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Traditional venue and tour recommendation systems do not necessarily provide a diverse set of recommen-

dations and leave little room for serendipity. In this article, we design MPG, a Mobile Personal Guide that

recommends: (i) a set of diverse yet surprisingly interesting venues that are aligned to user preferences and

(ii) a set of routes, constructed from the recommended venues. We also introduce EPUI, an Experimental Plat-

form for Urban Informatics. Our comparison with the state-of-the-art schemes indicates that MPG is capable of

providing high-quality venues and route recommendations while incorporating seamlessly both the notion

of diversity and that of serendipity.
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1 INTRODUCTION

The rapid developments in mobile computing lead to the transformation of traditional Yellow pages
to mobile applications that are conveniently reachable, up-to-date, localized, and personalized,
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connected to the surroundings, and versatile in many other ways. Platforms such as Yelp and
Foursquare allow their users to generate multimedia content (e.g., text, image) and share their
experiences with their peers.

Many systems have been developed and built on top of these platforms for recommending spe-
cific venues or Points of Interest (POIs) to be visited by users, i.e., digital travel guides. Given that
this digitization results in a richer and up-to-date content, the possibilities for providing flexible,
personalized guides are huge. Personalized tour systems have also appeared in the literature (e.g.,
[28]) that take into consideration spatiotemporal constraints, users’ interests, and so on. Never-
theless, many of the approaches to date are monolithic and myopic to user preferences, returning
generic recommendations where every location is treated equally (e.g., References [6, 16, 20, 38,
58]).

Example: The following scenario best illustrates how a well-designed digital travel guide will
help travelers. Pam is a businesswoman who visits Pittsburgh for the first time on a business trip.
After finishing all her business meetings in the morning, she wants to have a cup of coffee before
finding a restaurant for lunch, so she turns to her smartphone to quickly find 100 coffee shops and
restaurants near her via a digital travel guide. Since the digital travel guide already knows her cof-
fee preference, via a personalized profile, it is able to recommend precisely the nearest Starbucks,
as Pam likes Starbucks’ cappuccino. As she finishes her coffee, Pam wants to proceed with the
lunch, so she queries the digital travel guide for the top-two restaurants through a user-friendly
query interface. This time the digital travel guide provides her with two diverse restaurants, Sou-
vlaki and Pizza Hut, each from one of her two favorite food types, Greek and Pizza, respectively.
After lunch, Pam wanted to spend some relaxing time and visit some of the interesting venues of
Pittsburgh, so she again turns to her digital travel guide, this time for a recommendation of four
interesting venues. The digital travel guide knows Pam is a history and science enthusiast and she
loves to visit museums, so it first recommends two great museums, namely the Heinz History Cen-
ter and the Carnegie Science Center, which are about the same distance from her current location.
It also recommends for the third spot a smaller museum at Fort Pitt, established by the British
between 1759 and 1761 and later developed as Pittsburgh. However, for the fourth spot on the
recommendation list, instead of recommending another museum, the digital travel guide surprises

her with the recommendation of the Nationality Rooms of the Cathedral of Learning,1 which is
something that Pam has never heard of but instantly recognized as a must-go venue after reading
their descriptions.

Clearly, one of the key components of such a digital travel guide is its venue recommendation
algorithm. A common approach to venue recommendation among prior works—personalized or
not—is the ranking of venues based on some quality features (e.g., References [21, 28, 40, 51, 55]).
Consequently, the top-k venues are returned. There are two major drawbacks to this approach.
First, it does not allow for a diverse set of recommendations, because similar venues tend to have
a similar ranking, and thus the top venues will all be similar to each other with high probability.
Second, these systems are overwhelmingly focused on optimizing an efficiency objective, such as
minimizing the distance covered and maximizing the benefit obtained from the route as captured
by a measure of venue quality (e.g., References [28, 40, 55]). It is only in recent years that efforts
have been made to consider objectives that go beyond the pure efficiency (e.g., References [21,
51]), but they are still in a nascent stage.

The first drawback at a high level translates to a poor recommendation, since the effective choice
of the user is reduced, given that many of the recommended venues will offer similar experiences.

1The Nationality Rooms are a collection of 31 classrooms in the University of Pittsburgh’s main building Cathedral of

Learning depicting and donated by the national and ethnic groups that helped build the city of Pittsburgh. [2].
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Fig. 1. MPG provides a set of diverse recommendations without sacrificing the quality.

The second drawback leads to recommendations that do not capture the great and livable aspect
of a city, as the features that contribute to capturing a livable environment are missing in these
systems. That is, traditional recommendation systems do not encourage users to step outside their
comfort zones and discover unexpected but interesting venues. The objective in this article is
to design a Mobile Personal Guide (MPG) that addresses both drawbacks of the existing systems
and delivers an interactive response (i.e., sub-second) for each query to guarantee smooth user
interactions.

MPG Overview. To address the first drawback of the common approach, MPG takes into consid-
eration the user’s preferences and provides a set of venues that satisfy the imposed constraints
with maximized diversity. The diversity (as formally defined later in Section 3) is essentially a
measure of dissimilarity of the venues based on external attributes. Simply put, MPG outputs a set
of high-quality yet diverse venues. To illustrate this objective, let us consider again our example
scenario above, where 35 venues satisfy Pam’s preferences, depicted in Figure 1. Assume that Pam
only has time to visit 4 of them, as in our example scenario above. The venues represented by the
large circles correspond to the top-4 venues ranked; for instance, based on their popularity (i.e.,
top-4 venues with highest popularity). The venues represented by the triangle and the square are
ranked fifth and sixth, respectively. The rest of the venues are ranked lower and are represented
by the brown dots. The space corresponds to two external features (f1, f2) that define the simi-
larity of a pair of venues. In particular, the top-4 venues are very close in this space and hence
are similar (or in other words, they have low diversity in the space defined by f1 and f2). A sys-
tem that does not consider the diversity of the recommended venues would most certainly choose
these venues as output. However, MPG allows the user to explore the available venues in this latent
space—without sacrificing the quality of the recommendations—and so it would return to the user
the top-2 venues, as well as the fifth and sixth, ranked venues (the venues with a red fill). As we can
see, this set is more widespread in this latent space as compared to the top-4 venues (whether these
are restaurants or museums). Furthermore, since it is impossible for any recommendation system
to guarantee 100% user satisfaction, it is also important to construct a set of recommendations
with broad coverage of the initial candidate set of venues (i.e., recommend venues that represent a
large portion of the candidate venues). This will help the system to increase the chance of recom-
mending venues that are interesting to the user and provide the user with the possibility to zoom
into venues that they are interested in and discover more similar venues if they prefer.

In a nutshell, our approach consists of the following basic steps. First, we begin with assigning
intensity value Iv

p to venue v based on its popularity. We also assign a distance intensity value
Iv
d,q

, which captures the distance between the current location q of the mobile user and venue v .
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By combining Iv
p and Iv

d,q
, we obtained a composite intensity value, Iv

p,d
. We further tune these

intensity values based on the preferences of user u obtaining Iv
p,d,u

, which forms our composite

intensity value space Iv
k

. Finally, Iv
k

along with a vector fv that represents venue v in the latent
space (i.e., external attributes) form the input to our modified PrefDiv (Preferential Diversity) algo-
rithm [23], whose output is the required recommendations. One of the advantages of PrefDiv is
that it offers the mobile user the ability to adjust the balance between relevance and diversity in
the returned results.

To address the second drawback of the common approach, MPG introduces the important con-
cept of serendipity, which has been identified as a characteristic that can significantly improve the
quality of experience that a city-dweller has [41]. We define serendipity as the recommendation
of items that are relevant to a user but unexpected and happily surprising. Recent studies (e.g.,
[31, 39]) have shown that recommending items that are relevant while unexpected is an essential
factor in increasing user satisfaction and prevent filter bubbles.

It is worth pointing out that serendipity is a very different concept from diversity, which consti-
tutes ex-post process and can be combined with serendipity. Specifically, diversity in the context
of the recommendation systems can generally be understood as a property that applies to a set of
recommended items that measures how dissimilar items are to each other in a set, which involves
measuring the average pairwise dissimilarity of items through some dissimilarity metrics. Even
though a consensus definition for serendipity in the context of the recommendation system has
not yet been formed, based on previous studies (e.g., References [3, 46, 61]), relevance and unex-
pectedness have been identified as the two most essential elements in defining the serendipity in
the recommendation context. In particular, the relevance refers to the quantitative measure of the
benefit of recommending an item, and the unexpectedness requires the recommended items to be
unexpected by the user and is typically achieved through randomness and non-determinism algo-
rithms. Unlike diversity, serendipity does not prevent similar items to be recommended as long as
the recommended items are relevant to and unexpected by the user (e.g., the recommendation of
two historical museums to a history lover where he/she is not even aware that the second museum
exists).

In other words, diversity and serendipity are complementary to each other. To better illustrate
the difference between diversity and serendipity, let us consider a recommendation request for
a set of k items that are both relevant and diverse from a database with N items. Typically, the
number of mutual dissimilar items C in the database that are relevant is much larger than the
requested k items (i.e., k < C ≤ N ). A typical recommendation system will employ some method
to recommend a subset of k item fromC that has the best tradeoff between relevance and diversity,
such as top-k . In this scenario, adding serendipity means picking thek recommendation from these
C relevant yet diverse items in a non-deterministic fashion to fulfill the unexpectedness. Clearly,
from this example, one can tell that serendipity is a stand-alone concept that can be applied in
conjunction with the diversity and relevance.
MPG incorporates serendipity in two layers, both of which explore randomness. At the first layer,

serendipity is achieved through the recommendations of venues based on PrefDiv. We develop a
probability-based variant of PrefDiv, namely, Probabilistic Preferential Diversity (pPrefDiv), which
incorporates the necessary serendipity for a surprisingly interesting recommendation of venues.
The second layer of serendipity is achieved through the recommendation of routes. Specifically,
we utilize random walks to generate a set of initial routes. The randomness of this process essen-
tially captures the desired serendipity, since the venues to be included in the route are not chosen
in a way that optimizes a pre-defined objective. Last, the Pareto front is deployed to pick final
recommendations that show high quality with respect to both diversity and serendipity.
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Contributions. In summary, this article’s contributions are as follows:

• We introduce a new mobile service, coined MPG, which is capable of generating venue recom-
mendations that are not only popular and relevant to user’s preference but are also diverse.
Our method ranks venues based on user preferences, the distance to the venue, and the
popularity of a venue based on check-in information, and achieves diversity with a novel
semantic distance function.

• We formally introduce the notion of serendipity, and effectively integrate serendipity in
MPG into both venue and route recommendation by means of randomness while still pre-
serving the relevance and diversity aspects of recommendations. We describe in detail
Probabilistic Preferential Diversity (pPrefDiv), which supports serendipity in venues, and
formally introduce a random-walk-based routing method that achieves the serendipity in
route recommendation. Specifically, we propose four novel schemes for achieving serendip-
ity in route recommendations, namely PrefDiv+RandomWalk, pPrefDiv+RandomWalk, pPref-

Div+ShortestDistance, and pPrefDiv+HighestRelevence. We also propose a new metric to mea-
sure their degree of serendipity, which is the deviation of a route from the most anticipated,
non-deterministic, top route.

• We present as a proof-of-concept the design and implementation of two prototype systems:
(i) MPG for Android devices; and (ii) EPUI, our Experimental Platform for Urban Informatics
that supports the personalized venue and route recommendation in an interactive manner.
EPUI supports a number of state-of-the-art approaches for the venue and tour recommen-
dations and enables their comparison by presenting the recommended venues and tours
visually on a street map as well as displaying evaluation metrics through summary dash-
boards. EPUI’s implementation is flexible and allows for different diversity and indexing
schemes to be incorporated as well as new recommendation algorithms to be uploaded.
Hence, EPUI can be used by the broader research community to facilitate the evaluation of
alternative POIs recommendations and route construction algorithms.

• We experimentally compare our proposed solutions to other state-of-the-art alternatives
(i.e., K-Meroids, DisC Diversity, and Random for venue recommendations and two de-
terministic baseline schemes for serendipity-based route recommendations) using three
datasets (i.e., NYC, San Francisco, and Pittsburgh). In our comparisons, in addition to the
standard metrics (e.g., coverage, intensity value), we used our proposed metric that capture
the degree of serendipity in route recommendation. Our extensive experiments verify
the effectiveness of our proposed solutions, showing that MPG can successfully increase
coverage of the result-set compared to other alternatives, achieve a significantly better
Relevance-Diversity tradeoff than other methods, and offer high degree of serendipity. They
also verify its ability to support interactive response time.

The rest of the article is organized as follows: In the next section, we review related work. In
Section 3, we formally define our problem and describe the basic components of the MPG design.
We introduce the serendipity venue and route recommendation algorithms in Sections 4. The MPG
prototype and EPUI experimental platform are presented in Section 5. Our thorough experimental
evaluation and its findings are reported in Section 6. Section 7 concludes our work and briefly
describes our future directions.

2 RELATED WORK

In this section, we discuss existing works that are strongly related to our own. In particular, we
will present studies related to trip planning as well as methods for query personalization.

ACM Transactions on Internet Technology, Vol. 20, No. 4, Article 33. Publication date: October 2020.



33:6 X. Ge et al.

2.1 Trip Planning and Spatial Recommendations

During the past few years, there has been a large volume of studies that focus on methods for
personalized location/POI recommendations to social-network users [8, 47, 57]. The majority of
existing work utilizes collaborative-filtering techniques [57] or geometric embeddings [8], or they
even incorporate features present in the users’ social network [47] to associate every venue with
a score, which is representative of the probability of a user enjoying (or liking) a particular venue.
The aforementioned studies consider and evaluate each venue independently. Hence, motivated
by this monolithic view of these methods, recent work has focused on recommending tours of
locations. For instance, De Choudhury et al. [16] focus on segmenting streams of spatiotempo-
rally tagged photos into paths and then assembling these paths into itineraries. Similar studies
by Kurashima et al. [40] and Yoon et al. [58] are based on geotagged content from photo-sharing
media (e.g., photo streams, GPS trajectories) to recommend future travel paths. However, these
approaches come with their drawbacks. For example, to be applicable, the presence of training
sequences of spatiotemporally tagged photographs (or other similar traces) is required. These ap-
proaches cannot handle multiple types of venues that cater to different user needs. The same is
true for interactive systems [6, 20, 38], which iteratively personalize or improve a tour based on
user feedback.

The support for multiple types of venues is considered by Ardissono et al. [5], where the user
manually selects a venue from each desired type, and then a tour traversing the selected venues
is proposed. More recently, Gionis et al. [28] developed a system based on dynamic programming
algorithms, which provides spatially constrained tours based on user preferences of the category
of venues. Other spatial recommendation approaches focus on reconstructing and recommending
routes based on existing location trajectories (e.g., References [11, 55]).

Existing works (e.g., References [29, 42, 43, 57]) that employed a collaborative filtering-based
approach for venue recommendation identify a set of similar users based on user previous in-
teractions (e.g., feedbacks, ratings) with venues and then predict a user’s rating for a venue that
they have not rated based on the observed ratings of the venue of similar users and the proper-
ties of the venue. In recent years, one commonly used algorithm for collaborative filtering–based
recommender systems is matrix factorization (e.g., References [29, 42]) that decomposes a user-
item rating matrix into a product of two-factor matricesU and I . The prior represents the relation
between some latent factors and the users, and the latter represents the relation between latent
factors and the items. Such decomposition essentially maps both users and items to a joint latent
factor space of dimensionality f , such that recommendations are derived based on the user-item
interactions modeled as inner products in that space. Matrix factorization can also be generalized
to accommodate more information (e.g., contextual) going beyond just the information of users
and items. Such a generalization of matrix factorization is called tensor factorization [32], which
allows for more flexible and generic integration of multi-dimensional data. Instead of the tradi-
tional two-dimensional user-item matrix, tensor factorization integrates additional information
by modeling the data as an N-dimensional tensor (e.g., User-Item-Context).

Recently, Lu et al. [43] has proposed methods that aim to promote serendipity in matrix
factorization–based recommender systems. However, these methods use “serendipity” as a way
to recommend unpopular items that are relevant to a user’s preference and do not not capture
the non-deterministic, unexpected characteristic of true serendipity. Although matrix- or tensor
factorization-based techniques provide a high degree of accuracy on the estimation of the prefer-
ences between users and items, they do not provide any guarantees for diversity or serendipity of
the results. Furthermore, matrix- or tensor factorization-based recommender systems suffer from
cold start–related problems (e.g., when a new user or item has been added to the system) as well
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as low scalability due to their superlinear time and space complexity [52]. Therefore, they are not
suitable for interactive exploratory range queries in digital travel guides that demand sub-second
latency.

Other recent works (e.g., References [7, 60]) have studied the problem of recommending a trip
with a diverse set of venues by employing taxonomies or categorical hierarchies to diversify the
venues. Their approaches only capture the coarse-grained difference between venues, and, thus,
they are unable to distinguish between venues that are within the same category. As such, for a
top-4 query that recommends four venues from two venue categories coffee shop and gym, they
could recommend {Starbucks 1, Starbucks 2, 24 Hour Fitness A, and 24 Hour Fitness B} rather than
the more diverse recommendation of {Starbucks 1, Costa Coffee, 24 Hour Fitness A, and Anytime
Fitness}.

Existing work addresses the problem of finding spatially diverse routes in two different ways.
Lu et al. [44] proposed to integrate the output of several different location recommender systems
to form the top-k recommendations with two aggregation strategies: (i) to use the scaled score
produced by each recommender systems and (ii) to rely on the ranked position of a location in
each recommender system’s recommendation and assign higher scores to the top locations. Both
these aggregation strategies have their drawbacks. The score-based approach requires a proper
scaling between the scores produced by different recommendation algorithms, which is typically
a challenging task, and the position-based approach is less effective when the overlap between
the recommendations produced by different algorithms is small. Furthermore, it does not provide
explicitly guarantee on the diversity of the final recommendations. Xu et al. [56] propose to gen-
erate the desired subset of spatially diverse routes from a large set of relevant but semantically
similar routes (i.e., routes that pass through POIs of the same categories given by the user). Since
this approach only focuses on finding routes that are diverse with each other based on the spatial
distance between the two routes, it does not take into consideration the semantic diversity be-
tween POIs or serendipity. To the best of our knowledge, there is no study to date that considers
the venue coverage, semantic diversity (in a latent space) in combination with serendipity when
it comes to recommendations.

2.2 Query Personalization

Relevance. The combination of user preferences and result diversification techniques, which yield
the Relevance rankings, have been previously proposed to deal with the problem of information
overload (i.e., avoid overwhelming users with a large volume of irrelevant results). Ranking tech-
niques are comprehensively surveyed in Reference [53].

Mostly these techniques can be distinguished based on the type of preferences they support
for filtering and ordering data. These techniques primarily handle only one type of preference,
either quantitative or qualitative. However, each preference type has its own advantages and dis-
advantages. Hybrid schemes that support both qualitative and quantitative preferences have been
proposed in an attempt to exploit the advantages of both types of preferences while eliminating
their disadvantages [27, 37]. In this work, our proposed algorithms can work with any existing rel-
evance ranking model that returns a set of sorted tuples/objects along with their scores/intensity
values.

More recently, in Reference [10], the authors studied the problem of producing rankings while
preserving a given set of fairness constraints. In particular, the proposed algorithm takes as input,
a utility function, a collection of sensitive attributes (e.g., gender, race) of each item, and a col-
lection of fairness constraints that bound the number of items with each sensitive attribute that
are allowed to appear in the final results. It outputs a ranking that maximizes the relevance with
respect to the given utility function while respecting the fairness constraints.
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Diversity. In recent years, result diversification has been extensively studied in many different
contexts (e.g., References [18, 33–36]), and with various definitions such as similarity, semantic
coverage [4], and novelty [15]. In our work, we focus on the similarity definition and use MaxMin
and MaxSum, which are two widely used diversification models, as baselines.

The goal of these two diversification models is to select a subset S from the object space R, so
that the minimum or the total pairwise distances of objects in S is maximized. Recently, a number
of variations of the MaxMin and MaxSum diversification models have also been proposed (e.g.,
References [17, 48]) to address the problem of diversifying continuous data. Formally, MaxMin
and MaxSum are defined as follows:

Definition 1. MaxMin generates a subset ofR with the maximum f =minpi ,pj ∈Sdt (pi ,pj ), where
dt is some distance function pi � pj for all subsets with the same size.

Definition 2. MaxSum generates a subset of R with the maximum f = Σoi ,oj ∈Sdt (oi ,oj ), where
dt is some distance function oi � oj for all subsets with the same size.

DisC Diversity (or DisC for short) [18] is the most recently proposed diversity framework and
solves the diversification problem from a different perspective. In DisC Diversity, the number of
retrieved diverse results is not an input parameter. Instead, users define the desired degree of
diversification in terms of a tuning parameter r (radius). DisC Diversity considers two objects oi

and oj in the query result R to be similar objects if the distance between oi and oj is less than
or equal to a tuning parameter r (radius). It selects the representative subset S ∈ R according to
the following conditions: (i) For any objects in R, there should be at least one similar object in S ,
and (ii) all objects in S should be dissimilar to each other. These two conditions ensure both the
coverage and the dissimilarity property of a diverse result set.

The key differences between PrefDiv algorithms used by the MPG and DisC Diversity are as
follows: (i) PrefDiv algorithms follow the Top-k paradigm, which provides users with the option
to specify the size of the final result set by assigning a value to parameterk , whereas DisC Diversity
adjusts the size of the result set by changing its radius parameter r . (ii) The PrefDiv algorithms
focus on both the relevance of the result set with respect to the users’ preference and the diversity

of the result set. DisC Diversity focuses mainly on the most diverse representative subset with
two scenarios that only illustrate the possibility of using DisC Diversity to handle such relevance-
aware diversity requests; however, they do not mention any specific strategies on how one can
dynamically change the radius r .

Another way to generate a diverse, representative set of results is through clustering. One ex-
ample of this would be k-Medoids, which is a well-known clustering algorithm that attempts to
minimize the distance between points in a cluster and the center point (medoid element) of that
cluster. The k-Medoids algorithm can be classified into two stages: In its first stage, it generates a
set of k clusters C = {c1, c2, . . . , ck} based on some distance function dt . In the second stage, one
element from each cluster is selected to be part of the result set R. Several strategies for selecting
an element from each cluster could be employed. For instance, one strategy is to choose the center
point of each cluster, which is expected to deliver high diversity, and another strategy would be
to choose the point that has the highest intensity value for each cluster. However, since there is
no parameter that can be tuned either manually or automatically to balance the tradeoff between
relevance and diversity, k-Medoids is unable to balance such a tradeoff in fine granularity.

Multi-Criteria Objective Optimization. Even though the goal of diversity is to avoid loss of po-
tentially important data due to its low ranking, the result of diversification does not automatically
imply relevance for the users. This was the underlying motivation for the top-k diversification
techniques, such as PrefDiv [23], Swap [59], the Query Manifold (QM) framework [62]. This was
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also the motivation for the multi-objective optimization approaches in which the first objective
is relevance and the second objective is dissimilarity [63]. As opposed to PrefDiv, Swap, and the
multi-objective optimizations that recommend relevant and diverse data, QM recommends a set of
relevant and diverse queries.

The difference between PrefDiv and Swap is that the latter seeks diversity through pairwise
distances of items among the result-set and filters out items that contribute less to diversity. Swap
ensures relevance by removing items that drop the relevance below a pre-defined threshold. In
contrast, PrefDiv seeks diversity by eliminating similar items and ensures relevance by using a
relevance-focused greedy algorithm that can reflect the user-specified relevance distribution.

The most widely known approach that is targeted directly at optimizing the tradeoff between
diversity and relevance was introduced in Reference [9]. In this work, the authors have proposed
the twin-objective function called Maximal Marginal Relevance (MMR), which combines both rel-
evance and diversity aspects in a single comprehensive, objective function with a scaling factor
λ. When λ = 1, the MMR function equals to a standard relevance ranking function, when λ = 0 it
computes a maximal diversity ranking. Compared to PrefDiv, MMR always requires to compute its
objective function against the entire set of initial candidate items for each of its k representative
items, whereas PrefDiv does not rely on a single comprehensive, objective function and in most
cases only requires a very small number of comparisons for each of its k representative items.
Recently, a new MMR function that integrates regret minimization was proposed to generate the
relevance score [30]. This new score attempts to minimize the disappointment of users when they
see k representative tuples rather than the whole database.

Div-Astar [50] is another multi-criteria objective optimization solution that is graph based, in
which each node corresponds to one item in the original data. This diversity graph is sorted ac-
cording to the relevance score, and an a∗ algorithm is used to find the exact solution for diversify-
ing top-k results. That is, Div-Astar considers the problem as finding the optimal solution for the
maximum weight independent set problem, which has been proven to be NP-hard.

Our proposed MPG system differs from all of the above works, as MPG leverages the capability
of pPrefDiv, the nondeterministic version of PrefDiv, to provide venue recommendation that opti-
mizes three important aspects of venue recommendation (i.e., relevance, diversity, and coverage),
while delivering results that are unexpected by the user. Furthermore, MPG is capable of providing
serendipity-based route recommendations with relevance and diversity in mind.

3 MPG DESIGN

In this section, we introduce the formal underpinnings of MPG and its core components (Figure 2).
We begin by formally defining relevance and diversity that are central to our work.

3.1 Relevance, Intensity, Diversity, Similarity, and Coverage

Relevance. We represent the degree or score of relevance of an item o to a user u by the Preference

Intensity Value (Io
u ).

Definition 3. Preference Intensity Value (I ) is a real value between −1 and 1. Negative prefer-
ences are expressed using any value in [−1, 0); −1 is used to express complete dislike. Positive
preferences are expressed using any value in (0, 1]; 1 is used to capture the most likability. Equal-
ity/indifference is expressed using 0.

Diversity. We measure the diversity of a set of items S by measuring how dissimilar, i.e., the
semantic distance beyond a threshold, each item in S is with respect to all other.
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Fig. 2. MPG system architecture.

Definition 4. Dissimilarity: Let O be the set of items in the database. Two objects oi and oj ∈ O
are dissimilar to each other dsmϱ (oi ,oj ) if dt (oi ,oj ) > ϱ for some distance function dt and a real
number ϱ, where ϱ is a distance parameter, which we call radius.

Definition 5. Similarity: Two objects oi and oj ∈ O are similar to each other if dt (oi ,oj ) ≤ ϱ for
some distance function dt and a real number ϱ. We use simϱ (oi ,O ) to denote a set of items in O
that are similar to an item oi , such that ∀oj ∈ simϱ (oi ,O ),oj � oi .

Definition 6. Coverage: Given a set of items S and a result-set R, where R ⊆ S , coverage corre-
sponds to the percentage of items in S that satisfies dt (oS ,oR ) ≤ ϱ, such that oR ∈ R and oS ∈ S ,
where dt is some distance function and ϱ is a real number parameter.

3.2 MPG Objective—Problem Statement

We first formulate the algorithmic problem that lays in the epicenter of MPG and then discuss the
components of our solution.

Problem 1. Given a set of geographical points G = {д1,д2, . . . ,дl }, a popularity index ξдi
for lo-

cation дi , a query point q, a reach r , a desired level of serendipity ψ , and a profile set that encodes

user preferences P = {p1,p2, . . . ,pn } and identifies a setG∗ ⊆ G ( |G∗ | = k ) with maximized diversity

Δ(S), while satisfying the constraint set h(G∗,P,q, r ,ψ , ξ ).

In our setting, the setG corresponds to the set of available venues/PoI. The query point q corre-
sponds to the current location of the mobile user, while r represents the maximum allowed distance
between q and any point in the chosen solutionV ∗, andψ indicates whether serendipity would be
involved in the query. The set of preferences P captures the profile of the mobile user with respect
to his/her interests. Finally, the constraints described by function h include: (i) a geographic con-
straint that ensures that the maximum distance between the currently location of the mobile user
and any venue recommended does not exceed r (i.e., d (q,vi ) ≤ r ,∀vi ∈ V ); and (ii) a personaliza-
tion constraint that ensures that the output set of venues is compatible with the user preferences
(i.e., V |= P).

Given this problem setting, the actual MPG system includes an interface that will obtain the
following: (i) the current location of the user q (e.g., through the GPS sensors, NFC sensors); (ii) the
user inputs such as the reach r ; and (iii) the set of types of venues she is interested in and the
number of venues k she would like to know about. The preference of the user will be stored either
in the system (i.e., bound to the user account) or stored on the mobile device and uploaded to
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Fig. 3. Pam’s sample hierarchical user profile. The first level corresponds to the coarse-grained preference
profile (P1), while each one of the sub-trees stemming from P1 corresponds to the preferences within each
category (e.g., preference P2 corresponds to the “Cafe” venue type).

the system/server at the time of the request. In response to a request, MPG provides a set V ∗ of
the recommended venues based on the definition of Problem 1. These recommended venues can
further be used for route recommendations if desired or requested.

3.3 Venue Preferences

MPG utilizes a hierarchical profile P that mirrors the typical venue classification. In the typical
classification every venue v is associated with a categorical type Tv , and every category may be a
subcategory of another category. For example, an Italian pizzeria belongs to the category “Italian
restaurant,” which can belong to the higher-level category “Restaurants,” which can itself belong
to the category “Food,” and so on. At the top level of the hierarchy there are 10 categories, namely,
Arts & Entertainment, College & University, Food, Nightlife Spots, Outdoors & Recreation, Events,
Professional & Other Places, Residences, Shops & Services, and Travel & Transport. However, to build
highly personalized and specific profiles, we use the bottom layer of hierarchy, as well as the
specific venues visited.

In particular, given the set of check-ins Cu of mobile useru, we build a hierarchical profile P. At
the top level, the preferences of the user are expressed in terms of the (normalized) frequencies of
this user’s visitations with respect to the types of venues. The second layer of the user profiles fur-
ther provides the normalized frequencies of venues for the different types of locations visited byu.
Figure 3 presents a sample profile for user Pam in our example scenario (in Section 1). Preference
P1 is a coarse-grained preference profile, which informs the system that Pam prefers to spend 40%
of her time in coffee shops, 10% in museums, 20% in burger joints, and 30% in Greek restaurants.
Preferences P2 − P5 are able to distill further Pam’s preferences. For instance, she appears to prefer
Starbucks more than Peet’s coffee. Such a preference profile can nowadays easily be constructed
with a variety of services, e.g., Google Maps Timeline; a detailed discussion around the construc-
tion remains outside the scope of this article. In our prototype implementation, we combine the
user check-in information from Foursquare with the foursquare category hierarchy to build the
user profiles [1].

3.4 MPG Intensity Value

MPG utilizes a preference intensity value for relevance that is a composite of syntactic-based
and semantic-based intensity values: distance-based, popularity-based, and profile-based intensity
values.
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3.4.1 Distance-based Intensity Value. The physical distance between the current location q of
the mobile user and venue v can also be used to obtain an intensity value for v . In particular with
dv

q being the normalized distance between q and v’s location the distance-based intensity value
can be defined as:

Iv
d = 1 −

dv
q

r
. (1)

In the above equation, the distance has been normalized based on the maximum allowed distance
from Problem 1, that is, r . Note here that dv

q can be, in principle, equal to 0. However, this happens
when the current user location q is at a venue v . Given that the user is already at this location,
these venues are not considered by our system.

3.4.2 Popularity-based Intensity Value. An important factor that can impact the choice of a
venue v from MPG is its popularity. With cv being the number of total visits in venue v , i.e., the
number of check-ins inv , and sv being the number of unique visitors inv , we define the popularity-
based intensity value of v as:

Iv
p = λ · cv

max
i ∈V

ci
+ (1 − λ) · sv

max
i ∈V

si
, λ ∈ [0, 1], (2)

where V is the set of all the venues and λ is a scaling factor between the total number of visitors
and the number of unique visitors. When λ = 1, only the number of total visitors determine the
popularity-based Intensity value of a venue and when λ = 0, only the number of unique visitors
determine the popularity-based Intensity value of a venue. The default is λ = 0.5. This intensity
value essentially corresponds to the popularity index ξ used in the formal definition of the MPG
problem.

3.4.3 Profile-based Intensity Value. The degree or strength of relevance of a venue v is ex-
pressed by the preference-based intensity value Iv

u derived from the user’s profile. In particular,
the profile-based intensity value is a combination of the score of the type of the venue (i.e., the
coarse-grained preference) with the specific venue (i.e., fine-grained preference) score. As stated
above, since these scores are derived from the user’s check-insCu , the profile-based intensity value
Iv
u for venue v and user u is computed as follows:

Iv
u = ω ·

Cv
u∑

vj ∈t
C

vj

u

+ ω ·

∑
vj ∈t

C
vj

u∑
t ∈T

∑
vj ∈t

C
vj

u

, (3)

where ω is the tradeoff parameter between the coarse-grained and fine-grained preference scores
with a default of 0.5, Cv

u is the number of check-ins that u had in v , t is the venue type of v and
T is the set of all venue types. Going back to Pam’s case (Figure 3), the coarse-grained preference
score would reflect her preference toward the nodes in the second level of her hierarchical user
profile (i.e., Cafe, Pizza, Greek, and Museum), and the fine-grained preference score would be her
preference toward the leaf nodes of her hierarchical user profile.

3.4.4 Composite Intensity Value. Having distance-based intensity value Iv
d

and popularity-
based intensity value Iv

p , we can combine them in one intensity score as follows, with γ the scaling
factor:

Iv
d,p = γ · I

v
d + (1 − γ ) · Iv

p ,γ ∈ [0, 1]. (4)

We can further combine Iv
d,p

with profile-based Iv
u in a manner similar to Equation (4) and obtain

a value that combines the profile preference, the popularity, and the distance of the venue from
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the current location of the user. More specifically:

Iv
u,p,d = α · Iv

u + (1 − α ) · Iv
d,p ,α ∈ [0, 1]. (5)

Equation (5) combines three different elements (user preference through Iv
u , venue popularity

through Iv
p or Iv

p,π and geography through Iv
d

) into a single intensity score. This combined score
is the composite MPG intensity value of v , Iv

k
. Here, we would like to emphasize that the order

with which we combine the three intensity values (i.e., Iv
u , Iv

p (or Iv
p,π ), and Iv

d
) to obtain Iv

k
(or

Iv
k,π

) does not impact the recommendations of MPG. This is due to the fact that MPG outputs a total

order of the venues based on these three factors. The absolute values themselves for Iv
k

will be
different, but the order will always be the same. Furthermore, to provide an additional degree of
personalization, each of the above functions includes adjustable tradeoff parameters (i.e., α , γ , λ,
ω) that are personalizable with respect to user interest.

Based on the above discussion, the results of the composite intensity value (i.e., Equation (5))
can be obtained in constant time O(1). Therefore, the overall runtime per query for computing
composite intensity value for each user query is linear with respect to the number of the initial set
candidate venues involved in the user’s range query.

3.5 The Semantic Similarity Measurement

In order for MPG to produce semantically diverse results, there must be a way to measure the se-
mantic distance between two venues. Due to the ambiguous nature of venues, it is challenging
to obtain a precise measure between an arbitrary pair of venues. To address this challenge, we
propose a two-part semantic similarity measure that combines both the categorical information
of the venue and the semantic of the venue’s name to produce the accuracy measure of seman-
tic similarity between any pair of venues. Next, we discuss the details of our semantic distance
function.

3.5.1 Category Tree. As mentioned previously, MPG leverages the Foursquare Category Hierar-
chy [1] to derive the user preferences and build user profiles. However, such information can also
be used to determine the similarity among venues. In particular, MPG accelerates both operations
by constructing a category tree to capture the category structure of venues in Foursquare as a
tree. Each internal node in the category tree represents a type of venue, where each internal
node represents the subcategory of the parent node with each leaf node representing the actual
venue. There are in total of 10 categories at the top level of this hierarchy. Each internal node in
a category tree contains the following attributes: ID of the category it represents, the name of the
category, a pointer to the parent node, and a list of pointers to each of its children nodes. Since
a category tree can have an unlimited number of degrees, all of the children node pointers are
stored as hash tables, with the key being venue ID and the value is the actual pointer.

The user profiles are further derived from the preference hierarchy, as described above in Sec-
tion 3.3. The preference hierarchy consists of the top-level categories and the leaf nodes of the
category tree (Figure 3). The category tree can be used to calculate the similarity distance between
two venues vi and vj as follows:

SimT r ee (vi ,vj ) = 1 − Ancestors_Path

Lonдest_Path
, (6)

where Ancestors_Path is the number of common ancestors between the venues vi and vj and
Longest_Path is the number of nodes on the longest path to the root from either vi and vj .

3.5.2 Name Semantics. Although the category tree is able to measure the similarity between
two venues, this measurement is not very accurate as it only provides a coarse granularity distance
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between two venues. Specifically, this measurement cannot distinguish the difference between two
venues that are under the same subcategory, for example, “McDonald’s” and “Burger King,” as both
of them share the exact same ancestors.

Our hypothesis is that the names of venues reflect their identity/semantics in a finer granularity
than their category type. Therefore, to overcome this limitation, MPG utilizes Word2Vec [45], an
advanced NLP technique, which supports fine granularity distance calculation between two venues
by going beyond syntactic comparisons. Word2Vec provides the implementation of two word-
vector representation computing models: Continuous Bag-of-Words model (CBOW), which predicts
the current word based on the sourcing words, and Continuous Skip-gram model, which seeks to
use the current words to predict surrounding words. Both of these models are based on the Neural
Net Language Model.

With Word2Vec, the similarity of word representations goes beyond simple syntactic regular-
ities. Specifically, word vectors capture many linguistic regularities. For example, after obtaining
the word representation in vector space, the resulting vector can have the following properties,
such that vector(‘King’) - vector(‘Man’) + vector(‘Woman’) results in a vector that is closest to the
vector(‘Queen’). MPG uses CBOW model to generate all word vectors.

The difference between two words under Word2Vec are calculated through the cosine similarity
of two-word vectors, such that cosine similarity is defined as follows:

SimV ec (A,B) =

∑n
i=1 AiBi√∑n

i=1 Ai
2
√∑n

i=1 Bi
2
, (7)

where n is the length of vector, Ai and Bi are elements of vector A and B, respectively.
The current word vectors we adopted support phrases that consist of up to two words. For

venue names that have more than two words or are not contained in the word vectors, we split the
phrases into single words and then obtain word vectors for each individual word in the phrases.
The final vector of a phrase is obtained through the average of all vectors for each word in this
phrase. Since the accuracy of Word2Vec strongly depends on the quality of the word vectors,
a large real-world corpus is needed to obtain high-quality word vectors. We have experimented
with various corpuses in an attempt to generate the highest-quality word vectors. The best suitable
word vectors we obtained were generated from the entire English Wikipedia that consists of 55 GB
of plain text. The resulting word vectors contain over 4 million entries. To effectively query the
word vectors, MPG stores all the word vectors in memory as a hash map.

Similarly to category-tree-based similarity, the Word2Vec-based similarity has its own biases.
We were able to overcome these biases of the individual similarity metrics by combining them
(Equations (6) and (7)) and measuring the similarity between two venues vi and vj as follows:

Sim(vi ,vj ) =
SimT r ee (vi ,vj ) + SimV ec (A,B)

2
, (8)

where A and B are representing the vector representation of venue vi and vj , respectively.
Note that for efficiency purposes, both Category Tree and Word2Vec have been cached in main

memory as hash tables. This allows MPG to compute the above composited semantic distance (i.e.,
Equation (8)) in constant time for each venue and, in turn, enable a linear runtime complexity for
each user query.

3.6 Spatial Indexing Structure

One of the main operations in MPG is to generate a set of nearby neighbors. To speed up this process,
MPG utilizes the widely adopted M-tree spatial index structure [13]. M-tree uses triangle inequality
for efficient range queries, similarly to those required in MPG. An M-tree is a balanced tree index that
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is designed to handle a large scope of multi-dimensional dynamic data in general metric spaces.
An M-tree partitions the space in such a way that it generates spherical boundary regions around
some of the indexed items, called pivots, with some bounding radius r . Each internal node has at
most N entries and contains the following attributes: a pivot pv , the bounding radius r around pv ,
a pointer pt to the subtree that is rooted in the pivot pv , and the distance between pv and its parent
pivot. The distance of a subtree from pv is guaranteed to be within the bounding radius r . Each
leaf node in the tree has two attributes: the item that is being indexed and the distance between
this leaf node and the parent pivot. The efficiency of M-tree has been proven in a large body of
existing works (e.g., Reference [19]), and a detailed cost model for M-Tree’s search complexity can
be found in Reference [14].

4 MPG’S SERENDIPITY ALGORITHMS

In this section, we introduce the key algorithmic components of MPG, particularly the venue and
route recommendation algorithms, which produce relevant, diverse, and yet unpredictable results
within a specified latency requirement.

4.1 Venue Recommendation Algorithm

As discussed earlier in Section 1, serendipity is an important concept in helping recommenda-
tion algorithms improve user satisfaction, which is focused on recommending items that are rele-
vant while unexpected. To achieve the conflicting objectives of serendipity in recommend relevant

while unexpected venues, we incorporated the serendipity under the algorithmic framework of our
previously proposed algorithm Preferential Diversity (PrefDiv) [23] that produces a set of recom-
mendations, which balances the tradeoff between relevance and diversity in an efficient manner.
In fact, PrefDiv provides parameter A to tune the balance between relevance and diversity in the
returned result set of recommendations R. When A = 1, R would simply be the top-k items from
the initial set, i.e., the items with the k highest intensity values, and when A = 0, R contains k dis-
similar items from the initial set. Since PrefDiv is an iterative algorithm, in the caseA is in between
0 and 1, the final results will contain at leastA ∗ k items from every iteration, and in each iteration,
A will be divided by half.

The basic logic of PrefDiv (Algorithm 1) is as follows: It first sorts the objects in the initial
set O = {o1, ....,on } in descending order of their intensity values and splits them into groups of k
objects. In each iteration, it evaluates the objects in a group for diversity, starting with the group
that contains the highest intensity objects (Lines 4 and 5). Item oi with the highest Ioi

u in the group
TO is moved into the final result set R, if there is no object in R similar to oi , i.e., simϱ (oi ,R) is
empty; otherwise, it is marked as “Eliminated.” Also, all objects in simϱ (oi ,TO ) are marked as
“Eliminated.” While there are still objects left in TO that are not being marked as “Eliminated,” it

processes the next unmarked one oj with the highest I
oj

u in the same manner (Lines 6–13). Note
that theAccept () function on Line 9 always returns True for PrefDiv, as it is designed for pPrefDiv,
as discussed below. PrefDiv ends an iteration by finalizing the moving of objects into R according
to A, as mentioned above. If fewer than the required A ∗ kiter objects were moved in R, then the
difference s is covered by moving the top s objects with the highest intensity values that have been
marked as “Eliminated” in TO into R (Lines 14–16). The iterations continue until either k objects
are selected (|R | = k) or if all items in O are examined. If the size of R is still less than k , k − |R |,
then items with the highest intensity values that have been marked as “Eliminated” will be selected
and added to R (Lines 17–22).

The adoption of PrefDiv helps to ensure the recommended results are relevant to the user’s
intent. However, PrefDiv is a deterministic algorithm, and, thus, it does not incorporate the con-
cept of serendipity. To introduce serendipity in PrefDiv, we devise a non-deterministic version of
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PrefDiv, coined Probabilistic Preferential Diversity (pPrefDiv). pPrefDiv offers serendipity through
probability weighted by relevance. In contrast to PrefDiv, when a venue x is qualified to be one of
the recommendations for a range query q, x is not automatically included in the result set (Line 9:
Accept (x ) = True). Instead, pPrefDiv decides whether or not x can be added to the result based on
the following probability:

p (x is accepted) =
CI (x )

Argmaxi :OCI (i )
, (9)

where CI (x ) is the composited intensity value of Iv
d

, Iv
p , and Iv

u of a venue x and O is the set of all

venues within q. In the case of pPrefDiv, this probability (i.e., Equation (9)) is computed for each x
by theAccept () function on Line 9 of Algorithm 1. If x is accepted (Line 9), then it will be presented
as one of the recommendations. Otherwise, x will be discarded, and pPrefDiv would proceed to
the next venue.

For example, assume O = {o1, ....,on } is the initial set of venues, R is the set of result that
pPrefDiv is producing, ou is an unmarked venue that has a composited intensity value of 0.6, which
is currently the highest among all unmarked venue in O , and there is no object in R similar to oi

(i.e., simϱ (oi ,R) is empty). According to PrefDiv, ou should be included in the result-set. However,
pPrefDiv would use intensity value weighted probability to determine the acceptance of ou . For
instance, if the highest composited intensity value inO to be 0.8, then ou would have a probability
of 0.6/0.8 = 75% to be included in the result-set.

The introduction of randomness by means of a composited intensity value-based probability
allows pPrefDiv to incorporate serendipity into the venue recommendations, while still preserving
the high-intensity value and semantic distance feature of the PrefDiv algorithms.

Time Complexity. According to the above discussion (Algorithm 1), we can observe that the worst
case complexity of pPrefDiv is O (kN ). Fortunately, as the size of k is usually a small number,
pPrefDiv should typically behave as a linear algorithm. Furthermore, as we will show in our em-
pirical studies (Section 6), depending on the diversity constraints, pPrefDiv typically does not need
to examine all original items. That is, a very small set of items would be sufficient enough to pro-
duce R if the radius is appropriately defined.

4.2 Route Recommendation Algorithm

By employing pPrefDiv, MPG is capable of producing informative recommendations, which signif-
icantly benefits the user’s exploration of cities. However, the best route that the user can take to
visit these recommended venues remains to be decided. Thus, MPG further supports route recom-
mendations that are constructed based on the recommended venues with variable length.

To incorporate serendipity in the recommendation of routes, for a user-defined route length k ,
where k is the number of venues that comprise a route, we utilize random walks to generate sets
of initial routes.

Random Walks. The random walks are performed on a weighted graph between the venues.
The weight we of edge e considers the distance between the current location of the user, the
number of visits to the venue, and the user’s preference toward a certain type of venue. The
probability that our random walk will go through edge e is proportional to 1/w

γ
e , where γ is a

system parameter. The weight assigned is a tunable parameter that users can explore. Before
generating the final route recommendations, we perform a number of ξ random walks to yield
the initial set of candidate routes. Such serendipity incorporated by the random walks is essential
to enable the MPG to yield unexpected, yet interesting route recommendations to the user. Since
the complexity for generating one random-walk path is simply O(k), the total time complexity
for random-walks-based routing is simply O(ξk) per each user query.
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ALGORITHM 1: PrefDiv/pPrefDiv Main

Require:

1: Set of objects O , a size k , a radius ϱ and A tuning parameter

Ensure:

2: One subset R of O
3: S ← ∅
4: while there exists unmarked items in O and |R | < k do

5: S ← Pick k items with highest composited intensity from O
6: for all oi ∈ R do

7: mark ∀oj ∈ simϱ (oi , S ) as “Eliminated”

8: for all unmarked items oi in S do

9: if Accept (oi ) then

10: R = R ∪ oi , s.t. oi ∈ S is unmarked and Ioi
u ≥ I

oj

u : ∀oj ∈ S
11: for all unmarked ou ∈ S do

12: if ou ∈ simϱ (oi , S ) then

13: mark ou as “Eliminated”

14: while number of unmarked items in S < A · k do

15: R = R ∪ oi , s.t. oi ∈ S is unmarked and Ioi
u ≥ I

oj

u : ∀oj ∈ S
16: A = A · 0.5
17: if first iteration then

18: create new set G ← ∀oj ∈ S , s.t. oj is marked

19: O = O − (O ∩ S )

20: if |R | < k and ∀oj ∈ O , s.t. oj are marked then

21: while |R | < k do

22: R = R ∪ oj , s.t. oj ∈ G and I
oj

u ≥ Ioi
u : ∀oi ∈ G

23: Return R

Using this initial set of ξ routes, we determine our final recommendations by introducing the
quantitative measurements of serendipity. Since serendipity implies that the recommended routes
should be unexpected by the user, therefore, to capture this unexpectedness, we first have to de-
termine the most intended (i.e., expected) route, and then measure the difference between the
recommended route and the most intended route. As we have modeled the user’s intention using
the intensity score, thus, the routes r ∗I constructed based on the ranking of the intensity value
naturally represents the most intended route.

HighestRelevence. We propose HighestRelevence as the method to construct routes based on the
ranking of intensity value. For a given set of object O, such that |O | = k , and a length k ′, wherek ′ <
k , HighestRelevence constructs a route of length k ′ by selecting the first k ′ objects with highest
composited intensity value from O and then ordering each object in descending order according to
their combined intensity value. Whenever possible, HighestRelevence always seeks to separate two
venues with the same category (according to the category tree) and thus to improve the usability
of the route by preventing two venues with the same category to be visited in sequence.

Serendipity Metric. To measure the serendipity of a given route r , we first find the set of over-
lapping venues Or,r ∗

I
between r and the route that maximized the intensity value r ∗I . Based on the

set of overlap venues we compute the Overlap Factor (OvF) between r and r ∗I as follows:

OvF (r , r ∗I ) = 1 −
|Or,r ∗

I
|

|r | . (10)
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Then we compute the Normalized Longest Common Subsequence (NLCS) between r and the route
that maximized the overall intensity value r ∗I as follows:

NLCS (r , r ∗I ) =
|Lr,r ∗

I
|

|r | . (11)

Thus, the serendipity σr of r would be

σr = (1 − NLCS (r , r ∗I )) ∗OvF (r , r ∗I ). (12)

The idea for quantifying the serendipity of a route by measuring its normalized longest common
subsequence and overlap factor with the route r ∗I that has the maximum overall intensity value is
because r ∗I is the most anticipated route based on prior knowledge. Therefore, routes with large
deviation from the most anticipated route can be considered as less expected and thus have higher
serendipity.

Pareto Front. The quality of the recommended venues with respect to the relevance is ensured
by the venue recommendation algorithm employed. However, as the length of the routes could be
much shorter than the number of recommended venues, diversity becomes an issue as routes that
consist of only venues that are semantically close to each other (e.g., belongs to the same category).
Such routes are typically considered as not interesting routes. To prevent this issue, rather than
optimizing over a single dimension, MPG computes the Pareto Front of the random walks generated
based on their serendipity σr , as described above (Equation (12)), and their diversity δr [24]. The
Pareto Front includes the non-dominated points, which is a set of points that can no longer be
improved along one dimension without sacrificing the others, i.e., a route r is part of the Front iff

σr ≥ σr ′ and δr ≤ δr ′ , ∀r
′ ∈ R, where R is the set of the random walks.

Given the fact that the computed Pareto Front might include a large number of routes, we divide
it into n equal parts (through projections on the dimension with the maximum range), where n can
be adjusted by the user, and choose a representative route for each part of the front based on the
shortest distance to be covered. This ensures our system will provide the user with multiple alter-
native routes that capture different levels of the tradeoff between both serendipity and diversity
dimensions.

5 PROTOTYPE IMPLEMENTATION

We have implemented a prototype MPG both as a web service and a mobile app for Android
devices. We further developed a testbed, namely, Experimental Platform for Urban Informatics
(EPUI)2 [26], to evaluate the effectiveness of our proposed mobile service MPG and explore our
ideas for capturing serendipity.
EPUI consists of a user-friendly front-end interface and an efficient back-end server that incor-

porates our proposed venues recommendation algorithms as well as other components of MPG.
Further, EPUI supports a number of different approaches for the venue and tour recommendations
based on the user’s current location, which enables the user to compare the recommendations of
different recommendation engines by both presenting the recommended venues and tours visually
on the map as well as displaying evaluation metrics through summary dashboards.

Specifically, EPUI implements the following well-known venue recommendation algorithms:
DisC Diversity [19], K-Medoid, and the Random Selection–based recommendation approach. In
addition to these algorithms, EPUI enables the user to compare the performance of different venue
recommendations and route construction approaches, including our proposed MPG service, as well
as the user’s own customized algorithm to facilitate the research and development in both venue

2An introduction video can be found at http://tiny.cc/sf0d7y.
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Fig. 4. EPUI Input Panel. Fig. 5. EPUI Profile Panel.

Fig. 6. EPUI Algorithms Panel. Fig. 7. EPUI Display Results.

recommendation and route construction. For example, while we have implemented the same di-
versity scheme for all algorithms, our implementation is flexible and allows for different diversity
and indexing schemes that can easily be adjusted by the user.

The front-end of EPUI is constructed from javascript and PHP with the help of Google Maps API
for visualizing the results on a map. It communicates with the back-end server through JSON and
currently supports the cities of New York, San Francisco, and Pittsburgh. The recommended venues
or POIs are numbered and colored to match the number and the color of the algorithm making the
recommendation, along with different provisions to drive or walk to those recommendations. The
interface consists of five different panels: “Input,” “Profile,” “Algorithms,” “Path,” and “Analysis”
(Figures 4–6).

The “Input” panel provides the options for the user to specify the inputs that describe the basic
information for each query, such as the radial distance they are willing to travel, the number of
venues they would like to get returned, and the types of venues they are interested in exploring
(Figure 4).

The “Profile” panel provides the options for the user to specify their own preferences by se-
lecting any of the predefined profiles (i.e., ArtLover, FoodLover, OutdoorsLover, etc.) (Figure 5) or to
customize a selected preference profile by adjusting the values on the corresponding entry of the
category tree.

The “Algorithms” panel (Figure 6) allows users to choose, customize, and upload the recommen-
dation algorithm(s) that would be involved in the location query. To upload an algorithm, EPUI
simply requires the user to providing the name and the corresponding template java program,
and then it will be include in the algorithms list along with other existing algorithms. For each
algorithm, the user has an option for adjusting the composition of the ranking (Equation (5)) and
semantic distance (Equation (8)) function.

The “Analysis” panel visualizes the performance characteristics of the recommended venues
from the selected algorithms in tabular form as well as in a scatterplot. The listed characteristics
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in terms of quality are the relevance score of the recommended venues, their diversity, and the
radius of gyration for each set of the recommended venues. We also report the runtime taken for
each algorithm as an indicator of interactivity.

The “Path” panel (Figure 7) allows users to select the construction method of the routes based
on sets of recommended venues and a route network graph G. Once a route construction method
has been selected, it would determine the visit sequence of each recommended venues. Later, the
route that connects each venue (according to the specified sequence) would be constructed based
on the weights assigned on G. Furthermore, users are able to assign any weights to the edges of
G by upload their customized weight modules as well as specify their desired tradeoff between
weights that are currently assigned to each edge of G. Finally, this panel also includes a statistics
table that would display basic informations (e.g., originate, destination) or evaluation measures
(e.g., distance, risk, relevance, diversity) according to the user’s configuration.

6 PERFORMANCE EVALUATION

In this section, we present the detail evaluation of our proposed mobile service MPG using our
experimental platform EPUI and real-life data. Before discussing our findings, we introduce the
datasets used in our experimental evaluation.

6.1 Datasets

In our experiments, we used data collected across five months from Foursquare. Foursquare is a
major digital, location-based social network where the main interaction among its users is the
voluntary sharing of one’s whereabouts through check-ins. Foursquare has a rich, user-curated
venue database through which users can choose to notify their friends of their current location.
Furthermore, as mentioned in Section 12, we have used a Word2vec model that is trained on the
entire English Wikipedia. Note that this is the only MPG component that requires training data for
model training, and since it is used as a semantic distance measure, we did not create a separate
English Wikipedia testing data to test the performance of the word vector obtained from Word2vec.
In particular, our study utilizes the following information:

Venue database: We used Foursquare’s public venue API and queried information for 14,011,045

venues. Each reading has the following tuple format: <ID, latitude, longitude, # check-ins, #
unique users, type>. The purpose of this dataset is twofold: (i) obtain a database of all points-
of-interest (POIs) in a city and (ii) to obtain information that can be used as a proxy for the quality
of a venue (e.g., the number of unique users that have checked-in to the venue or the total number
of check-ins). We have queried the Foursquare venue database and have obtained the relevant
information for all the venues in New York City (NYC), San Francisco (SF), and Pittsburgh (PIT)
(depicted in Figure 8).

Figure 8 shows the population for the three respective cities when splitting into nine equal-
width partitions. The total number of venues for each city is (i) 471,052 in NYC, (ii) 73,623 in SF,
and (iii) 33,975 in PIT, and the standard deviation among the buckets for each city is (i) 80K in
NYC, (ii) 8.6K in SF, and (iii) 5.5K in PIT.

User check-in information: User preferences can be indirectly revealed through their historic
visitations (e.g., frequent visits at Chinese restaurants by Pam is a strong signal for her appeal to
this cuisine). To build realistic user profiles for our evaluations, we used a dataset collected by
Cheng et al. [12] that includes geo-tagged, user-generated content from a variety of social media
between September 2010 and January 2011. This dataset includes 11,726,632 Foursquare check-ins
generated by 188,450 users.
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Fig. 8. Spatial visualization of datasets population for an indicative 3x3 partitioning.

Table 1. Model Abbreviation

Models Description

PD(composite) Uses composite intensity value as the relevance score for PrefDiv.

pPD(composite) Uses preference-based intensity value as the relevance score for pPrefDiv.

DisC Only uses the result of DisC Diversity [19] as the final ranking without using PrefDiv.

k-Medoids Only uses the result of k-Medoids as the final ranking without using PrefDiv.

Random Only uses the randomly selected result as the final ranking without using PrefDiv.

6.2 Evaluation of POIs Recommendation

In this section, we will provide a detailed comparison between our proposed pPrefDiv with a num-
ber of baseline algorithms (as listed in Table 1) for POIs recommendations.

6.2.1 Methodology. In our evaluation, we have employed as baselines a number of algorithms,
including DisC Diversity, which is the state-of-the-art diversification algorithm that optimizes the
coverage of the result-set. We also included one well-known clustering algorithm, k-Medoids [49],
which aims to group a set of data objects into clusters through some distance measure, so each
object within a cluster are close to each other and objects outside of the cluster are disclosed
to the objects inside the cluster. In our experiment, we have implemented k-Medoids based on
Reference [49]. Since k-Medoids does not capture the relevance in any regard, we thus improved
the performance ofk-Medoids in balancing the relevance-versus-diversity tradeoff by choosing the
object with the highest intensity value as the final recommendation from each of itsk clusters. This
improvement significantly enhances the performance of the k-Medoids with respect to relevance
while exhibiting the minimum decrease in diversity. In addition, we also employed the random
selection of venues as another baseline to show the effectiveness of our proposed methods.

For all algorithms involved in our experiments, we utilized the semantic distance measure (Equa-
tion (8)) as the way to measure the distance between two given points. Table 1 summarizes all
models employed in our experiments, and the values of the parameters used are summarized in
Table 2.

We ran all our experiments on a computer with Intel Core i7 2.5-GHz CPUs, 16-GB Memory,
and 512-GB SSD and used the Foursquare datasets described in Section 6.1. We created individual
Foursquare user profiles as described above and three super-user profiles with more fine-grained
preferences by merging the profiles: (i) 1,000 Foursquare users (Super-user A); (ii) 500 Foursquare
users (Super-user B); and (iii) 350 Foursquare users (Super-user C). Note that the Super-user A
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Table 2. Parameter Configuration

Parameter Value Description

λ 0.5 scaling factor of number of visitors vs unique number of
visitors

γ 0.7 scaling factor of distance-based intensity value vs
popularity-based intensity value

α 0.5 scaling factor between profile preference vs popularity
vs distance of each

ω 0.5 scaling factor of coarse-grain preference vs fine-grain
preference

ξ 50 number of random walks to yield the initial set of
candidate routes

A 0.3 relevance diversity trade-off parameter for PrefDiv

ϱ 0.7 threshold for define a pair of dissimilar venue

K 10–50 number of venues recommend in each query

Radius 1.5 km the travel radius from user’s current location

Number of Locations 15, 50 number of recommend venues

Number of Categories of POIs Selected 5, 10 number of POIs involved in the recommendation

contains both Super-user B and Super-user C, where Super-user B and Super-user C are two
disjoint sets of profiles.

6.2.2 Experimental Evaluation Metrics. In our experimental evaluation, we use three well-
known metrics: Normalized Relevance [54], Average Similarity Distance (based on semantic distance
measure, Equation (8)), and Coverage [18].

Definition 7 (Normalized Relevance). Let O be a set of venues and O∗
k
⊆ O such that |O∗

k
| = k .

The Normalized Relevance ofO∗
k

is defined as the total relevance score ofO∗
k

over the sum of top-k
highest relevance scores of O .

In our experiments, Normalized Relevance is represented through two type of intensity values,
Normalized Composite Intensity Value (NCI) and Normalized Preference-based Intensity Value (NPI).

We defined Normalized Composite Intensity Value as:

NCI (x ) =
CI (x )

Argmaxi :OCI (i )
, (13)

where CI (x ) is the composited intensity value (Equation (5)) of a venue x and O is the set of all
venues within the currently range query q.

Normalized Preference-based Intensity Value is defined as:

NPI (x ) =
PI (x )

Argmaxi :OPI (i )
, (14)

where PI (x ) is the Preference-based intensity value (Equation (2)) of a venue x and O is the set of
all venues within the currently range query q.

The reason to employ NCI and NPI as the relevance measure is to show how much the relevance
has been preserved with respect to the given utility function. By comparing the aggregated inten-
sity score of the recommended representative subset O∗

k
with the k most relevant item (i.e., item

with highest intensity according to the given utility function) of the original setO , one can clearly
know the degree of the intensity value being preserved in the current representative subset O∗

k
.
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Fig. 9. Compare the relevance of different recommendation algorithms for NYC, SF, and PIT (Super-user A).

Definition 8 (Average Similarity Distance). Let O be a set of venues, the average similarity dis-
tance of O represents the average of the pairwise distances of the venues in O .

Due to the fact that two distinct instances in our dataset may be semantically duplicate venues
(e.g., two difference Starbucks), our experiments normalize Average Similarity Distance (ASD) to
take into consideration that different methods may return as a result of a list of venues with se-
mantic duplicates rather than a set and expressed as Redundancy Normalized Pairwise Distance
(RNPD):

RNPD (L) =

(
1 − |Unique (L) |

|L|

)
∗ASD, (15)

where Unique (O ) represents O without duplicates.
The reason to employ RNPD as the diversity measure is to show how each item contained in a

given representative setO∗
k

is different compared to the rest of the items inO∗
k

. The most intuitive
way to do so is to measure the pairwise distance (with a given distance measure) between each
pair of items, which is essentially the ASD defined above. Since recommending unique venues is

important in the case of venue recommendation, we included a penalty (i.e., (1 − |U nique (L) |
|L | )) for

recommending two or more duplicate venues in the recommendation result set, which forms the
Redundancy Normalized Pairwise Distance (RNPD).

Definition 9 (Coverage). LetO be a set of venues,O∗
k
⊆O such that |O∗

k
| = k and S ⊆O be defined

as the union of simϱ (vi ,O ) for allvi ∈ O∗k . The coverage of a subsetO∗
k

is defined as the percentage
of venues in S over the total number of venues in O , i.e., |S |/|O |.

As discussed with more detail in Reference [18], the reason to use coverage for evaluating the
degree of coverage provided by a representative subset O∗

k
is simply as it naturally represents the

percentage of the item has been covered by O∗
k

with respect to a given radius ϱ.

6.2.3 Experimental Results. In this section, we present the evaluation of all models in our ex-
periments. Specifically, we will show a comprehensive set of comparisons between our proposed
pPrefDiv and other alternative algorithms that show the capability of pPrefDiv in handling the
POIs recommendation.

As we have demonstrated previously, PD(composite) has exhibited the best performance when
compared to other PrefDiv-based models. We extend the same composition of the intensity value
to the non-deterministic variance pPrefDiv (1), which is a variance of PrefDiv that incorporates the
serendipity. Further, we compare PD(composite) (i.e., PrefDiv) and pPD(composite) (i.e., pPrefDiv)
to other well-known algorithms to show the performance of both PrefDiv and pPrefDiv-based
recommendation engine when compared to other existing alternatives.
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Fig. 10. Compare the diversity of different recommendation algorithms for NYC, SF, and PIT (Super-user A).

Fig. 11. Compare the coverage of different recommendation algorithms for NYC, SF, and PIT (Super-user
A).

Figure 9(a), (b), and (c) shows the average normalized composite intensity value (NCI) of all
models for New York City (NYC), San Fransisco (SF), and Pittsburgh (PIT). In these results, both
PrefDiv and pPrefDiv have constantly outperformed other alternatives in all three cities. In par-
ticular, PrefDiv and pPrefDiv have outperformed random by up to 263%, DisC by up to 93%, and
k-Medoids by up to 36%. Among all involved algorithms, k-Medoids has performed second best af-
ter the PrefDiv and pPrefDiv, which is due to the reasons that we have implemented k-Medoids in
a way that enhanced its ability to capture the relevance. Random achieves the worst performance,
because the number of highly preferred venues is much less than the non-preferred venues; thus,
blindly selecting venues would not deliver a good performance in terms of relevance.

Figure 10(a), (b), and (c) illustrates the Redundancy Normalized Pairwise Distance (RNPD) of
all models for all three cities. Here we have seen that all algorithms have achieved overall better
performance for RNPD when compare to NCI. This is as expected, since all involved algorithms
except Random have been optimized toward the diversity. We noticed that Random also performs
very well with respect to RNPD, which can be explained as follows. Since the number of neighbors
of given venues (in terms of semantic distance) is always going to be much less than non-neighbors,
those it is much easier for Random to generate a set of results that are semantically diversity than
to generate a set of semantically similar results. Here, we have seen that although PrefDiv and
pPrefDiv did not outperform all other alternatives, the price that both PrefDiv and pPrefDiv have
paid to achieve the high relevance score (in terms of relevance and diversity tradeoff) is extremely
small. When compared to the k-Medoids, which achieves the highest performance in semantic
diversity, PrefDiv and pPrefDiv are still just slightly behind.

Figure 11(a), (b), and (c) demonstrates the performance of coverage of all models. In this set of
results, we have seen that DisC and Random achieve the best performance in terms of coverage.
This is as expected, as the DisC utilized a greedy-based approach that is specifically optimized
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Fig. 12. Compare the runtime of different recommendation algorithms for different cities (Super-user A).

Fig. 13. Relevance vs. diversity (NYC). Fig. 14. Relevance vs. diversity (SF).

toward the coverage. As for the random, since it builds the result-set by evenly sample the venues
across all candidate venues in a given spatial query, it thus has a high likelihood to achieve excellent
coverage when dealing with datasets where data objects are distributed evenly across space. In the
case of urban datasets, semantically closer venues are more or less distributed evenly across the
city to prevent excessive competition and thus enable random to achieve high coverage. However,
the difference between PrefDiv (as well as pPrefDiv) with random and DisC is not significant.
Considering the performance advantage that PrefDiv and pPrefDiv have gained in the relevance,
therefore both PrefDiv and pPrefDiv still served as a much better venue recommendation engine
than other alternatives.

Figure 12(a), (b), and (c) demonstrates the runtime of all models for New York City, San Fran-
sisco, and Pittsburgh. Since the POIs recommendation involves humans in the loop, it is extremely
important for the system to maintain an interactive response time. To achieve such a goal, it re-
quires the algorithm to be as efficient as possible. From these experiments, we can see that both
PrefDiv and pPrefDiv have outperformed DisC and k-Medoids in runtime by orders of magnitudes.
The only alternative that is faster than our PrefDiv and pPrefDiv is the Random method; this is
because it does not require any complex computations. Such a huge difference in efficiency has
undoubtedly made the PreDiv and pPrefDiv to be better choices for POIs recommendations.

Figures 13, 14, and 15 present three scatterplots from New York City, San Fransisco, and Pitts-
burgh, respectively, that showed the capability of each algorithm in balancing the tradeoff between
relevance and diversity. Each point in these three plots also represents an average of 15 different
locations queries. For each algorithm, we have drawn 15 points based on three super-user profiles.
Thus, each super-user profile is responsible for five points, and each of these five points corre-
sponds to a different result-set size. As cycled in red, these results have clearly shown that both
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Fig. 15. Relevance vs. diversity (PIT).

our PrefDiv and pPrefDiv have delivered the best performance in terms of both relevance and di-
versity as the points generated by both algorithms are located on the most upper right corner of
the plot.

From our empirical studies, we have observed that six of the eight tunable parameters listed in
Table 2 are task-dependent parameters (i.e., λ, μ, γ , α , ω, ξ ), which means that they are much more
sensitive to different recommendation tasks (e.g., recommend venues/POIs, recommend movies,
or recommend documents) than different users or datasets. For this reason, the provided default
values for each of these six parameters in Table 2 can serve as a good starting point for any real-
world venues/POIs recommendation tasks.

The other two tunable system parameters (i.e., A, ϱ), which are required by the PrefDiv algo-
rithm, are user and dataset dependent. To address this issue, we are currently investigating meth-
ods to facilitate the tuning of these parameters and automatically compute the optimal value for
these two parameters based on the given context [22]. These new optimizations of PrefDiv would
be incorporated seamlessly into MPG as well as any other application that utilizes PrefDiv.

6.3 Evaluations of Route Construction

We further study the cost of incorporating serendipity through the random walk in route recom-
mendations and evaluate the performance of different route construction schemes.

6.3.1 Routing Schemes. In particular, we propose four specific schemes to combine our random-
walk-based routing method with our venue recommendation engines. These schemes are (i) Pref-
Div+RandomWalk, (ii) pPrefDiv+RandomWalk, (iii) pPrefDiv+ShortestDistance, and (iv) pPref-
Div+HighestRelevence.

PrefDiv+RandomWalk: This scheme aims to incorporate serendipity in route recommenda-
tion by combining a random-walk-based non-deterministic routing method with the deterministic
venue recommendation engine PrefDiv. In PrefDiv+RandomWalk, 50 random walks would be per-
formed based on the result-set of PrefDiv to generate 50 initial routes, each of lengthK ′. Later, one
random route with the best overall performance in terms of the average composited intensity value
and travel distance is selected from the Pareto Front (constructed using all 50 initial routes) as the
final recommendation. Therefore, this scheme combines deterministic venues recommendation
with the non-deterministic route recommendation.

pPrefDiv+RandomWalk: The pPrefDiv+RandomWalk scheme is similar to the previous
scheme except that the non-deterministic algorithm pPrefDiv has been employed as the recom-
mendation engine to achieve serendipity in both venue and route recommendation level. Thus, this
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Fig. 16. Compare relevance of different routing algorithms for NYC, SF, and PIT with Super-user A.

scheme combines non-deterministic venues recommendation with the non-deterministic route
recommendation.

pPrefDiv+ShortestDistance: For this scheme, serendipity is incorporated only in venue rec-
ommendations. As such, the shortest distance-based routing method is employed to replace the
random-walk-based routing. Particularly, once the set of recommendations have been generated
by pPrefDiv, the shortest route with sizeK ′ is constructed from these recommended venues, which
minimize the psychical distance according to the Euclidean distance.

pPrefDiv+HighestRelevence: This scheme is the same as the pPrefDiv+ShortestDistance
scheme, except that the route is constructed according to the ranking of the venue’s average com-
posite intensity value. Similarly to the above scheme, this scheme combines deterministic venues
recommendation with the non-deterministic route recommendation.

Baseline schemes: To evaluate the tradeoff among relevance, travel distance, and serendipity
for a given set of recommended venues V , st. |V | ≤ k and a length of the route K ′, st K ′ ≤ K , we
introduce two additional deterministic routing methods, (i) highest relevance routing and (ii) short-

est distance routing. The former, introduced in Section 4.2, takes the given set of recommended
venues and forms a route recommendation by visiting the top K ′ venues with the highest com-
posite intensity value according to their ranking of composited intensity value (i.e., normalized
relevance). The latter constructs the shortest travel distance route of size K ′ from V in a greedy
fashion. Further, we combine these two routing methods with PrefDiv to form as a baseline two
deterministic schemes, namely PrefDiv+HighestRelevence and PrefDiv+ShortestDistance.

6.3.2 Evaluation Metrics. To measure such costs, we use the normalized relevance (Definition 7)
of all venues contained in the route, the average similarly distance (Definition 8) of each pair of
venues in the route, and the total physical distance that user has to travel by following the route.
As explained in Section 4.2, to capture serendipity, we use the degree of serendipity (Equation (12))
of each route generated by MPG.

Similarly to Section 6.2.2, we have used the average composite intensity value as a measure
of Normalized Relevance and Redundancy Normalized Pairwise Distance for Average Similarity
Distance.

6.3.3 Experimental Results. We now present the evaluation of all route recommendation
schemes. Figure 16(a), (b), and (c) illustrates the average normalized composite intensity value
(i.e., relevance score) of routes generated from each scheme for New York City, San Francisco, and
Pittsburgh, respectively. In this set of experiments, all schemes are normalized with respect to the
PrefDiv+HighestRelevence, which is the upper bound for the relevance scores. From these exper-
iments, we observed that both random-walk- and shortest distance–based schemes perform com-
parably with respect to the relevance for all three cities. In addition, the serendipity-based scheme
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Fig. 17. Compare diversity of different routing algorithms for NYC, SF, and PIT with Super-user A.

Fig. 18. Compare serendipity of different routing algorithms for NYC, SF, and PIT with Super-user A.

(i.e., PrefDiv+RandomWalk and pPrefDiv+RandomWalk) still maintained, on average, 82% of the
composited intensity value when compared to the upper bound. This indicates that the serendip-
ity introduced by employing random walk as a routing algorithm did not significantly affect the
relevance of the routing. This is expected, since all schemes constructed their routes based on
the highly relevant recommendations produced by our venue recommendation algorithms (i.e.,
PrefDiv and pPrefDiv).

Figure 17(a), (b), and (c) shows the Average Similarity Distance between each schemes. The
results presented here are normalized with respect to the upper bound of the average redun-
dancy normalized pairwise distance for each range query and result-set size involved in the ex-
periment. From these results, PrefDiv+RandomWalk and pPrefDiv+RandomWalk demonstrate the
highest performance in maintaining the diversity of the generated routes. This is due to the rea-
son both HighestRelevence and ShortestDistance optimize toward a certain aspect of the result,
such as maximizing relevance or minimizing travel distance, these optimizations often come at
the price of sacrificing other contradictory aspects. However, the random walk does not suffer
from this issue as it is not optimized toward any specific aspects. Among all schemes, both Pref-
Div+HighestRelevence and pPrefDiv+HighestRelevence achieve the worst with respect to diver-
sity, which is expected, since venues that are highly relevant to a user’s preference have a higher
chance to be semantically close venues.

Figure 18(a), (b), and (c) demonstrates the performance with respect to the serendipity for
each schemes. These results indicated that the random-walk-based schemes achieved the high-
est serendipity. One interesting observation from these experiments is that incorporating the
serendipity in either the venue recommendation or the route construction alone is still able
to introduce a considerable amount of increase in the serendipity of the constructed routes.
Further, incorporating the serendipity into both venue recommendation and route construction
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Fig. 19. Compare travel distance of different routing algorithms for NYC, SF, and PIT with Super-user A.

(i.e., through pPrefDiv+RandomWalk) does not achieve a noticeable improvement over the Pref-
Div+RandomWalk. This shows that the randomness incorporated in the venue recommendation
and route construction does not monotonically increase with respect to the amount of randomness
of the scheme.

Figure 19(a), (b), and (c) shows the average travel distance of the routes produced by each
scheme. From these figures, we observed that compared to the shortest distance–based scheme,
the random-walk-based scheme does increase the travel distance. However, exploring cities with
shortest routes does not necessarily indicate that somethings is more interesting. In fact, users
may benefit more from longer travel distance when exploring a city, as it helps them to dis-
cover more places around the city. We also noticed that PrefDiv+HighestRelevence and pPref-
Div+HighestRelevence had produced routes that are shorter than random-walk-based schemes.
This is due to the fact that the popularity of a venue is considered as part of its composited in-
tensity value, as popular venues tend to be co-located with each other in a relatively small region
(e.g., downtown, shopping complex, etc.), and thus reduced the total travel distance for relevance
focused routing schemes.

7 CONCLUSIONS AND FUTURE WORK

In this article, we proposed and designed MPG, a mobile service that aims at three objectives: (i) to
provide a set of diverse and surprisingly interesting venue recommendations that are better aligned
with user preferences, (ii) to achieve sub-second interactive runtime in providing venue recom-
mendations with large dataset, and (iii) to form routes within venues recommended by our pro-
posed venue recommendation engine while still maintaining balance among Relevance, Diversity,

and Serendipity.
We achieved our first objective through the design of MPG, which incorporates user habits, the

reach willing to cover, the types of venues interested in exploring, popularity, and the diversity of
venues with multiple venue recommendations engines. The second objective is achieved with the
capability of pPrefDiv to efficiently produce the venue recommendations and the use of multiple
optimizations (e.g., efficient query indexing structures, hashing). The third objective is achieved by
proposing a set of routing schemes each targeting different objectives, setting each routing scheme
as a unique combination of one venue recommendation algorithm (e.g., PrefDiv or pPrefDiv) and
one routing algorithm (e.g., random walk, shortest distance) that incorporates difference levels of
serendipity while preserving the relevance and diversity aspects of the routes.

To evaluate our proposed mobile service MPG, we designed the EPUI testbed, which provides
user-friendly interfaces for both end-users and researchers. Our experimental evaluation through
EPUI with large Foursquare datasets. Our proposed PrefDiv and pPrefDiv algorithms have enabled
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sub-second interactive response time while still maintaining excellent balancing between Rele-
vance and Diversity.

Recently, MPG and EPUI were extended to support route construction while optimizing mul-
tiple simultaneous objectives (e.g., diversity, safety, happiness, serendipity) [25]. Furthermore,
the extended EPUI also serves as a testbed for exploring and evaluating venues and route
recommendation solutions by enabling researchers to upload their own algorithms and compare
them to well-known algorithms using different performance metrics.
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