Version of Record: https://www.sciencedirect.com/science/article/pii/S2214579621000551
Manuscript_baa2adae098a27e6945b1f4e6cc32cb0

ViewSeeker: An Interactive View Recommendation Framework

Xiaozhong Zhang?, Xiaoyu Ge?, Panos K. Chrysanthis®, Mohamed A. Sharaf®

@ Department of Computer Science, University of Pittsburgh, USA
b Department of Computer Science, United Arab Emirates University, UAE

Abstract

View recommendations have emerged as a powerful tool to assist data analysts in ex-
ploring and understanding big data. Existing view recommendation approaches proposed a
variety of utility functions in selecting useful views. However, the suitability of the utility
functions and their tunable parameters for an analysis is usually dependent on the analysis
context, such as the user, the data and the analysis task. In order to provide context-
aware view recommendation, we formulate a new Interactive View Recommendation (IVR)
paradigm, where the system interacts with the user to discover the utility functions that
are most suitable in the current analysis context. We further develop an IVR framework,
coined ViewSeeker, which leverages user feedback on intelligently selected example views
to discover the most suitable utility functions. Finally, we implemented a prototype of
ViewSeeker and verified its efficiency and effectiveness using two real-world datasets.

1. Introduction

The ubiquitously available information sources and the advancements in data storage and
acquisition techniques have led to an aggressive increase in the data volumes available for
data analysis. One major challenge in utilizing these abundantly available data is discovering
insights from them effectively and efficiently. Examples of an “insight” include the structure,
patterns, and causal relationships. To explore these massive and structurally complicated
datasets, data analysts often utilize visual data analysis tools, such as Tableau, Qlik, Lyra,
Amazon Quicksight, Microsoft Power BI, Google Fusion Tables etc. [1]. However, the
effectiveness of these tools depends on the user’s expertise and experience. Coming up with
a visualization that shows interesting trends/patterns is a non-trivial issue. Commonly, the
analyst needs to examine the relationships among various attributes and consider various
aggregate functions before any useful visualizations can be discovered. This approach is
typically ad-hoc, labor-intensive, and not scalable, especially for high-dimensional databases.

To address such shortcomings, several methods for recommending visualizations have
recently been proposed (e.g., [2-8]). These methods automatically generate all possible

*All authors are corresponding authors.
Email addresses: xiz1510pitt.edu (Xiaozhong Zhang), xig34@pitt.edu (Xiaoyu Ge),
panos@cs.pitt.edu (Panos K. Chrysanthis), msharaf@uaeu.ac.ae (Mohamed A. Sharaf)

March 22, 2021

© 2021 published by Elsevier. This manuscript is made available under the Elsevier user license
https://www.elsevier.com/open-access/userlicense/1.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2214579621000551

views of data, and recommend the top-k interesting views, according to some utility function
(e.g., deviations, data variance, usability) that measures the interestingness of the view.
However, the suitability of the utility functions and their tunable parameters for an analysis
is usually dependent on the analysis context, such as the user, the data and the analysis
task. Thus, existing view recommendation methods with a-priori defined utility functions
cannot adapt to the analysis context.

In order to provide context-aware view recommendation, we formulate a new Interactive
View Recommendation (IVR) paradigm, in which the system interacts with the user to
determine the most suitable utility functions. Specifically, an IVR system interacts with the
user in an iterative fashion, and uses the user feedback to gradually refine its estimation of
the suitability of the utility functions, with the goal of determining the most suitable utility
functions in the current analysis context.

There are a number of ways to determine the utility function suitability from user feed-
back, such as using decision rules or machine learning. In this paper, we propose an IVR
framework, called ViewSeeker, which adopts the machine learning model-based approach.
ViewSeeker supports two forms of adaptation: wtility function tuning and utility function
integration'. Utility function integration uses active-learning technique [13| to select example
views for labeling and to predict the contribution of each utility function in a multi-objective
"ideal" utility function in the current analysis context. Utility function tuning is an addi-
tional functionality of ViewSeeker, which interacts with the user to determine the most
suitable parameters of a utility function in the current analysis context.

To verify the effectiveness and efficiency of ViewSeeker, we implemented a prototype
system and experimentally evaluated it using a dataset of diabetic patients [14] and a census
dataset from the U.S. labor force survey [15].

To summarize, the contributions of this paper are the following:

1. Formulate the new human-in-the-loop, Interactive View Recommendation (IVR)
paradigm for context-aware view recommendations.

2. Propose ViewSeeker, an IVR framework with deviation-based utility function tuning
and integration functionality, with the goal of efficiently discovering the ideal utility
function that is most suitable in the current analysis context.

3. Implement a prototype system of the proposed ViewSeeker, and verify its effectiveness
using two real-world datasets.

Outline The rest of the paper is structured as follows. Section 2 introduces the IVR
paradigm and the ViewSeeker framework. Section 3 presents the utility function tuning
functionality of ViewSeeker. Section 4 presents the utility function integration functionality
of ViewSeeker. Section 5 describes our experimental evaluation. Section 6 discusses related
works and Section 7 presents our conclusions.

LUtility function tuning is the main contribution of this paper whereas utility function integration com-
bines and extends the functionality presented in our previous work [9-12].

March 22, 2021

2. Problem Formulation

In this section, we first discuss how views can be constructed through SQL queries and ex-
plain how the interestingness of a view may be captured through a predefined utility function.
Then, we formally present the proposed Interactive View Recommendation (IVR) paradigm,
and our IVR framework ViewSeeker that address the Context-Aware View Recommendation
(CoVR) problem, which motived our work.

2.1. Views & Data Visualization Recommendation

In the context of structured databases, a view (i.e., histogram or bar chart) essentially
represents an SQL query with a group-by clause over a database D [2, 6]. Under the
typical multi-dimensional data models, data can be modeled as a set of measure attributes
M = {my,my,mg, ...} and a set of dimension attributes A = {ay, as,as,...}. The measure
attributes (e.g., the number of items sold) are the set of attributes that contain measurable
value and can be aggregated. The dimensional attributes (e.g., brand, year, color, size) are
the set of attributes on which measure attributes are viewed. Finally, let F' = {f1, fa, f3, ...}
be the set of standard SQL aggregate functions that are applied to generate an aggregate

query/view with a group-by clause. Thus, we can represent each view v; as a triple
(a,m, f), such that one aggregate function f is applied on dimension attribute a over the
corresponding measure attribute m. Consequently, the View Space (VS), i.e., the total

number of possible views is:

VS = [A] x [M] x |F| (1)

Clearly, VS can be large, especially for high-dimensional data. In order to recommend
the set of k most interesting views from a large number of views, utility scores are required to
rank the views. To compute such utility scores, existing literature has proposed several utility
functions (UFs). Some commonly used UFs include deviation 2|, accuracy [5], usability [5]
and p-value [16]. The typical view recommendation problem can be defined as follows:

Definition 1. (View Recommendation Problem) Given a database D, a user-specified
query @, a set of results R produced by @, a UF u(), and the number of the preferred view
recommendations k. Find the top-k views {v1, va, ..., vx} constructed from R that have the
highest utilities according to u() among all possible views.

2.2. Context-Aware View Recommendation

The above definition of a typical view recommendation problem assumes that the UF
u() is defined a priori [17-20]. However, clearly such a predefined static UF cannot adapt to
the different contexts encountered during different data analysis session. That is, the most
suitable utility function at a time depends on the specific analysis context, with respect to
the user, the data and the analysis task. For example, consider an initial data analysis
when the user first explores the data. UFs recommending views that show interesting data
characteristics such as skewed data distributions or significant attribute correlations, would
be suitable to help the user get familiar with the data. However, for targeted analysis task,
in which the user tries to find an explanation to a specific problem (e.g., a drop in sales),

March 22, 2021

then UFs recommending views that show peculiarities (e.g., views with uncommon trends,
views with outliers, etc.) would be suitable to help the user discover potential explanations.
Hence, it is clear that a predefined UF () is highly unlikely to always be the most suitable
UF in all the different data analysis contexts.

Additionally, even for a single specific context, the interestingness of a view is hardly
captured by a single UF, and is often determined by a combination of multiple UFs. For
example, both data characteristics and visual quality affect the view interestingness at the
same time. A view that may display interesting data patterns but is too cluttered to be
easily understood would not be insightful. Neither would a view that is easy to understand
but shows no interesting patterns. As such, in this work, we posit that a predefined single
or composite UF w() cannot always accurately capture the different aspects of the view
interestingness in all analysis contexts.

In light of the above observations, we formalize the Context-Aware View Recommendation
(CoVR) problem.

Definition 2. (Context-Aware View Recommendation) Given a database D, a user-
specified query @), a set of results R produced by @, a set of n possible UFs U =
{ui(),us(), ..., un()}, and the number of the preferred view recommendations k. Find the
ideal UF u*(), which can be any combination of the functions in U and is most suitable
in the current analysis context, and accordingly recommend the top-k views {vy, vg, ..., vy }
constructed from R based on u*().

Since the number of possible UFs in U could be large, it is clearly more preferable and
more effective to allow the ideal UF u*() to be discovered automatically by the system than
hand-crafted by the user.

2.8. Interactive View Recommendation

In order to discover the ideal UF u*() in the CoVR problem, information about the
analysis context needs to be collected accurately and quickly. In our work, we advocate
for an Interactive View Recommendation paradigm where the system collects the context
information and discovers the ideal UF w*() through user interaction, namely based on user
answers to interactive questions.

Definition 3. (Interactive View Recommendation) Given a database D, a user-specified
query @, a set of results R produced by @, a set of n possible UFs U = {u;(), u2(), ..., un()},
and the number of the preferred view recommendations k. Find the ideal UF w*(), which
can be any combination of the functions in U, interactively based on user feedback, and
accordingly recommend the top-k views {vy, va, ..., v} constructed from R based on u*().

ViewSeeker [9-12] is our proposed realization of the IVR paradigm. ViewSeeker is a
framework that uses machine learning techniques to discover the ideal UF u*() and supports
two forms of adaptation: UF Tuning and UF Integration. UF Integration is the main func-
tionality of ViewSeeker, which uses active learning to select example views for user labeling
and learns the ideal UF u*() based on user feedback on the example views. As an IVR
framework, ViewSeeker currently supports a variety of example view selection strategies,

March 22, 2021

user feedback types, and view interestingness prediction models, which can be chosen based
on user analysis expertise, user data familiarity, etc.

UF Tuning is ViewSeeker’s second form of adaptation, which is useful when the most
suitable parameters of a UF w() vary greatly in different analysis contexts. During UF
Tuning, ViewSeeker interacts with the user to tune the parameters of a UF wu() so that
the parameters most accurately capture the data analysis context. In this paper, we
focus on tuning the widely used deviation-based UFs |2, 21|. Deviation-based UFs adopt a
reference parameter representing common scenarios for a view, and the view interestingness
is measured by the distance between the view and the reference. A predefined reference is
not likely to capture common scenarios for all views accurately in all analysis contexts. For
instance, a reference in which gender ratio is at 1:1 is likely to capture the common scenario
for gender ratio among kindergarten kids, but not kindergarten teachers. = UF tuning can
be used in such cases to properly set the reference, such that it most accurately captures
the common scenarios for the views.

Clearly, IVR is a much more challenging problem than the traditional view recommen-
dation problem, and ViewSeeker faces a search space much larger than the traditional view
search space VS (Eq. 1). In particular, ViewSeeker’s search space includes in addition to
VS, the search spaces of UF tuning and UF integration. In the following two sections, we
discuss UF Tuning and UF Integration, which form the two phases of ViewSeeker, in detail.

3. ViewSeeker - Utility Function Tuning

As stated above, ViewSeeker addresses the CoVR problem in two phases, each of
which provide a different level of adaptation. UF Tuning is the first and optional phase
of ViewSeeker, in which the system interactively customize the individual UFs so that they
most accurately capture the user’s intention. ViewSeeker currently supports the tuning
of the deviation-based UFs [2, 5, 7, 21|, which are widely used UFs in view recommenda-
tion works. ViewSeeker tunes the deviation-based UFs by customizing the reference in the
calculation of the UFs to improve the accuracy of their view interestingness estimation.

3.1. Deviation-based utility function

We first introduce how deviation may be measured based on a view. For clarity, we call

each original view a target view v, which is represented as a triple (a,m, f) applied to a

7
subset of the data D¢ that is produced by a given user query () (as discussed in Section 2.1).
In order to define the deviation, we create a helper view called the reference view vft for
each target view, which represents common scenarios for the target view. One way to create
the reference view is to visualize the results of grouping the data in the whole database D
with the same set of triple (a,m, f) used by the target view. An example of a target view
with its reference view under this approach is illustrated in Figure 1. The target view on
the right (black) shows the player 3-point attempt rate of a selected NBA team and the
reference view on the left (gray) shows the player 3-point attempt rate of all teams in the

league in a particular year [22]. The comparison of the two views shows that the selected

March 22, 2021

Reference View Target View

P 0.6+
B
o 0.5 k64
wa TR
5% | 05
c K XXX
e
o= 0.4 { k&
o VT sl
=] [R5 0.4
2 E X% -
T O sissese
- = [0
K55
L 0.3 la%a%e¥ 950095
(=) e oteses 0.3
= la%a%eY R -
> [R5 lelete
£0 BRX RR
S 0216349 BRRA
0 - 544 P55 4
; oo %Y .
T RR% RR%
ol iFotets I Yotets —
© E (X3 BRI R
S s s
a2 0.1 R R 0.11
2] Lots oS T o%%e® N %0 .
XY 18,88 PRI
esese! Setets Sotess
J J J
RRLL R R

{ { ¢ 0.0-
~994 ~1988 ~2981 ~994 ~1988 ~2981
Minutes Played Minutes Played

Figure 1: A target view and its corresponding reference view.

team outperformed the league average and could explain why it won the championship [5, 6].
The difference between the two views can be expressed in term of deviation.

Deviation measures the difference between the target view and the reference view with an
underlying assumption that the greater the difference, the higher the utility is. In the case of
histograms or bar charts, measuring the difference between two views v} and v!* essentially
equals measuring the distance between the two normalized probability distributions P(v])
and P(vf). The conversion from a view to a probability distribution is illustrated in Eq.
2. Specifically, we normalize each view v; by individually dividing the aggregate value of
each bin in v; by the sum of the aggregated values of all bins in v;, such that the sum of
aggregated values of all bins in v; would become 1.

g1 92 9o
where P(v;) is the probability distribution after normalization; g; are individual values in
each bin; G = Z?:l g; is the sum of the values in all bins; and b is the number of bins in the
dimension attribute a.
After normalizing v and v, the utility score u(v;) of a view v; computed from deviation
can be defined as:
u(v) = DT(PQT), P(uf)) (3)

(2

where DT is the distance function that measures the distance between two distributions
(e.g., Euclidean, Earth Movers Distance).

3.2. Reference View Generation

For a target view v!, there are two commonly used approaches to generate a reference
view vt that represents common scenarios for v}, which we refer to as the Global approach
and the Local approach.

The Global approach relies on the global information (i.e., the whole dataset D) to
generate the reference view. As illustrated in the NBA example above (Figure 1), for a target
view v!, the reference view v under this approach is generated by applying the aggregate
query (i.e., the triple (a,m, f)) of v! on the whole dataset D. The Global approach is a

March 22, 2021

8X4 Reference HEl Target X Reference HEl Target

100

S 5 75
z s

o ~—
3 Re0eesteest = |

%00 %%
o, | S el
USCN UK JP DE FR CA AURUBR
Gender Country

Figure 2: A view of kinder- Figure 3: A view of unit sales
garten teacher gender ratios. by country.

widely used data-driven approach. The state-of-the-art view recommendation work SeeDB
[2] adopts the Global approach as its default reference specification.

The Local approach relies on the local information (i.e., the target view v}) to generate
the reference view. For a target view vl the Local approach first sorts the aggregate values
in vl in descending order to form a value sequence X = {x,,...,2,}. Then it fits a
descending power-law line (i.e., exponential function) to X, and uses the fitted line as the
reference view for v] . Figure 3 illustrates an example of the reference view v (the dashed
line) generated by the Local approach on the values of the unit sales by country in v}.
The state-of-the-art view recommendation work QuickInsights [16, 21, 23] adopts the Local
approach as its reference specification for bar charts.

Since the reference views in both approaches are predefined, they cannot always accu-
rately capture the common scenarios for the target view, causing inaccurate reference view
generation, and in turn inaccurate view interestingness estimation. We use the below two
example to illustrate the issue.

For the Global approach, consider the case in Figure 2. The target view v} shows the
gender ratio of kindergarten teachers D, and the reference view v/ shows the gender ratio
of the whole dataset D. The Global approach would recommend this view because there
is a large deviation between v] and vf. However, since it is well known that currently
female teachers constitute a dominant proportion of kindergarten teachers, this view could
very likely be uninteresting to the user. On the contrary, the Global approach would not
recommend this view if the gender ratio for kindergarten teachers is close to 1:1, because
the deviation between v! and v? would be very small in this case. However, such a view
would very likely interest the user because it contradicts the user’s prior knowledge.

For the Local approach, consider again the case inspired by [23] in Figure 3. The target
view v shows the unit sales by country, and the reference view v/ is generated by the fitted
power-law line (the dashed line) on the values in v]. The Local approach would recommend
this view because there is a large deviation between v} and vZ. However, if the user is well
aware of the large sales gap between US and the other countries, this view could become
uninteresting to the user. On the contrary, the Local approach would not recommend this
view if the US has a lower unit sales (e.g., 50M), because the deviation between v} and vt
would be small in this case. However, such a view would very likely interest the user because

March 22, 2021

the user would expect a larger sales gap based on their prior knowledge.

From the above two examples, we see that the predefined references in the Global and
Local approaches may not always accurately capture the common scenarios for the target
views. Therefore, we propose a novel approach called Fxpectation Acquisition and Propa-
gation (EAP), which leverages user domain knowledge to generate reference views v/ that
capture more accurately the common scenarios for the target views v!

i

3.3. Expectation Acquisition € Propagation

In order to generate reference views v!* that capture more accurately user prior knowledge
(i.e., expectation) for target views v}, we propose the two-step Expectation Acquisition €
Propagation (EAP) algorithm.

In the Expectation Acquisition (EA) step, ViewSeeker displays several example target
views to the user, and asks the user to specify their expectation for the target views. The
user can specify their expectation by providing the expected aggregated values for the groups
directly on each target view. Ideally, the user should be presented with each target view,
and asked to specify their expectation. However, such an EA-only approach is obviously not
scalable. Therefore, we propose the second Expectation Propagation (EP) step to reduce
user labeling effort. Specifically, in the EP step, ViewSeeker generates user expectation
estimates (i.e., reference views) v for the unlabeled target views v! based on the speci-
fied expectations in the EA step and recommends the v!’s that deviate largely from the
corresponding vi'’s.

The hypothesis under EAP is that the attribute correlations in user domain knowledge
about Dy (i.e., the data subset) is similar to the attribute correlations in D¢, therefore EAP
can use the attribute correlations in D¢ and user expectation specified on a target view to
estimate user expectation for other target views.

In the following subsections, we will use an example data subset to illustrate the EA
step and the EP step, which can be further divided into the EPaD process (Expectation
Propagation across Dimensions) and the EPaM process (Expectation Propagation across
Measures). In describing these steps, we will use the following notation. Recall that each
target view is the result of applying a triple (a,m, f) on the query subset Dg. In order to
distinguish between different target views, we replace the subscript i with the actual triple
for v}, such that the v with the triple (a,m, f) is now noted as v_ , ;, and the corresponding
reference view is now noted as vﬁm ;- Further, we use the superscript R for any reference
view that is either specified directly by the user or estimated by the EAP algorithm, and
the superscript 1" for any view that is generated directly from the query subset Dg,.

3.83.1. FExpectation Acquisition
Consider an example data subset D¢ from certain labor force survey as show in Table
1. The data subset has two dimensions a; (Education/Edu) and as (Occupation/Occ), two
measures my (Wage Income/WI) and msy (Total Income/TI), and contains six records.
Assume that EA selects a target view v} . 1y (Vpguwr ave shown in Table 2) for user
expectation labeling. (The example selection strategy will be discussed in Section 3.3.4).
Further, assume that the user indicates that this view is interesting because the user is

March 22, 2021

Table 1: Example Data Subset D¢

Education | Occupation | Wage Income | Total Income

Bachelor Engineer 190 250

Bachelor Engineer 210 270

Master Engineer 300 360

Master Scientist 100 120

PhD Scientist 140 155

PhD Scientist 160 175

Table 2: ”gdu,WJ,AVG Table 3: Ugdu.WI,AVG
Education | AVG(Wage Income) Education | AVG(Wage Income)

Bachelor 200 Bachelor 200
Master 200 Master 200
PhD 150 PhD 300

surprised that PhD holders have a lower wage income than that of Bachelor and Master
degree holders. The user also indicates their expectation that PhD holders should have a
wage income of at least 300. In other words, the EA step has elicited the user’s expectation
for the target view vl vo (VEgwr.ave) as shown in Table 3.

3.3.2. EP Across Dimensions (EPaD)

Recall that the goal of EP is to use the user expectation specified in the EA step (e.g.,
vfl mi.Ava) to generate user expectation estimate (i.e., reference views) vl for other target
views v}, so that target views v} that deviate largely from the corresponding reference views
v? would be recommended. EPaD assumes that correlation between dimension attributes in
user domain knowledge is similar to the corresponding correlation in the data subset, such
that EP could use the latter and the specified user expectation on certain target views to
estimate user expectation for other target views.

The overall workflow of EPaD, for example from a; (Education) to ay (Occupation) can
be divided in three steps. If we assume that EP needs to generate user expectation estimate

R R R : : :
Vgt iy ave (Voeewr.ave) from vt 4y, the reference view generation steps are:

R Stepl R Step2 R Step3 R
Ual,ml,AVG Ual,ml,SUM Uag,ml,SUM 2]ag,ml,AVG‘ (4)

The intuition of the need of the intermediate transformation to v} .y, is because the
number of records in each group of a; represents the impact of this group on downstream
views in the path, such that a larger group will have a larger impact. However, this impact
information is not reflected by the average aggregate view. So EP needs to multiply the
average view by the corresponding counts of the groups to form a sum view to capture the
impact of the groups. The details of each estimation step are as follows:

Step 1 (vf ,,, sua generation) The specified user expectation (i.e., reference view) can be
represented as a vector as U(ﬁ7m17AVG = (91,92, ---, gp), where p is the number of groups in the

March 22, 2021

dimension a;. In the example dataset, vf ¢ = Vig.wrave = (200,200,300). Then,
EP first generates vfhthUM using Eq. 5.

R _ R T —
va1,m1,SUM - /Ual,mhAVG @ Ual,thOUNT - (glCl? g2C2; .-y gpcp> (5)

where v, . couny = (€1,C2,...,¢p) is a helper view which contains the counts for each
group in ay, and © is the element-wise multiplication operator. In the example dataset,
T _ T _ . . L

Vay my .COUNT = VEduw1.count = (2:2,2), so the corresponding calculation is:

vgdu,W[,SUM = vgdu,WLAVG © UgduJ/VI,COUNT = (200, 200,300) ® (2,2,2) = (400,400, 600)

The corresponding result is shown in Table 4.

Step 2 (v mi.sum generation) In order to generate vl my.suns EP would create a helper
view on Dg with two grouping attributes a; and ay, which can be represented as a matrix
as shown in Eq. 6.

S11 ... Sig

Vaj;,aQ,thUM: R (6)

S S

pl Pq

where p and ¢ are the group numbers for dimension a; and as respectively and s,, is the

aggregate result for the 2-attribute group pg. The corresponding matrix in the example
dataset is:

400 0
T —
VE’du,Occ,WI,SUM = |300 100
0 300
. . T T .
Then, EP would normalize each row in V. . .. g to get Vi o st normed @S shown in
Eq.7.
S Slg
o . &
T I)
Val,ag,ml,SUM,normed - : e : (7)
SpL Spg
a, o a

where G; = 231:1 siq for ¢ = 1...p. The corresponding matrix for the example dataset is:

400/400 0/400 1.0 0.0
V]gdu,Occ,WI,SUM,normed - 300/400 100/400 - 075 025
0/300 300/300 0.0 1.0

Then, EP can generate va’mLSUM using Eq. 8.

G1 G1
R R T _ . -
Vag,m1,SUM = Ual7m1,SUM'Val,az,ml,SUM,normed - (glcl? G2C2; -y gpcp)' . t. . - (tl? lo, ...
Spl Spq
Gp Gp

(8)

March 22, 2021

tq)

. R
Table 4: VEdu,WI,SUM

. R
Table 5: V0ce,WI,SUM

. R
Table 6: VOee, WI,AVG

Education | SUM(Wage Income) Occupation | SUM(Wage Income)
Bachelor 400 :
Engineer 700
Master 400 Sciontist 700
PLD 600 e

.. T
Table 7: V0ce.WI,AVG

Occupation | AVG(Wage Income) Occupation | AVG(Wage Income)
Engineer 233 Engineer 233
Scientist 233 Scientist 133
The corresponding calculation for the example dataset is:
1.0 0.0
R R T
YOce,w1,5UM = UEdu,WI,SUM'VEdu,occ,WI,SUM,normed = (400, 400,600)- [0.75 0.25| = (700, 700)
0.0 1.0

In other words, EP splits the income sum in each group in a; (Education) and sums up the
splits by the groups in ay (Occupation). The corresponding result is shown in Table 5.

Step 3 (Uﬁ,ml,Avc generation) Finally, EP generates Ufg,ml,Avc using Eq. 9.

t1 1o t
Ut];;,ml,AVG = Ufz,thUM %) chb;,mLCOUNT = (t17t27 "‘>tQ) @ (617027 "‘JCQ) =\ 7 _q) (9)

Y)
C1 Co Cq
T
where v,, ... count = (€1,C2, ..., ¢4) is another helper view, which contains tuple counts for
the groups in as, and @ is the element-wise division operator. For the example dataset,
T _ T _ . . ‘e
Vay my.COUNT = Vocewr.count = (3,3) and the corresponding calculation is:

Ugcc,W],AVG = Ugcc,WI,SUM % Ugcc,WI,COUNT = (7007 700) % (37 3) = (2337 233)

The result is shown in Table 6. The corresponding target view v5,, yy; 4y generated directly
from the dataset is shown in Table 7. It can be seen that there is a large deviation between
the estimated user expectation for scientist wage income (i.e., 233) and the actual value
(i.e., 133), which means that the target v}, s 4y could be interesting to the user, the user
could expect the scientist to have a higher wage income.

EP for views with aggregate function SUM and COUNT works similar as above with
aggregate function AVG. EP between views with the aggregate function SUM can be per-
formed using Eq. 8, with the difference that vfi my.sun 18 directly specified by the user in
this case. EP between views with the aggregate function COUNT can be performed by

changing the aggregate functions in the partial process from v} | ¢ya to vl oy, above
(i.e., Eq. 6 - 8) to COUNT, such that the EP proceeds as shown in Eq. 10.
R R T
Vag,my,COUNT = Vay,my,COUNT * Vay az.my COUNT normed (10)

where v | coun is specified directly by the user.

March 22, 2021

To summarize, EPaD (EP across dimensions) leverages the correlation between dimen-
sion attributes to propagate specified expectation on certain target view to other target
views, such that the target views that deviate largely from the corresponding expectation
estimates (i.e., reference views) would be recommended.

3.3.8. EP Across Measures (EPaM)

In this section, we will introduce the EP across measures (EPaM) process. EPaM assumes
that correlation between measure attributes in user domain knowledge is similar to the
corresponding correlation in the data subset, such that EP could use the latter and the
specified user expectation on certain target views to estimate user expectation for other
target views.

Consider, same as in EPaD, EA has elicited user expectation v | iva (VEgwiava):
and EP needs to use it to generate user expectation estimate v}’ 1ve (VEg, 17 ave)- This
is EP across dimensions from m; (Wage Income) to my (Total Income).

The overall EP process is described in Eq. 11.

R _ T R T T T T
Ual,mQ,AVG - Ual,mQ,AVG D (Ual,ml,AVG S Ual,ml,AVG) @ Ual,ml © 70(11,m1,mz © 0a1,m2 (11)

where v} . 4yg and vl . 4y are the target views, & and © represent element-wise ad-
dition and subtraction respectively, aghm , contains the standard deviations of m; for each
group in ap, a{lm contains the standard deviations of ms for each group in a;, and Ta,mhm)
contains the Pearson correlation coefficients between m; and msy for each group in a;.

It can be seen from Eq. 11 that the EP process proceeds in the same way for each group
in ay, so for simplicity, we will introduce the EP process for an example group ¢; (PhD) in
a; (Education). Therefore, Eq. 11 becomes:

U{i,mg,AVG‘ = Ung,mQ,AVG + (Ugi,ml,AVG - U;,ml,AVG)/O-gl,m1 * T;,ml,mg * ngl,mg (12>
where subscript g; represents the group.

The corresponding calculation for the example dataset is:

R T R T T T T
UphD.TI,AVG = UPhD,TI,AVG T (UPhD,WI,AVG - UPhD,WI,AVG)/UPhD,WI *TphDwWiI,TI ¥ OPRD,TI

We discuss the calculation step by step in the follow. First, EP starts with:

AghD,TI,AVG’ = (UghD,WI,AVG - UghD,WI,AVG)/UJTDhD,WI = (300 — 150)/10 =15

where v, b wr.ave ad Vb, b wr.ave are the third rows in Table 3 and 2 respectively. op, p,
is the standard deviation for wage income of PhD in Table 1.
Then EP proceeds with:

R - R T . o
Apnpriave = Apwpwrave * Tprpwirr = 15%1.0 =15

where by, p vy 7y 15 the Pearson correlation coefficient between WI and TI for PhD in Table
1.

March 22, 2021

. R . oT
Table 8: vi4, 11 Ave Table 9: vig, 71 Ave

Education | AVG(Total Income) Education | AVG(Total Income)
Bachelor 260 Bachelor 260
Master 240 Master 240
PhD 315 PhD 165

Finally, EP finishes with:

R T R T _ _
Vpp 11.AvG = VPhp 11 AVG T APrprrave * Oppprr = 165+ 15 %10 = 315

where v}QhD’TL ave and UITD,LD’TI are the mean and standard deviation for total income of
PhD in Table 1.

In other words, the EP process first calculates the difference between vg), vy 4y and
Vbnpwr.ave, then propagates the difference to another measure TT based on correlation
between WI and TI (i.e., r'by,p ;. 7;), finally adds the estimated difference to vf, p 17 4y to
form expectation estimate v&, p.r1.ave for TI. The standard deviations ok, pwr and ok, DTI
are in place to remove the influence of the scale differences between the two measures.

After estimating user expectation for other education groups, EP would generate the
reference view viy, 17 4y as shown in Table 8, and the corresponding target view vfy, 7 ave
is shown in Table 9. We see that the average total income for PhD in vy, 17 4v¢ (ie., 165)
is much lower than that in the user expectation estimate vfy, 77 4y (i€, 315), indicating
that this view might be interesting to the user because the user could expect a higher total
income for PhD.

EP between views with the aggregate function SUM can be done in a similar fashion as
shown in Eq. 13.

R _ T R T T T T
Ual,mg,SUM - Ual,mg,SUM D (Ual,ml,SUM S Ual,ml,SUM) %) Ual,ml © ral,ml,mg © Ual,mg (13)

where v o), 1s specified by the user.
EP between views with the aggregate function COUNT directly copies the user expec-
tation, as shown in Eq. 14.

R _ R
Va1,m2,COUNT = VYay,mi,COUNT (14)

where vf | couny is specified by the user.

To summarize, EPaM (EP across measures) leverages the correlation between measure
attributes to propagate specified expectation on certain target view to other target views,
such that the target views that deviate largely from the corresponding expectation estimates
(i.e., reference views) would be recommended.

3.8.4. FExample Selection Strategy

As discussed, Expectation Propagation (EP) can be done across both dimensions and
measures, which means that ideally, EP can estimate user expectations for all the target
views by asking the user to label one target view for each aggregate function. Therefore, the

March 22, 2021

Algorithm 1 ViewSeeker - Deviation-based Utility Function Tuning

Require: A data subset D specified by a query
Ensure: Customized deviation-based utility functions C' = {u(), u2(), ..., un()}
1: Target view set T < generateViews(Dg)

2: Reference view set R + {}

3: for all f € {COUNT,SUM,AVG} do

4: Choose one example vim, h; from T for expectation labeling to get vf’m’ 7
5: ReRU{v(ﬁm’f}
6: for allad € A do
7: if @’ # a then
8: Expectation propagation from vﬁm)f to fuf,}mj
9: R+ RU{vE . /}
10: end if
11: for all m’ € M do
12: if m’ # m then
13: Expectation propagation from vf;t’m?f to v«}f’m',f
14: R« RU{vE ./}
15: end if ’
16: end for
17: end for
18: end for
19: C + generateCustomizedFunctions(T, R)
20: Return C

strategy to select the example view for labeling in the Expectation Acquisition (EA) step is
critical to the effectiveness of the EAP algorithm. In our work, we have adopted a simple yet
effective example selection strategy. Specifically, for each aggregate function, EA chooses
the view with the dimension attribute that has the largest group count among all dimension
attributes as the example view under the assumption that a target view with more groups
provides more useful information about user expectation. The example selection strategy is
captured in Eq. 15.

Qselected = argmax(|a|) (15)

where |-| represents the group count operator. If multiple views have the dimension attribute
with the largest group count, EP selects the first view based on view attribute order in the
table.

3.4. Runtime Complexity of Deviation-based UF Tuning

Algorithm 1 shows ViewSeeker’s four steps to tune deviation-based utility functions:
i) Generation of all target views based on D¢ (Line 1); ii) Selection of an example target
view for each aggregate function and elicitation of user expectations on the view (Line 3-
5); iii) Generation of user expectation estimate for other target views (Line 6-18); and iv)
Formulation of the customized deviation-based UFs C' = {u;(), us(), ..., u,()} (Line 19-20).
The customized deviation-based UFs C are passed to ViewSeeker’s second phase to use them
to calculate the deviation scores for each target view v! based on the difference between v
and the corresponding reference view v,

March 22, 2021

Table 10: UF Tuning Time Complexity

] Part # \ Part Name \ # Operations ‘
1 View generation AMFNg
2 Helper view/matrix generation AAMFNg
3 EP across dimension attributes AFGG
4 EP across measure attributes AMFG

To analyze the runtime complexity of deviation-based UF Tuning phase of ViewSeeker,
we have divided the EAP process into four parts and evaluated the time complexity in
terms of number of operations for each part. Our analysis was based on Algorithm 1 and
the EAP equations, and the cost for each part is summarized in Table 10. The meanings of
the symbols in the table are: A is the number of dimension attributes, M is the number of
measure attributes, F' is the number of aggregate functions, N is the number of records in
the query subset Dg, G is the average number of groups in each dimension attribute.

For the wview generation part, ViewSeeker needs to scan the query subset to generate
a view for each (a,m, f) triple, which results in a complexity of AMFNg. For helper
view/matriz generation, the dominating part is the generation of the helper matrices. Since
each matrix has two dimension attributes, the total number of matrices would be AAMF,
thus the complexity is AAMF Nqg. EP across dimensions needs to propagate user expec-
tation to AF views, and EP to each view has a complexity of GG, resulting in a total
complexity of AFGG. EP across measures needs to propagate user expectation to AMF
views, and EP to each view has a complexity of G, resulting in a total complexity of AM F'G.

We compare the theoretical complexities of the above parts to the experimentally mea-
sured runtime costs in Section 5.

3.5. Tuning of Other Utility Functions

Although the idea of tuning the UF based on analysis context is the same for all the UFs,
the specific ways to tune the UFs are different. EAP is suitable for the tuning of the UFs
whose calculation involves a reference representing common scenarios for the target view,
for example, the deviation-based UFs [2, 21].

Other UFs evaluating other aspects of the view interestingness may require other methods
for tuning. For example, UFs measuring visual quality of the view [8, 17] may incorporate
context information such as user visual literacy to improve accuracy. Tuning of other UFs
is part of our future work.

4. ViewSeeker - Utility Function Integration & View Recommendation

UF Integration is the second phase of ViewSeeker, in which the system leverages user
interaction to integrate the various UFs, including the customized ones in the previous phase,
to discover the ideal utility function «*() that is most suitable in the current analysis context.

Algorithm 2 shows the overall workflow of ViewSeeker. The UF Tuning phase (Line 1)
is optional and occurs first if the user is interested in generating customized UFs, specifically

March 22, 2021

Algorithm 2 ViewSeeker

Require: The data subset D¢ specified by a query
Ensure: The view interestingness estimator I F
Customized utility functions C' < tuneUtility Functions(Dg)
Unlabeled example set U < generateExamples(Dg, C)
Labeled example set L < obtain initial set of example labels
IFE + initialize view interestingness estimator I F using L
FFE <+ initialize example informativeness estimator F'E using L
loop

Choose one z from U using FE

Solicit user’s label on z

L+ LU{x}
10: U<« U —{z}
11: IE + refine IF using L
12: FE <« refine FE using L

@

13: T < recommend top views using I FE

14: if the user is satisfied with T or the user wants to stop then
15: Break

16: end if

17: end loop

18: Return the most recent IF

the currently supported customized deviation-based UFs. The UF Integration phase follows
the UF Tuning phase and has three main stages.

Stage 1: View Generation, in which ViewSeeker generates the unlabeled example set (Line
2). The customized UFs are used in this stage to generate the internal learning representation
of the examples.

Stage 2: Initial Fxample Acquisition, in which ViewSeeker acquires user labels on some ex-
amples to initialize the view interestingness estimator (IE) and the example informativeness
estimator (FE) (Line 3-5). The concept of the informativeness of an example is adopted
from active learning [13] to refer to the benefit of the label on an example to the improvement
of I'F, such that the most informative example could be selected for user labeling.

Stage 3: Interactive View Recommendation, in which ViewSeeker interacts with the user
to refine the estimators and provides view recommendation based on [E predictions (Line
6-18). We elaborate on the three stages of the UF Integration phase next.

4.1. View Generation

In this first stage, ViewSeeker generates the unlabeled example set U, unless the target
view set 1" from the UF Tuning phase is available, in which case ViewSeeker reuses it as U.

ViewSeeker also generates an internal representation for each view as the learning rep-
resentation for the following stages. The features in the internal representation for a view
are the UF scores. For the UFs that ViewSeeker’s UF Tuning currently does not support,
ViewSeeker uses their default calculation methods to generate the scores without tuning. If
customized deviation-based UFs were generated by the UF Tuning phase, ViewSeeker uses
the customized UFs to calculate the UF scores.

March 22, 2021

Table 11: Technology Summary for UF Integration Phase

] Example form \ Feedback type \ IE model \ FE strategy \ I E ranking score
Single view Binary Binary classifier Least confident Prp(y = positive|v)
Single view Likert-scale Multi-class classifier | Least confident ch:l (w; X Pre(y = ¢i|v))
Single view Real number Regression model QBC sre(v)

View pair Pairwise comparison Learning-to-rank QBC sie(v)

4.2. Initial Example Acquisition

In the second stage, ViewSeeker would acquire an initial set of user feedback on several
randomly selected examples to initialize the view interestingness estimator I E and the ex-
ample informativeness estimator F'E. ViewSeeker currently supports two example forms
and four types of user feedback. Both example form and feedback type can be selected based
on user analysis expertise and user data familiarity:.

The first example form displays a single view at a time for labeling, while the second
example form displays a pair of views at a time for labeling.

For the example form of a single view, ViewSeeker offers three feedback types: binary,
Likert-scale, and real number. The binary feedback asks the user to indicate if the example
view is interesting or not. The Likert-scale feedback asks the user to label the example view
on a scale of 1 to 5, with 5 being most interesting and 1 being least interesting. The real
number feedback requires the user to label the example view with a real number between
0.0 and 1.0, with 1.0 being most interesting and 0.0 being least interesting.

For the example form of a pair of views, the supported feedback type is pairwise com-
parison. Given a pair of example views, the pairwise comparison feedback asks the user to
indicate if the first view is more interesting or less interesting than the second view.

After the user labeling to some examples, ViewSeeker use the labels to initialize I E and

FE.

4.8. Interactive View Recommendation

In the third stage, ViewSeeker interacts with the user in an iterative fashion to refine
the I E and uses it to provide view recommendation. It can be seen from Algorithm 2 that
there are four steps in each iteration: 1) Example Selection: ViewSeeker selects examples
from U based on the informativeness estimate from F'E (Line 7). 2) User Label Acquisi-
tion: ViewSeeker acquires user labels on the examples (Line 8). 3) Estimator Refinement:
ViewSeeker uses the labeled example set L to refine IE and FE (Line 9-12). 4) View
Recommendation: ViewSeeker uses the latest /FE to make view recommendations (Line
13-16). If the user is satisfied with the view recommendation in Step 4, then the loop stops;
otherwise, the loop starts from Step 1 again.

Each feedback type requires a different set of methods and technologies for IE model,
FE strategy, and IE ranking algorithm. These are summarized in Table 11 and discussed
below.

March 22, 2021

4.3.1. Example Selection

ViewSeeker uses F'E for example selection in Step 1. The example informativeness
prediction of F'F is based on the view interestingness prediction of IE. The view inter-
estingness estimator [F is in the form of a machine learning model, and ViewSeeker uses
different model types for different feedback types.

For binary feedback, the I'E is in the form of a binary classifier, such as the logistic
regression model. For Likert-scale feedback, the I E is in the form of a multi-class classifier,
such as the decision tree model. For real number feedback, the I'E is in the form of a
regression model, such as the linear regression model. For pairwise comparison feedback,
the I F is in the form of a learning-to-rank model [24].

The example informativeness estimator F'E is essentially a strategy to utilize the pre-
diction from IE (or a committee of IEs) to estimate the informativeness of the unlabeled
examples, such that the most informative example could be selected for user labeling. This
strategy is named query strategy in active learning literature [13]. ViewSeeker again uses
different query strategies for different feedback types.

For binary and Likert-scale feedback, ViewSeeker supports any query strategies that are
suitable for classification problem, such as the uncertainty sampling strategy [13|. For real
number feedback, ViewSeeker supports any query strategies that are suitable for regression
problem, such as the query-by-committee strategy [13]. For pairwise comparison feedback,
ViewSeeker supports any query strategies that are suitable for the learning-to-rank problem.
The following are the default example query strategy for each feedback type.

An example query strategy for binary or Likert-scale feedback is the least confident
strategy under the category of uncertainty sampling strategies. The least confident strategy
selects the view whose class label the I E is least confident about, according to Eq. 16.

Vo = argmax 1 — Prg(g|v) (16)

where v} is the example to select, and § = argmaxz,P;g(y|v) is the class label with the
highest posterior probability under the model IE. In other words, the most informative
example for a binary classifier is the example whose positive class posterior probability is
closest to 0.5. And the most informative example for a multi-class classifier is the example
whose highest posterior probability in any class is the lowest.

An example query strategy for the real number feedback is the query-by-committee strat-
egy (QBC). QBC builds a committee of IEs, and estimates the informativeness of the
example based on the disagreement among the committee members. The members of the
committee are built with slightly different hyper-parameters or trained with slightly different
training sets, such that they would provide different predictions for the same example.

Recall that for real number feedback, the IE is in the form of a regression model. There-
fore the committee for real number feedback is a committee of regression models. Each
regression model in the committee ¢; can be trained with the labeled set L and predict
a score s, (v) for a view v. One way to measure the disagreement among the committee
members is to measure the variance of their predictions, as shown in Eq. 17.

Ugpc = argmax Var((se, (v), $e,(V), .y See (V) (17)
March 22, 2021

where Var(-) is the variance operator, and C'is the number of committee members.

QBC can also be used for the pairwise comparison feedback as proposed by our previ-
ous work [12]. Each learning-to-rank model in the committee for the pairwise comparison
feedback ¢; can be trained with the ordered view pairs in the labeled set L and predict a
ranking score s, (v) for a view v. One way to measure the disagreement among the commit-
tee members for an example (i.e., a pair of view (v, v7)) is to measure the variance of their
predictions for the ranking score gap between the two views (i.e., s, (v1) — s, (v2)) as shown
in Eq. 18.

(v1,v2)gpc = argmax Var((se,(v1) = e (2), Se, (01) = 865 (V2), 05 8 (V1) = Sec(v2))) - (18)

4.83.2. Estimator Refinement

After the example selection and the following user label acquisition for the examples,
ViewSeeker would use the latest labeled example set L to refine the I E and F'E. Specifically,
ViewSeeker would use the vector representation of the labeled views as the input features
and the user labels as the input labels to train a new I E and a new F'E. Note that, for the
QBC query strategy, ViewSeeker would usually keep a separate [E as the formal IE for
view recommendation outside the F'E/, which is in the form of a committee of I Es.

4.8.3. View Recommendation

The last step in each user interaction loop is view recommendation. The interestingness
estimator I F uses different methods to generate view interestingness estimate for different
feedback types.

For binary feedback, I E uses the positive class probability Prp(y = positive|v) as the
interestingness estimate for a view v because it reflects the classifier’s belief of v’s interest-
ingness.

For Likert-scale feedback, I E uses the weighted sum of the weight and probability of
each class as the interestingness estimate for a view v as shown in Eq. 19:

C
I=> (w;x Pip(y = civ)) (19)
=1

where [is the interestingness estimate, C' is the class number, w; and Prp(y = ¢;|v) are the
weight and probability of each class.

We use linear spacing to define the class weights, such that for a 5-class classifier, the
5 classes have weights of 0, 0.25, 0.5, 0.75, and 1.0 for class 1 to 5, respectively. It can be
seen that [would be a real number between 0.0 and 1.0. Similar to binary feedback, our
definition of the interestingness estimate changes in the same direction as the model’s belief
of v’s interestingness. For example, if the probability of class 3 decreases and the probability
of class 4 increases, it means that the model’s belief of v’s interestingness increases, and so
does the interestingness estimate.

For real number and pairwise comparison feedback, the I E’s predicted score s;g(v) can
be directly used as the interestingness estimate for the view v.

March 22, 2021

If the user is satisfied with the view recommendation, then the user interaction stops;
otherwise, the ViewSeeker would start a new loop by selecting new examples for user label-
ing.

5. Experimental Evaluation

In this section, we present two sets of experiments. The first set of experiments is to
evaluate the UF Integration phase without the involvement of the UF Tuning phase. The
second set of experiments is to evaluate the combined effectiveness of the UF Tuning and
the UF Integration phases. We built a ViewSeeker platform in Python and the experiments
were performed on a Core i5 server with 8GB of RAM. All our experiment settings are listed
in Table 12.

5.1. Ewvaluation of Utility Function Integration
5.1.1. Experimental Settings

Datasets We used two datasets: the DIAB dataset and the CENSUS dataset. The
DIAB dataset is a real-world dataset of diabetic patients [14]. We removed the attributes
that have a large amount of missing data. After preprocessing, the data set has 100 thousand
records, 7 dimension attributes, and 8 measure attributes. The CENSUS dataset contains
microdata from the U.S. labor force survey [15]. We removed the “not in universe” records
and records with zero income. After preprocessing, the dataset has 100 thousand records, 5
dimension attributes, and 5 measure attributes. All measure attributes in the two datasets
are normalized to a real number range between 1 and 100.

Query Simulation We use the following steps to generate each query subset Dg. 1)
Randomly select a dimension attribute a, 2) Randomly select a group ¢ in a, 3) Select all
records in g as Dg. For example, if a is gender and ¢ is female, then Dy would be all
female records. We used the above method to generate 10 random query subsets Dg, and
the reported results are the average from running 10 different experiments using those 10
query subsets.

Individual Utility Functions In our experiment, we have used eight individual utility
functions. The first five utility functions are deviation-based UFs: Kullback-Leibler diver-
gence (KL), Earth Mover Distance (EMD), L1 distance (L1), L2 distance (L2), and the
maximum deviation in any individual bin (MAX DIFF). The remaining three utility func-
tions represent the usability [5|, accuracy [5], and p-value [16]. Usability refers to the quality
of the visualization in terms of providing the analyst with an understandable, uncluttered
representation, which is quantified via the relative bin width metric. Accuracy refers to
the ability of the view to accurately capture the characteristics (i.e., distribution) of the
analyzed data, which is measured in terms of Sum Squared Error (SSE). The p-value is a
statistical term defined as “the probability of obtaining a result equal to or more extreme
than what is observed, with the given null hypothesis being true” [25]. In the problem of
view recommendation, the null hypothesis refers to the reference view, and the extremeness
of the results refers to the interestingness of the target views.

March 22, 2021

Table 12: Testbed Parameters

’ Experiment Set \ UF Integration \ UF Tuning and Integration ‘
Total number of records (|D|) 100K (DIAB), 100K (CENSUS)
Average query set size (|Dgl) 43K (DIAB), 47K (CENSUS) | 36K (DIAB), 39K (CENSUS)
Average reference set size (|Dg|) N/A 36K (DIAB), 39K (CENSUS)
Difference ratio between Dy and Dp N/A 10%, 20%, 30%
Number of dimension attributes (A) 7 (DIAB), 5 (CENSUS)
Number of measure attributes (M) 8 (DIAB), 5 (CENSUS)
Number of aggregate functions 5 3 (COUNT, SUM, AVG)
Total view count 280 (DIAB), 125 (CENSUS) 168 (DIAB), 75 (CENSUS)
Number of individual utility functions 8
Feedback type for UF integration Real number
View interestingness estimator Linear regressor
Example informativeness estimator Query-by-committee
Number of views presented per iteration 1
Evaluation metrics Top-k accuracy \ FEFE, Runtime, Top-k accuracy
The number of views to recommend (k) 5,10,15,20
Runs for each configuration 10 (with different Dg) \ 10 (with different Dg and Dg)

It should be noted that, in general, users may customize the UFs, including adding new
ones, for a personalized analysis. The current set of UFs mentioned above are selected to
illustrate the effectiveness of ViewSeeker.

Since this set of experiments does not involve UF tuning, the default calculation methods
of the individual UFs were used to generate the learning representation of the views. The
reference views in the deviation-based UFs are calculated using the Global approach as
discussed in Section 3. All UF scores were normalized to a range between 0.0 and 1.0 across
all views to avoid learning and prediction bias due to the range difference in the original UF
scores.

User Simulation We simulated different data analysis contexts, where each context is
associated with an ideal utility function (IUF). Each IUF represents how the user perceives
the interestingness of views under each simulated context. That is, IUF acts as the ground
truth () for that context. Similar to all our utility functions, the output of each IUF
is a real number between 0.0 and 1.0, with 0.0 being not interesting and 1.0 being very
interesting. We designed 11 diverse IUFs that included 3 single-component UFs and 8
multi-component (i.e., multi-objective) composite UFs (Table 13). We chose the components
in multi-component [UFs carefully such that they represent different characteristics of the
candidate views. For example, EMD measures the absolute differences across the bins; KL-
divergence measures the relative entropy between the two distributions; Usability represents
the visual quality of a view, etc.

FEvaluation Metrics We evaluated the performance of ViewSeeker in the aspect of
recommendation accuracy. Specifically, we measured the number of labeled examples needed
for the IE to reach an 100% recommendation accuracy. Here we define the accuracy as the
size of the intersection between the top-k views recommended by ViewSeeker and the top-
k views recommended by the IUF. For two sets of top-k views VP and V* produced by

March 22, 2021

Table 13: Simulated Ideal Utility Functions

’ # \ Ideal Utility Functions
1 1.0 * KL

2 1.0 * EMD

3 1.0 * MAX DIFF

4 1 0.5*EMD + 0.5 * KL
5 | 0.5* EMD + 0.5 * L2
6 | 0.5* EMD + 0.5 * p-value
7

8

9

1

1

0.3 * EMD + 0.3 * KL + 0.4 * MAX DIFF
0.3 * EMD + 0.3 * L2 + 0.4 * MAX DIFF
0.3 * EMD + 0.3 * p-value + 0.4 * MAX DIFF

0] 0.3*EMD + 0.3 * KL + 0.4 * Usability
1] 0.3*EMD + 0.3 * KL + 0.4 * Accuracy
_ , _ VPNV
ViewSeeker and the IUF, respectively, the accuracy is calculated as: —

5.1.2. Ezxperimental Results

Figures 4 and 5 show the number of example views that need to be labeled in order for
the view interestingness estimator I E to reach an 100% accuracy in the top-k recommended
views. Here, the z-axis is the k in top-k (i.e., the number of views on which the accuracy
calculation is based), and the y-axis is the number of example views presented, capturing
the user effort required for the accuracy to reach 100%.

Specifically, Figures 4a and 5a are for one-component [UFs (i.e., average result over [UF
1-3 in Table 13). Figures 4b and 5b are for two-component composite IUFs (i.e., average
result over IUF 4-6). Finally, Figures 4c and 5¢ are for three-component composite TUFs
(i.e., average result over IUF 7-11).

From these results, we can observe that ViewSeeker is extremely effective in discovering
the set of ideal top-k views: for k ranging from 5-20, on average only 6-11 labels were
required before ViewSeeker reached an accuracy of 100% for both DIAB and CENSUS
datasets. Clearly, this indicates that only a small amount of user effort is needed before a
satisfactory set of results can be obtained by ViewSeeker’s UF integration functionality.

To the best of our knowledge, currently there are no existing solutions that provide the
same functionality as ViewSeeker to act as a baseline for performance evaluation. How-
ever, to further study the performance of ViewSeeker, we compare it to a set of alterna-
tive baselines that are based on predefined UFs, as shown in Figure 6. Particularly, while
ViewSeeker tries to accurately estimate the ideal utility function for a certain context, each
of those baselines assumes that ideal utility function to be one of the eight predefined indi-
vidual utility functions discussed in the previous section (e.g., KL, EMD, L1, etc). Figure
6 shows the average accuracy achieved by those baselines vs. ViewSeeker across all of our
11 IUFs when evaluated on both the DIAB and CENSUS datasets. As the figure shows,
ViewSeeker outperforms all baselines with an average accuracy improvement of 86.9% over
the baseline average, and 24.6% over the best performing baselines (i.e., EMD and L1).
This demonstrates the ViewSeeker’s capability to achieve a high recommendation accuracy
improvement against predefined UFs with a very small amount of additional user effort.

March 22, 2021

810 810 F:
Q. Q. Q.
£ 8 £ 8 £8
x x x
4 g W e ve
kS kS kS
g 4 g 4 g4
o) o) o)
E 2 E2 E2
z 0 z 0 z 0
5 10 15 20 5 10 15 20 5 10 15 20
Top K Top K Top K
(a) Single-Component u*() (b) Two-Component u*() (¢) Three-Component u*()

Figure 4: Recommendation accuracy for DIAB dataset with different ideal utility functions u*().

%] %] %]
< < <
[e% [e% [e%
Es E8 58
x x x
we we we
kS kS kS
5 4 5 4 5 4
Qo Qo Qo
£2 £2 £2
z 0 z 0 z 0
5 10 15 20 5 10 15 20 5 10 15 20
Top K Top K Top K
(a) Single-Component u*() (b) Two-Component u*() (¢) Three-Component u*()

Figure 5: Recommendation accuracy for the CENSUS dataset with different ideal utility functions

u*().

71 KL = L MAX_DIFF E Accuracy Hl \iewSeeker

E=3 EMD L2 Usability P-Value
1.0
> 7 WN\Es e
: E 0l
305 i A A
< / o gt
< ’ A INER
g A INER
g e NS
0 0 ‘ .: L]
' 1 20

Top K

Figure 6: Maximum achievable accuracy by baselines and ViewSeeker

5.2. Fvaluation of Utility Function Tuning and Integration
5.2.1. Experimental Settings

Datasets We used the same datasets as the previous experiment set.

User Simulation for UF Tuning Assume that the whole dataset is called D, and
the data subset specified by the query (i.e., query set) is called Dg. To simulate the user
expectation, we generated a new data subset called the reference set Dy, which represents the
user’s prior knowledge of D, such that views generated from Dp, represent user’s expectation
for the corresponding views generated from Dg. We generate Dg and Dp in the following
way: 1) Randomly select a dimension attribute a. 2) Randomly select a group g in a. 3)

March 22, 2021

Select all records in g as a sample S. 4) Randomly select two subsets of records Dy and Dpg
from S, such that |Dg| = |Dg| and Do U Dr = S.

The difference ratio between Dg and Dpg is used to describe the degree of difference
Do—D
| IQDQI “

The two partially overlapping subsets Dg and Dy from a group in a dimension represent
two subsets that have similar data characteristics but are not identical. This is usually
the situation for user prior knowledge about certain group of records, such that the user’s
expectation of the group aggregate characteristics may agree with most but not all of the
group aggregate characteristics expressed by the records retrieved by the query.

After generating Dy and Dg, for each view v; (i.e., a (a,m, f) triple), two views can be
generated: a target view (v}') which is generated by applying (a,m, f) on D¢, and an ideal
reference view (v) which is generated by applying (a,m, f) on D simulating the user’s
expectation for vl .

We used the above method to generate a random query subsets Dg and a random
reference set D¢ in each experiment, and the reported results are the average from running
10 different experiments using 10 different query subsets and reference subsets.

User Simulation for UF Integration We used the same individual UFs and IUFs as
in the previous experiment set to simulate the user. The ground truth scores for deviation-
based UFs are calculated based on the target views (v]) and the corresponding ideal reference
views (v!®).

Reference View Generation Models The three models for reference view generation
are the Global, Local, and ViewSeeker, which were discussed in Section 3. The Global
and Local are baselines in the experiments. For a target view v}, each model uses its own
approach to generate the reference view vt and uses the v to calculate its own scores for
the deviation-based UFs.

FEvaluation Metrics We evaluated ViewSeeker’s performance in multiple aspects. For
UF tuning, we measured the system effectiveness using expectation estimate error (EEE),
and the system efficiency using system runtime. For the combined process of UF tuning and
integration, we used the view recommendation accuracy for effectiveness evaluation.

We first give the definition of EEE as follow. As mentioned above, for a target view v,
each model generates its own reference view v, and EEE measures the distance between

7)
v and the corresponding ideal reference view v!# using Equation 20.

i

between the two subsets and is defined as

EEE; = DT(P(v{"), P(v{")) (20)

2

where DT is the distance function and P(-) is the view normalization operator as introduced
in Section 2. The Ll-norm distance function was used as DT in the experiments. The final
EEE score is the average over the EEE scores of all views.

We measured the runtime for the four parts of the UF Tuning phase as mentioned in
Section 3.4. We fixed the size of the whole dataset D, the query set Dy, and the reference
set Dpg, and focused on the influence of the data dimensionality on the system runtime.

For view recommendation accuracy, our evaluation metric is the Top-k accuracy as used
in the previous experiment set. We measured the accuracy after 10 labeled examples when

March 22, 2021

[Global HEl ViewSeeker
I Local

[Global HEl \iewSeeker

§ 5 [Local

5 5

c

50.10 S 0.100

T S

E £0075

a %

c 0.05 2 0.050

il o

z 8o0.025

< 8

5000740 20 30 5 000045 20 30

Difference Ratio (%) Difference Ratio (%)

(a) DIBA dataset (b) CENSUS dataset

Figure 7: Expectation Estimate Error comparison for different reference generation models.

the model learning stabilized for most of the configurations.

5.2.2. Experimental Results

Expectation Estimate Error Figure 7 shows the EEE comparison results. For the
DIAB dataset, the three models have achieved an average EEE of 6.8% (Global), 12.1%
(Local), and 0.3% (ViewSeeker) across all difference ratios. For the CENSUS dataset, the
three models have achieved an average EEE of 11.7% (Global), 7.9% (Local), and 0.7%
(ViewSeeker).

It can be seen that ViewSeeker consistently estimates the ideal reference views v/
significantly more accurately than the two baselines. Specifically, ViewSeeker achieved a
relative EEE reduction of 96.0% against Global and 97.8% against Local for the DIAB
dataset. Further ViewSeeker achieved a relative EEE reduction of 94.2% against Global
and 91.4% against Local for the CENSUS datasets.

Scalability The runtime result for different parts of the UF Tuning phase is shown
in Table 14. We have tested different data dimensionality by using different number of
dimension attributes A and number of measure attributes M (as defined in Section 3.4.
We used the CENSUS dataset and simulated different data dimensionality by duplicating
dimension and measure attributes of the dataset. The result was averaged over all possible
views that can be labeled.

The first and second parts are view generation and helper view /matrix generation, which
could be offline calculation. The third and four parts combined is the interactive EP process,
which requires interactive system response time.

The runtime result verified our complexity analysis in Table 10 in Section 3.4, such that
part 1 (view generation) and part 3&4 (interactive EP) has a runtime proportional to AM,
and part 2 (helper view/matrix generation) has a runtime proportional to AAM. Besides,
we can see that the runtime of part 3&4 (interactive EP) is at the level of millisecond and
would remain interactive (i.e., sub-second) even for dataset with hundreds of dimension and
measure attributes.

Recommendation Accuracy Figures 8 and 9 show the view recommendation accuracy
comparison results. For the DIAB dataset, the three models have achieved an average

March 22, 2021

Table 14: Runtime in UF Tuning for CENSUS dataset

]Part\Name \A:M:E)\A:M:lO\A:M:?O‘
1 View generation 0.53s 3.00s 19.12s
2 Helper view/matrix generation 2.61s 29.43s 243.45s
3&4 | EP across dimensions and measures 0.62ms 1.54ms 6.11ms
[Global HEl ViewSeeker [Global HEl ViewSeeker [Global HEl ViewSeeker
I Local I Local I Local
0.4
0.3
0.3 0.3
oy oy &
©0.2 o o
§ § 0.2 § 0.2
< < <

o
=
o
=
=}
-

0.0 0.0 0.0
Top K Top K Top K

(a) Difference ratio = 10% (b) Difference ratio = 20% (c) Difference ratio = 30%

Figure 8: Recommendation Accuracy comparison for DIAB dataset with various difference ratios
between Dg and Dp.

accuracy of 29.7% (Global), 6.7% (Local), and 33.8% (ViewSeeker) across all simulated
[UFs and difference ratios. For the CENSUS dataset, the three models have achieved an
average accuracy of 26.9% (Global), 23.2% (Local), and 45.4% (ViewSeeker).

Again, we see that ViewSeeker consistently performs significantly better than the two
baselines. Specifically, ViewSeeker achieved a relative accuracy improvement of 14.4%
against Global and 410.3% against Local for the DIAB dataset. And ViewSeeker achieved
a relative accuracy improvement of 69.6% against Global and 95.5% against Local for the
CENSUS datasets.

The user effort for the UF Tuning phase is one example view for each aggregate func-
tion and the number of groups for user expectation labeling in each example view is 26
for DIAB and 20 for CENSUS. This indicates that only a small amount of user effort is
required in the UF Tuning phase for the ViewSeeker to achieve a significant improvement
in recommendation accuracy against the Global and Local approaches.

Example Selection Strategy Lastly, a set of experiments were conducted to evaluate
the effectiveness of ViewSeeker’s example selection strategy in the UF Tuning phase. As
discussed in Section 3.3.4, for each aggregate function, ViewSeeker selects the view with the
dimension attribute that has the highest group count as the example view in the UF Tuning
phase. We compare our designed example selection strategy with a baseline strategy, which
selects a random example view for each aggregate function in the UF Tuning phase.

Figure 10 shows the comparison result for average accuracy across all [UFs and Top-k’s.
It can been seen that our designed example selection strategy consistently outperformed
the baseline, with average accuracy improvements of 165.2% and 81.5% for the DIAB and
CENSUS datasets, respectively. This result illustrates the effectiveness of the designed

March 22, 2021

[Global HEl \iewSeeker [Global HEl ViewSeeker [Global HEl ViewSeeker

N Local [Local [Local
0.6

04
o) 504 804
® ® ®
5 = =
3 3 3
<02 <02 <02

0.0 5 10 15 20 0.0 5 10 15 20 0.0 5 10 15 20

Top K Top K Top K
(a) Difference ratio = 10% (b) Difference ratio = 20% (c) Difference ratio = 30%

Figure 9: Recommendation Accuracy comparison for CENSUS dataset with various difference ratios
between Dg and Dp.

[Random HEl ViewSeeker 1 Random HEl ViewSeeker

0.3 0.4
> >
8 8
é 0.2 g
g 2 0.2

0.1

0070 20 30 0070 20 30

Difference Ratio (%) Difference Ratio (%)
(a) DIAB Dataset (b) CENSUS Dataset

Figure 10: Recommendation Accuracy comparison for different query strategies in UF Tuning phase.

example selection strategy in selecting informative examples in the UF Tuning phase.

6. Related Works

Ezxpectation Propagation techniques estimate user expectation for the visualizations
and have been studied by several works (e.g., [26, 27]). The cube exploration work [26]
estimates the user expectation of views based on the values in the previously visited views
using the maximum entropy principle. The data mining work [27] allows the user to provide
expectation in spatio-temporal summaries (i.e., views) and uses a graph approach to prop-
agate user expectation to other views. Both works focus on user expectation estimation in
views of other data subsets with the same dimension and measure as the labeled view, while
the EAP algorithm in ViewSeeker is designed to estimate user expectation in views of the
same data subset with different dimensions and measures than the labeled view.

View Recommendation techniques automatically generate all possible views of data,
and recommend the top-k interesting views, according to some utility function (e.g., [2, 5,
7,8, 17-21]). A key difference among these works is the proposed utility functions. Works
such as Voyager [17] and DeepEye [8] recommend the visualizations based on visual quality
utility functions such as visual expressiveness and perceptual effectiveness. Other works

March 22, 2021

such as SeeDB [2] and QuickInsights [21] adopt deviation-based utility functions where the
view interestingness is measured by the distance between the target view and the reference
view. Some recent works such MuVE [5] and DiVE [7] have proposed multi-objective utility
functions which capture different aspects of the view interestingness (e.g., visual quality,
deviation, diversity) at the same time. The key difference between ViewSeeker and all prior
work is that all previous works use predefined view utility functions and do not discover the
most suitable utility function in the current analysis context.

Interactive Visualization Tools have been extensively studied for the past few years
[3, 4, 28-32]. Unlike visualization recommendation frameworks, such as ViewSeeker that
recommend visualization automatically by searching through the entire view spaces, tradi-
tional interactive visualization tools require the user to manually specify the views to be
generated. Recently, a few interactive visualization tools have attempted to automate part
of the data analysis and visualization process. Two works that are close to our work are
VizDeck [3] and the work [31]. VizDeck [3] uses the data characteristics of the attributes
in the view as the view representation and leverages user voting up/down labels to learn a
linear model to rank the views. However, VizDeck displays all possible views available for
labeling in a scrollable dashboard without any application of query strategy to select the
most informative views for the user to label. The work [31] leverages user binary labels to
learn a binary classification model for view relevance prediction. ViewSeeker differs from
[31] by learning the ideal utility function to rank and get the top-k views.

Data Ezxploration techniques that aim to efficiently extract knowledge from data [33]
are complementary to our work. In particular, example-driven data exploration approaches
[34, 35] share the same philosophy as ViewSeeker and reply on user feedback on examples
to refine the exploratory queries. ViewSeeker is well suited to such situations and can
enhance example-driven data exploration by creating visualizations that illustrate interesting
patterns during the construction of the exploratory queries.

7. Conclusion

In this work, we claim that traditional view recommendation lacks analysis context
adaptability, and frame this as the Context-Aware View Recommendation problem (CoVR).
Recognizing that any effective solution of CoVR should directly involve the users, we advo-
cate for a human-in-the-loop paradigm, called Interactive View Recommendation (IVR), in
which the system interacts with the user to discover the most suitable utility function (UF)
in the current analysis context.

We further present the first IVR solution, coined ViewSeeker, which supports two forms
of adaptation, UF Tuning and UF Integration, operating as its first and second phase,
respectively. UF Tuning implements a novel Ezpectation Acquisition and Propagation (EAP)
algorithm that elicits user expectation of common scenarios for example views and estimates
user expectation for other views to improve the accuracy of deviation-based utility functions.
UF Integration employs active learning techniques to select informative example views for
feedback (i.e., labeling) and utilizes the labels to discover the most suitable combination of
UFs.

March 22, 2021

Our extensive set of experiments using two real-world datasets verify the effectiveness
and efficiency of the UF Tuning and UF Integration phases of ViewSeeker. Specifically, they
show that the EAP algorithm can estimate the user expectation much more accurately than
the baselines, and can maintain interactive responsive time even for datasets with hundreds
of dimensions. They also show that ViewSeeker (i.e., the combination of UF Tuning and
UF Integration) can achieve high recommendation accuracy with minimum user effort and
has an average accuracy improvement of 147.5% against the alternative baselines.

References

[1] X. Qin, Y. Luo, N. Tang, G. Li, Making data visualization more efficient and effective: a survey, VLDB
J. 29 (1) (2020) 93-117.
[2] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, N. Polyzotis, SEEDB: efficient data-driven
visualization recommendations to support visual analytics, VLDB 8 (13) (2015) 2182-2193.
[3] A. Key, B. Howe, D. Perry, C. R. Aragon, Vizdeck: self-organizing dashboards for visual analytics, in:
ACM SIGMOD, 2012, pp. 681-684.
[4] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, J. Heer, Profiler: integrated statistical analysis
and visualization for data quality assessment, in: ACM AVI, 2012, pp. 547-554.
[5] H. Ehsan, M. A. Sharaf, P. K. Chrysanthis, Muve: Efficient multi-objective view recommendation for
visual data exploration, in: IEEE ICDE, 2016.
[6] H. Ehsan, M. A. Sharaf, P. K. Chrysanthis, Efficient recommendation of aggregate data visualizations,
IEEE Trans. Knowl. Data Eng. 30 (2) (2018) 263-277.
[7] R. Mafrur, M. A. Sharaf, H. A. Khan, Dive: Diversifying view recommendation for visual data explo-
ration, in: ACM CIKM, 2018, pp. 1123-1132.
[8] Y. Luo, X. Qin, N. Tang, G. Li, Deepeye: Towards automatic data visualization, in: IEEE ICDE, 2018.
[9] X. Zhang, X. Ge, P. K. Chrysanthis, M. A. Sharaf, Viewseeker: An interactive view recommendation
tool, in: BigVis Workshop, 2019.
[10] X. Zhang, X. Ge, P. K. Chrysanthis, Leveraging data-analysis session logs for efficient, personalized,
interactive view recommendation, in: IEEE CIC, 2019.
[11] X. Zhang, X. Ge, P. K. Chrysanthis, Interactive view recommendation with a utility function of a
general form, in: HILDA, 2020.
[12] X. Zhang, X. Ge, P. K. Chrysanthis, Evaluating query strategies for different feedback types in inter-
active view recommendation, in: IEEE IV, 2020.
[13] B. Settles, Active learning literature survey, Tech. rep., University of Wisconsin-Madison Department
of Computer Sciences (2009).
[14] Diabetes data set (2019).
URL https://archive.ics.uci.edu/ml/datasets /Diabetes+130-US+hospitals+for+years+1999-2008/
[15] S. Flood, M. King, R. Rodgers, S. Ruggles, R. Warren, Integrated public use microdata series, current
population survey: Version 7.0 [dataset|, in: Minneapolis, MN: IPUMS, 2020.
URL https://doi.org/10.18128/D030.V7.0
[16] B. Tang, S. Han, M. L. Yiu, R. Ding, D. Zhang, Extracting top-k insights from multi-dimensional data,
in: ACM SIGMOD, 2017.
[17] K. Wongsuphasawat, D. Moritz, A. Anand, J. D. Mackinlay, B. Howe, J. Heer, Voyager: Exploratory
analysis via faceted browsing of visualization recommendations, IEEE Trans. Vis. Comput. Graph.
22 (1) (2016) 649-658.
[18] K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay, B. Howe, J. Heer,
Voyager 2: Augmenting visual analysis with partial view specifications, in: ACM CHI, 2017.
[19] D. Moritz, C. Wang, G. L. Nelson, H. Lin, A. M. Smith, B. Howe, J. Heer, Formalizing visualization
design knowledge as constraints: Actionable and extensible models in draco, IEEE Trans. Vis. Comput.
Graph. 25 (1) (2019) 438-448.

March 22, 2021

[20]
[21]

[22]
23]

[24]
[25]
[26]
[27]
28]
[29]

[30]

[31]
[32]
[33]
[34]

[35]

B. Mutlu, E. E. Veas, C. Trattner, Vizrec: Recommending personalized visualizations, ACM Trans.
Interact. Intell. Syst. 6 (4) (2016) 31:1-31:39.

R. Ding, S. Han, Y. Xu, H. Zhang, D. Zhang, Quickinsights: Quick and automatic discovery of insights
from multi-dimensional data, in: ACM SIGMOD, 2019, pp. 317-332.

NBA, - http://www.basketball-reference.com.

Quickinsights - insight types specification, https://www.microsoft.com/en-us/research/uploads/prod/
2016/12/Insight-Types-Specification.pdf (2020).

T. Liu, Learning to Rank for Information Retrieval, Springer, 2011.

M. Krzywinski, N. Altman, Significance, p values and t-tests, in: Nature methods, 2013.

S. Sarawagi, User-adaptive exploration of multidimensional data, in: VLDB, 2000, pp. 307-316.

H. J. Hamilton, L. Geng, L. Findlater, D. J. Randall, Efficient spatio-temporal data mining with
genspace graphs, J. Appl. Log. 4 (2) (2006) 192—-214.

J. D. Mackinlay, P. Hanrahan, C. Stolte, Show me: Automatic presentation for visual analysis, IEEE
Trans. Vis. Comput. Graph. 13 (6) (2007) 1137-1144.

C. Stolte, P. Hanrahan, Polaris: A system for query, analysis and visualization of multi-dimensional
relational databases, in: IEEE INFOVIS, 2000.

H. Gongzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan, R. Shapley, W. Shen, J. Goldberg-
Kidon, Google fusion tables: web-centered data management and collaboration, in: ACM SIGMOD,
2010.

M. Behrisch, F. Korkmaz, L. Shao, T. Schreck, Feedback-driven interactive exploration of large multi-
dimensional data supported by visual classifier, in: IEEE VAST, 2014.

A. Satyanarayan, J. Heer, Lyra: An interactive visualization design environment, Comput. Graph.
Forum 33 (3) (2014) 351-360.

D. Mottin, M. Lissandrini, Y. Velegrakis, T. Palpanas, New trends on exploratory methods for data
analytics, VLDB 10 (12) (2017) 1977-1980.

X. Ge, Y. Xue, Z. Luo, M. A. Sharaf, P. K. Chrysanthis, REQUEST: A scalable framework for inter-
active construction of exploratory queries, in: IEEE Big Data, 2016.

K. Dimitriadou, O. Papaemmanouil, Y. Diao, Explore-by-example: an automatic query steering frame-
work for interactive data exploration, in: ACM SIGMOD, 2014.

March 22, 2021

