple), two views can be
generated: a target view (vTi) which is generated by applying (a,m, f) on DQ, and an ideal
reference view (vIRi) which is generated by applying (a,m, f) on DR simulating the user’s
expectation for vTi .

We used the above method to generate a random query subsets DQ and a random
reference set DQ in each experiment, and the reported results are the average from running
10 different experiments using 10 different query subsets and reference subsets.

User Simulation for UF Integration We used the same individual UFs and IUFs as
in the previous experiment set to simulate the user. The ground truth scores for deviation-
based UFs are calculated based on the target views (vTi) and the corresponding ideal reference
views (vIRi).

Reference View Generation Models The three models for reference view generation
are the Global, Local, and ViewSeeker, which were discussed in Section 3. The Global
and Local are baselines in the experiments. For a target view vTi , each model uses its own
approach to generate the reference view vRi and uses the vRi to calculate its own scores for
the deviation-based UFs.

Evaluation Metrics We evaluated ViewSeeker’s performance in multiple aspects. For
UF tuning, we measured the system effectiveness using expectation estimate error (EEE),
and the system efficiency using system runtime. For the combined process of UF tuning and
integration, we used the view recommendation accuracy for effectiveness evaluation.

We first give the definition of EEE as follow. As mentioned above, for a target view vTi ,
each model generates its own reference view vRi , and EEE measures the distance between
vRi and the corresponding ideal reference view vIRi using Equation 20.

EEEi = DT (P (vRi), P (vIRi)) (20)

where DT is the distance function and P (·) is the view normalization operator as introduced
in Section 2. The L1-norm distance function was used as DT in the experiments. The final
EEE score is the average over the EEE scores of all views.

We measured the runtime for the four parts of the UF Tuning phase as mentioned in
Section 3.4. We fixed the size of the whole dataset D, the query set DQ, and the reference
set DR, and focused on the influence of the data dimensionality on the system runtime.

For view recommendation accuracy, our evaluation metric is the Top-k accuracy as used
in the previous experiment set. We measured the accuracy after 10 labeled examples when

March 22, 2021

(a) DIBA dataset (b) CENSUS dataset

Figure 7: Expectation Estimate Error comparison for different reference generation models.

the model learning stabilized for most of the configurations.

5.2.2. Experimental Results
Expectation Estimate Error Figure 7 shows the EEE comparison results. For the

DIAB dataset, the three models have achieved an average EEE of 6.8% (Global), 12.1%
(Local), and 0.3% (ViewSeeker) across all difference ratios. For the CENSUS dataset, the
three models have achieved an average EEE of 11.7% (Global), 7.9% (Local), and 0.7%
(ViewSeeker).

It can be seen that ViewSeeker consistently estimates the ideal reference views vIRi
significantly more accurately than the two baselines. Specifically, ViewSeeker achieved a
relative EEE reduction of 96.0% against Global and 97.8% against Local for the DIAB
dataset. Further ViewSeeker achieved a relative EEE reduction of 94.2% against Global
and 91.4% against Local for the CENSUS datasets.

Scalability The runtime result for different parts of the UF Tuning phase is shown
in Table 14. We have tested different data dimensionality by using different number of
dimension attributes A and number of measure attributes M (as defined in Section 3.4.
We used the CENSUS dataset and simulated different data dimensionality by duplicating
dimension and measure attributes of the dataset. The result was averaged over all possible
views that can be labeled.

The first and second parts are view generation and helper view/matrix generation, which
could be offline calculation. The third and four parts combined is the interactive EP process,
which requires interactive system response time.

The runtime result verified our complexity analysis in Table 10 in Section 3.4, such that
part 1 (view generation) and part 3&4 (interactive EP) has a runtime proportional to AM ,
and part 2 (helper view/matrix generation) has a runtime proportional to AAM . Besides,
we can see that the runtime of part 3&4 (interactive EP) is at the level of millisecond and
would remain interactive (i.e., sub-second) even for dataset with hundreds of dimension and
measure attributes.

Recommendation Accuracy Figures 8 and 9 show the view recommendation accuracy
comparison results. For the DIAB dataset, the three models have achieved an average

March 22, 2021

Table 14: Runtime in UF Tuning for CENSUS dataset

Part Name A = M = 5 A = M = 10 A = M = 20

1 View generation 0.53s 3.00s 19.12s
2 Helper view/matrix generation 2.61s 29.43s 243.45s
3&4 EP across dimensions and measures 0.62ms 1.54ms 6.11ms

(a) Difference ratio = 10% (b) Difference ratio = 20% (c) Difference ratio = 30%

Figure 8: Recommendation Accuracy comparison for DIAB dataset with various difference ratios
between DQ and DR.

accuracy of 29.7% (Global), 6.7% (Local), and 33.8% (ViewSeeker) across all simulated
IUFs and difference ratios. For the CENSUS dataset, the three models have achieved an
average accuracy of 26.9% (Global), 23.2% (Local), and 45.4% (ViewSeeker).

Again, we see that ViewSeeker consistently performs significantly better than the two
baselines. Specifically, ViewSeeker achieved a relative accuracy improvement of 14.4%
against Global and 410.3% against Local for the DIAB dataset. And ViewSeeker achieved
a relative accuracy improvement of 69.6% against Global and 95.5% against Local for the
CENSUS datasets.

The user effort for the UF Tuning phase is one example view for each aggregate func-
tion and the number of groups for user expectation labeling in each example view is 26
for DIAB and 20 for CENSUS. This indicates that only a small amount of user effort is
required in the UF Tuning phase for the ViewSeeker to achieve a significant improvement
in recommendation accuracy against the Global and Local approaches.

Example Selection Strategy Lastly, a set of experiments were conducted to evaluate
the effectiveness of ViewSeeker’s example selection strategy in the UF Tuning phase. As
discussed in Section 3.3.4, for each aggregate function, ViewSeeker selects the view with the
dimension attribute that has the highest group count as the example view in the UF Tuning
phase. We compare our designed example selection strategy with a baseline strategy, which
selects a random example view for each aggregate function in the UF Tuning phase.

Figure 10 shows the comparison result for average accuracy across all IUFs and Top-k’s.
It can been seen that our designed example selection strategy consistently outperformed
the baseline, with average accuracy improvements of 165.2% and 81.5% for the DIAB and
CENSUS datasets, respectively. This result illustrates the effectiveness of the designed

March 22, 2021

(a) Difference ratio = 10% (b) Difference ratio = 20% (c) Difference ratio = 30%

Figure 9: Recommendation Accuracy comparison for CENSUS dataset with various difference ratios
between DQ and DR.

(a) DIAB Dataset (b) CENSUS Dataset

Figure 10: Recommendation Accuracy comparison for different query strategies in UF Tuning phase.

example selection strategy in selecting informative examples in the UF Tuning phase.

6. Related Works

Expectation Propagation techniques estimate user expectation for the visualizations
and have been studied by several works (e.g., [26, 27]). The cube exploration work [26]
estimates the user expectation of views based on the values in the previously visited views
using the maximum entropy principle. The data mining work [27] allows the user to provide
expectation in spatio-temporal summaries (i.e., views) and uses a graph approach to prop-
agate user expectation to other views. Both works focus on user expectation estimation in
views of other data subsets with the same dimension and measure as the labeled view, while
the EAP algorithm in ViewSeeker is designed to estimate user expectation in views of the
same data subset with different dimensions and measures than the labeled view.

View Recommendation techniques automatically generate all possible views of data,
and recommend the top-k interesting views, according to some utility function (e.g., [2, 5,
7, 8, 17–21]). A key difference among these works is the proposed utility functions. Works
such as Voyager [17] and DeepEye [8] recommend the visualizations based on visual quality
utility functions such as visual expressiveness and perceptual effectiveness. Other works

March 22, 2021

such as SeeDB [2] and QuickInsights [21] adopt deviation-based utility functions where the
view interestingness is measured by the distance between the target view and the reference
view. Some recent works such MuVE [5] and DiVE [7] have proposed multi-objective utility
functions which capture different aspects of the view interestingness (e.g., visual quality,
deviation, diversity) at the same time. The key difference between ViewSeeker and all prior
work is that all previous works use predefined view utility functions and do not discover the
most suitable utility function in the current analysis context.

Interactive Visualization Tools have been extensively studied for the past few years
[3, 4, 28–32]. Unlike visualization recommendation frameworks, such as ViewSeeker that
recommend visualization automatically by searching through the entire view spaces, tradi-
tional interactive visualization tools require the user to manually specify the views to be
generated. Recently, a few interactive visualization tools have attempted to automate part
of the data analysis and visualization process. Two works that are close to our work are
VizDeck [3] and the work [31]. VizDeck [3] uses the data characteristics of the attributes
in the view as the view representation and leverages user voting up/down labels to learn a
linear model to rank the views. However, VizDeck displays all possible views available for
labeling in a scrollable dashboard without any application of query strategy to select the
most informative views for the user to label. The work [31] leverages user binary labels to
learn a binary classification model for view relevance prediction. ViewSeeker differs from
[31] by learning the ideal utility function to rank and get the top-k views.

Data Exploration techniques that aim to efficiently extract knowledge from data [33]
are complementary to our work. In particular, example-driven data exploration approaches
[34, 35] share the same philosophy as ViewSeeker and reply on user feedback on examples
to refine the exploratory queries. ViewSeeker is well suited to such situations and can
enhance example-driven data exploration by creating visualizations that illustrate interesting
patterns during the construction of the exploratory queries.

7. Conclusion

In this work, we claim that traditional view recommendation lacks analysis context
adaptability, and frame this as the Context-Aware View Recommendation problem (CoVR).
Recognizing that any effective solution of CoVR should directly involve the users, we advo-
cate for a human-in-the-loop paradigm, called Interactive View Recommendation (IVR), in
which the system interacts with the user to discover the most suitable utility function (UF)
in the current analysis context.

We further present the first IVR solution, coined ViewSeeker, which supports two forms
of adaptation, UF Tuning and UF Integration, operating as its first and second phase,
respectively. UF Tuning implements a novel Expectation Acquisition and Propagation (EAP)
algorithm that elicits user expectation of common scenarios for example views and estimates
user expectation for other views to improve the accuracy of deviation-based utility functions.
UF Integration employs active learning techniques to select informative example views for
feedback (i.e., labeling) and utilizes the labels to discover the most suitable combination of
UFs.

March 22, 2021

Our extensive set of experiments using two real-world datasets verify the effectiveness
and efficiency of the UF Tuning and UF Integration phases of ViewSeeker. Specifically, they
show that the EAP algorithm can estimate the user expectation much more accurately than
the baselines, and can maintain interactive responsive time even for datasets with hundreds
of dimensions. They also show that ViewSeeker (i.e., the combination of UF Tuning and
UF Integration) can achieve high recommendation accuracy with minimum user effort and
has an average accuracy improvement of 147.5% against the alternative baselines.

References

[1] X. Qin, Y. Luo, N. Tang, G. Li, Making data visualization more efficient and effective: a survey, VLDB
J. 29 (1) (2020) 93–117.

[2] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, N. Polyzotis, SEEDB: efficient data-driven
visualization recommendations to support visual analytics, VLDB 8 (13) (2015) 2182–2193.

[3] A. Key, B. Howe, D. Perry, C. R. Aragon, Vizdeck: self-organizing dashboards for visual analytics, in:
ACM SIGMOD, 2012, pp. 681–684.

[4] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, J. Heer, Profiler: integrated statistical analysis
and visualization for data quality assessment, in: ACM AVI, 2012, pp. 547–554.

[5] H. Ehsan, M. A. Sharaf, P. K. Chrysanthis, Muve: Efficient multi-objective view recommendation for
visual data exploration, in: IEEE ICDE, 2016.

[6] H. Ehsan, M. A. Sharaf, P. K. Chrysanthis, Efficient recommendation of aggregate data visualizations,
IEEE Trans. Knowl. Data Eng. 30 (2) (2018) 263–277.

[7] R. Mafrur, M. A. Sharaf, H. A. Khan, Dive: Diversifying view recommendation for visual data explo-
ration, in: ACM CIKM, 2018, pp. 1123–1132.

[8] Y. Luo, X. Qin, N. Tang, G. Li, Deepeye: Towards automatic data visualization, in: IEEE ICDE, 2018.
[9] X. Zhang, X. Ge, P. K. Chrysanthis, M. A. Sharaf, Viewseeker: An interactive view recommendation

tool, in: BigVis Workshop, 2019.
[10] X. Zhang, X. Ge, P. K. Chrysanthis, Leveraging data-analysis session logs for efficient, personalized,

interactive view recommendation, in: IEEE CIC, 2019.
[11] X. Zhang, X. Ge, P. K. Chrysanthis, Interactive view recommendation with a utility function of a

general form, in: HILDA, 2020.
[12] X. Zhang, X. Ge, P. K. Chrysanthis, Evaluating query strategies for different feedback types in inter-

active view recommendation, in: IEEE IV, 2020.
[13] B. Settles, Active learning literature survey, Tech. rep., University of Wisconsin-Madison Department

of Computer Sciences (2009).
[14] Diabetes data set (2019).

URL https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+1999-2008/
[15] S. Flood, M. King, R. Rodgers, S. Ruggles, R. Warren, Integrated public use microdata series, current

population survey: Version 7.0 [dataset], in: Minneapolis, MN: IPUMS, 2020.
URL https://doi.org/10.18128/D030.V7.0

[16] B. Tang, S. Han, M. L. Yiu, R. Ding, D. Zhang, Extracting top-k insights from multi-dimensional data,
in: ACM SIGMOD, 2017.

[17] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe, J. Heer, Voyager: Exploratory
analysis via faceted browsing of visualization recommendations, IEEE Trans. Vis. Comput. Graph.
22 (1) (2016) 649–658.

[18] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, J. Heer,
Voyager 2: Augmenting visual analysis with partial view specifications, in: ACM CHI, 2017.

[19] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, J. Heer, Formalizing visualization
design knowledge as constraints: Actionable and extensible models in draco, IEEE Trans. Vis. Comput.
Graph. 25 (1) (2019) 438–448.

March 22, 2021

[20] B. Mutlu, E. E. Veas, C. Trattner, Vizrec: Recommending personalized visualizations, ACM Trans.
Interact. Intell. Syst. 6 (4) (2016) 31:1–31:39.

[21] R. Ding, S. Han, Y. Xu, H. Zhang, D. Zhang, Quickinsights: Quick and automatic discovery of insights
from multi-dimensional data, in: ACM SIGMOD, 2019, pp. 317–332.

[22] NBA, - http://www.basketball-reference.com.
[23] Quickinsights - insight types specification, https://www.microsoft.com/en-us/research/uploads/prod/

2016/12/Insight-Types-Specification.pdf (2020).
[24] T. Liu, Learning to Rank for Information Retrieval, Springer, 2011.
[25] M. Krzywinski, N. Altman, Significance, p values and t-tests, in: Nature methods, 2013.
[26] S. Sarawagi, User-adaptive exploration of multidimensional data, in: VLDB, 2000, pp. 307–316.
[27] H. J. Hamilton, L. Geng, L. Findlater, D. J. Randall, Efficient spatio-temporal data mining with

genspace graphs, J. Appl. Log. 4 (2) (2006) 192–214.
[28] J. D. Mackinlay, P. Hanrahan, C. Stolte, Show me: Automatic presentation for visual analysis, IEEE

Trans. Vis. Comput. Graph. 13 (6) (2007) 1137–1144.
[29] C. Stolte, P. Hanrahan, Polaris: A system for query, analysis and visualization of multi-dimensional

relational databases, in: IEEE INFOVIS, 2000.
[30] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, W. Shen, J. Goldberg-

Kidon, Google fusion tables: web-centered data management and collaboration, in: ACM SIGMOD,
2010.

[31] M. Behrisch, F. Korkmaz, L. Shao, T. Schreck, Feedback-driven interactive exploration of large multi-
dimensional data supported by visual classifier, in: IEEE VAST, 2014.

[32] A. Satyanarayan, J. Heer, Lyra: An interactive visualization design environment, Comput. Graph.
Forum 33 (3) (2014) 351–360.

[33] D. Mottin, M. Lissandrini, Y. Velegrakis, T. Palpanas, New trends on exploratory methods for data
analytics, VLDB 10 (12) (2017) 1977–1980.

[34] X. Ge, Y. Xue, Z. Luo, M. A. Sharaf, P. K. Chrysanthis, REQUEST: A scalable framework for inter-
active construction of exploratory queries, in: IEEE Big Data, 2016.

[35] K. Dimitriadou, O. Papaemmanouil, Y. Diao, Explore-by-example: an automatic query steering frame-
work for interactive data exploration, in: ACM SIGMOD, 2014.

March 22, 2021

