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ABSTRACT

High-throughput sequencing and the availability
of large online data repositories (e.g. The Can-
cer Genome Atlas and Trans-Omics for Precision
Medicine) have the potential to revolutionize systems
biology by enabling researchers to study interac-
tions between data from different modalities (i.e. ge-
netic, genomic, clinical, behavioral, etc.). Currently,
data mining and statistical approaches are confined
to identifying correlates in these datasets, but re-
searchers are often interested in identifying cause-
and-effect relationships. Causal discovery methods
were developed to infer such cause-and-effect re-
lationships from observational data. Though these
algorithms have had demonstrated successes in
several biomedical applications, they are difficult
to use for non-experts. So, there is a need for
web-based tools to make causal discovery meth-
ods accessible. Here, we present CausalMGM (http://
causalmgm.org/), the first web-based causal discov-
ery tool that enables researchers to find cause-and-
effect relationships from observational data. Web-
based CausalMGM consists of three data analysis
tools: (i) feature selection and clustering; (ii) au-
tomated identification of cause-and-effect relation-
ships via a graphical model; and (iii) interactive visu-
alization of the learned causal (directed) graph. We
demonstrate how CausalMGM enables an end-to-end
exploratory analysis of biomedical datasets, giving
researchers a clearer picture of its capabilities.

INTRODUCTION

One of the primary goals of biomedical research is to
understand the etiology of chronic disease and disease

progression. Recent technological advances such as next-
generation sequencing (1) and the ubiquity of sensors (e.g.
smartphones, smartwatches, etc.) (2) have provided us with
large multi-modal databases capable of improving our un-
derstanding of chronic disease. However, two main chal-
lenges prevent the usage of common data analysis tools
on these datasets. First, most of these datasets are ob-
servational, so techniques that can automatically identify
cause-and-effect relationships from observational data are
required. Second, these datasets contain mixed data types
(i.e. continuous and discrete variables). Most common anal-
ysis techniques such as machine learning (3) and correla-
tion networks (4) are ill-suited for these challenges since
they focus upon correlations that overestimate the number
of causal associations and since they typically operate on
datasets with only a single variable type.

Causal discovery methods offer a promising solution.
These methods take observational data as input and they
output a graph where nodes correspond to variables in the
data and edges correspond to direct (causal) relationships
(5). The most popular of these is PC (6), a constraint-based
algorithm, which starts with a fully connected graph and
uses conditional independence tests to prune the space of
causal graphs consistent with the observed data. Recently,
we and others have extended causal discovery methods to
operate on mixed datasets (with continuous and categorical
data) (7–10) and these novel methods have demonstrated
successes on biomedical applications (7,11–13). Despite
this, causal discovery algorithms are available for public use
only via desktop applications (14) and programmatic inter-
faces (https://bd2kccd.github.io/docs/causal-cmd/), with a
notable exception of one recent web application that con-
structs a causal graph from (continuous) single-cell flow cy-
tometry data (15).

To this end, we developed CausalMGM, a web-based
causal discovery tool for mixed datasets. CausalMGM is a
suite of tools for causal discovery and visualization (Fig-
ure 1) that takes a tabular, observational dataset as in-

*To whom correspondence should be addressed. Tel: +1 412 648 3315; Fax: +1 412 648 3163; Email: benos@pitt.edu
Correspondence may also be addressed to Panos K. Chrysanthis. Email: panos@cs.pitt.edu
†These authors contributed equally.

C© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/48/W

1/W
597/5835810 by U

niversity of Pittsburgh user on 11 N
ovem

ber 2025

http://orcid.org/0000-0002-2730-6304
http://orcid.org/0000-0003-3524-3945
http://orcid.org/0000-0001-7189-9816
http://orcid.org/0000-0003-3172-3132
http://causalmgm.org/
https://bd2kccd.github.io/docs/causal-cmd/


W598 Nucleic Acids Research, 2020, Vol. 48, Web Server issue

Figure 1. CausalMGM analysis framework. The server takes a tabular, multi-modal dataset as input and performs (i) feature selection and clustering, (ii)
undirected and directed causal discovery, and (iii) interactive visualization of the learned causal graph.

put and performs three sequential operations: (i) informa-
tive pre-selection and clustering of features to model using
Preferential Diversity (Pref-Div) (16–18); (ii) causal discov-
ery from mixed data using a two-step approach we devel-
oped (7,19); and (iii) interactive visualization of the learned
causal graph. Altogether, this process enables end-to-end
causal discovery from observational, mixed data. The
server is freely available to the public for non-commercial
use and licensed under Creative Commons Attribution-
NonCommercial 4.0 International License (20). The re-
mainder of this paper presents the server in detail and is
organized as follows:

• First, we present the implementation details of the web
server.

• Next, we present the feature selection method, Pref-Div,
and the causal discovery methods used in greater detail.

• Then, we demonstrate how the CausalMGM server can
be used on real data and discuss the proper interpretation
of the results.

• Finally, we discuss the limitations of the server and po-
tential future directions.

METHODS AND IMPLEMENTATION

In this section, we give details about the how the web server
was implemented and summarize each of the computa-
tional methods underlying the full workflow.

The CausalMGM web server

Figure 1 illustrates the overall workflow of the
CausalMGM web server, including feature selection,
undirected and directed causal discovery, and interactive
visualization. CausalMGM consists of a user-friendly
interface (e.g. Figure 2) and is ideal for non-advanced
users. Leveraging the state-of-the-art algorithms, mixed
graphical models (MGM) (7) and PC-Stable (21), the
CausalMGM web server enables researchers to find both

conditional dependencies and causal relationships between
features of an observational, biomedical dataset. In ad-
dition, researchers have the option to perform automatic
pre-selection of features (i.e. dimensionality reduction) of
their data to a customizable lower dimensional subset.

The back end of the CausalMGM web server is imple-
mented using Java 8, and the front end is constructed from
JavaScript, jQuery and PHP. The interactive visualization
is developed using the popular open-source library Cy-
toscape.js (22), which allows the CausalMGM web server
to produce dynamic online visualizations that are com-
patible with the Cytoscape desktop application. Next, we
will discuss in depth each of the main components of the
CausalMGM web server.

Feature selection: Preferential Diversity

Since causal discovery methods are generally inefficient on
large datasets, we provide a method for feature pre-selection
and clustering: Pref-Div (16), to help users focusing on the
variables that are more likely to yield meaningful causal net-
works. The inputs to Pref-Div are (i) a tabular dataset, (ii) a
target variable of interest, (iii) the total number of variables
to select and (iv) whether automatic clustering should be
performed (yes/no). The main idea of Pref-Div is to identify
variables that are associated with the target variable of inter-
est but are maximally independent of one another, similarly
to principal component analysis. Pref-Div is an iterative al-
gorithm that first chooses k variables most associated with
the target and sorts them by strength of association. It then
iterates through these k variables and ‘marks’ those that are
closely associated with a variable already selected. If auto-
mated clustering is included, then these ‘marked’ variables
are included in the final result as part of a cluster, otherwise
they are removed. The other variables in the top k are in-
cluded in the final result set. This process is repeated until
the number of variables selected equals the number of vari-
ables requested by the user.
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Figure 2. Example of CausalMGM web server user interface.

In the current web server, when the target variable is con-
tinuous, Pearson correlation is used as a measure of associ-
ation between the target variable and the query variable X.
When the target is categorical, we use (1 − p), where p is the
P-value from a likelihood ratio test between a null model
and a logistic regression model with X as a predictor. The
correlation threshold to determine whether two variables
should be ‘marked’ or clustered is determined based upon
stability (insensitivity to small variations in the data) (17).
Currently, categorical variables are automatically included
in the final result, and the user can optionally choose con-
tinuous variables to keep as well. The use of this procedure is
optional, especially when datasets are relatively small (<100
variables).

Causal discovery: MGM PC-Stable

The next step in our pipeline produces a causal graph from
the resulting filtered dataset. The causal discovery algo-
rithm implemented in the CausalMGM web server (MGM
PC-Stable) first learns an undirected graph using our MGM
method and then uses it as skeleton to learn the causal direc-
tions (PC-Stable) (7). We first discuss learning an undirected
model using MGM and an optional step to automatically
select the regularization parameters using the StEPS (sta-
ble edge-specific penalty selection) procedure (19). Then,
we discuss learning the directed model structure using PC-
Stable on the undirected graph (7). Finally, we present our
independence test for mixed datasets.

MGM. MGM expects a tabular dataset as input and it
outputs a graph, where nodes correspond to variables and
edges correspond to conditional dependencies. A (undi-
rected) edge between two variables A and B implies that A

and B are dependent conditioned on the rest of the variables
in the dataset. The algorithm finds the optimal undirected
graph by optimizing the pseudo-likelihood of the data given
the model using a gradient-based procedure (proximal gra-
dient). To ensure a sparse graph, the pseudo-likelihood is
subject to sparsity penalties (λCC, λCD, λDD), where CC is
the regularization parameter for edges between two contin-
uous variables, CD for edges between continuous and dis-
crete variables, and DD for edges between two discrete vari-
ables. Larger values of λ result in fewer edges in the output
graph. CausalMGM assumes that continuous variables are
normally distributed and are linearly related to one another
and that categorical variables are multinomially distributed
and can be modeled via a logistic regression. If the continu-
ous variables are not normally distributed, we suggest users
transform input variables using the non-paranormal trans-
form in the huge R package (23).

StEPS. Since it is difficult for users to know which val-
ues to choose for each λ parameter, we provide an auto-
mated method to do so based on stability (19) At a high
level, StEPS randomly draws subsamples of the dataset and
learns an undirected graph using a fixed value of λ for all
three edge types. It then computes the stability of the edges
in the learned graphs across subsamples, and increases λ
for those edge types that do not meet a stability threshold.
This process is repeated until λ values are found for all three
edge types. Due to the fact that many undirected models
are learned, this process can be time consuming for large
datasets, and should be used with caution.

PC-Stable. PC-Stable is a popular constraint-based
method for causal discovery and is an order-independent
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extension of the PC algorithm (21). The inputs to PC-Stable
are (i) a dataset, (ii) a starting graph and (iii) α, which is
the P-value threshold for the conditional independence
tests. This algorithm typically starts with a fully connected,
undirected graph and performs conditional independence
tests to remove edges between any two variables. First,
unconditional independence tests are performed and an
edge between X and Y is removed if X is independent of
Y. The algorithm proceeds by increasing the size of the
conditioning set and performing conditional independence
tests for any remaining edges conditional on some subset
of their neighbors in the resulting graph. This process
continues until no more edges can be deleted in this
manner. Then, the algorithm determines causal direction
by (i) orienting colliders (i.e. a variable with two ‘parents’),
(ii) avoiding the introduction of new colliders and (iii)
avoiding directed cycles (loops) (21). In the CausalMGM
web server, for increased speed and accuracy, PC-Stable
starts with the undirected graph produced by CausalMGM
instead of a fully connected graph. PC-Stable assumes
that there are no feedback loops in the causal graph, that
each variable is independent of its direct effects given its
direct causes (causal Markov assumption), the conditional
independence relations in the data come from applying
the causal Markov assumption to the causal graph (causal
faithfulness assumption), and that there are no unobserved
confounders or selection bias in the data.

Independence test. PC-Stable requires an independence
test suitable for the data. We have developed a regression-
based independence test for mixed data types that we use
with PC-Stable (7). Assume we are testing whether X is in-
dependent of Y given Z. If Y is continuous, then we calcu-
late the linear regression of Y using X and Z as predictors (if
X is categorical, we use dummy-encoded binary predictors).
The P-value of the test is then a t-test on the β coefficient
of X. Alternatively, if X and Y are both categorical, then we
perform a multinomial logistic regression predicting Y us-
ing X and Z along with a regression model using just Z. The
P-value for the test comes from a likelihood ratio test com-
paring these two nested models. By default in CausalMGM,
the α threshold for this independence test is set at 0.05.

Interactive visualization

As illustrated in Figure 3, the CausalMGM web server
leverages the popular graph theory library Cytoscape.js to
generate dynamic graphical representations that help re-
searchers visualize the conditional dependency and causal
relationships obtained from the previous steps. Here, the
graphical output is an undirected (conditional dependence)
or directed (causal) graph with vertices corresponding to
variables and edges corresponding to dependencies between
variables. This differs from protein–protein interaction or
gene regulatory networks by modeling mixed data and by
representing causal relationships from observational data
alone. Our CausalMGM web server also provides the user
with the option to annotate the nodes and edges inside each
resulting graph. These visualizations can easily be down-
loaded into both SIF and JSON as formats, which allow

Figure 3. Learned causal graph from the sample dataset included in the
web server. Arrows indicate cause-and-effect relationships and undirected
edges indicate conditional dependence relationships.

the resulting graphs to be further analyzed using any desk-
top visualization tools such as Cytoscape.

COMPUTATIONAL PERFORMANCE

To illustrate the efficiency of our CausalMGM web server,
in Table 1 we provide a run-time analysis (in seconds) of
each of CausalMGM’s main computation tasks (i.e. learn-
ing an undirected graph with MGM, learning a directed
graph with PC-Stable, StEPS to find lambdas and Pref-Div
for feature selection). We use five simulated datasets to cover
a wide range of number of variables (50–500) and num-
ber of samples (500–20 000). Datasets were generated us-
ing the Lee and Hastie simulation method for mixed data
[see also (24)]. We obtained these statistics on a server with
an 18-Core Intel Core-i9 processor running at 2.6 GHz and
128 GB of main memory.

USE CASE

Next, we present an example use case of running
CausalMGM on a small dataset containing transcriptomic
and clinical data. This dataset consists of RNA-Seq mea-
surements for seven genes, seven clinical parameters and
an outcome variable of diagnosis (‘diag’). The outcome is
a binary variable for whether the individual had idiopathic
pulmonary fibrosis (IPF) or chronic obstructive pulmonary
disease (COPD). The goal is to identify genomic and clinical
variables that distinguish these disorders, since the etiology
of IPF remains unknown.

The sample dataset comes from a previous publication
(19), in which the data were derived from the Lung Ge-
nomics Research Consortium. The dataset includes gene ex-
pression and clinical variables. For this dataset, the selected
genes are those known to be important in one of two chronic
pulmonary diseases (COPD and IPF) and the clinical fea-
tures include age, gender and smoking history. The variable
diag represents the final diagnosis (COPD or IPF).
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Table 1. Run-time of different variable and sample sizes

Variable
size

Sample
size Learning task

Run-time
(s)

50 500 Undirected graph 8.9
50 5000 Undirected graph 1649.7
50 20 000 Undirected graph 12 305
100 500 Undirected graph 9.35
500 500 Undirected graph 433.5
50 500 Directed graph 52.2
50 5000 Directed graph 16 832.3
50 20 000 Directed graph 16 243
100 500 Directed graph 67.7
500 500 Directed graph 1173.7
50 500 StEPS (find lambda parameters) 360.38
50 5000 StEPS (find lambda parameters) 6025.2
50 20 000 StEPS (find lambda parameters) 11 432
100 500 StEPS (find lambda parameters) 467.9
500 500 StEPS (find lambda parameters) 881.9
50 500 Pref-Div (feature selection) 0.54
50 5000 Pref-Div (feature selection) 2.7
50 20 000 Pref-Div (feature selection) 3.3
100 500 Pref-Div (feature selection) 1.2
500 500 Pref-Div (feature selection) 1.7

For this experiment, we use the ‘find lambdas’ function
to automatically identify the parameters of the undirected
modeling, and we use PC-Stable to identify causal relation-
ships with α = 0.05. We do not use feature selection for this
dataset due to the small size. The result of the experiment is
shown in Figure 3.

The learned model has some expected connections, such
as those between gender, height and weight. One way to in-
terpret these undirected edges is that they identify the ‘best
predictors’ in the data. To predict weight on an unseen indi-
vidual, the best variables to use are height and gender. The
target variable of interest has two direct causes: forced ex-
piratory volume in 1 s and forced vital capacity. These are
two clinical tests that are commonly expressed as a ratio to
indicate an individual’s overall lung function. The arrows
indicate a causal relationship, meaning that the diagnosis
made for an individual depends upon their lung function
test outcome. Lastly, despite the fact that all of these genes
are related to IPF and COPD, the model suggests that the
only direct effect on diagnosis is DIO2; however, the edge is
undirected meaning that this is not a causal effect. This im-
plies that the changes in DIO2 expression may determine
the disease status or vice versa or there is an unmeasured
confounder causing both DIO2 and diagnosis. Since both
IPF and COPD lungs are shown to have increased levels of
DIO2 (25,26), this might advocate the presence of a con-
founder, which also impacts the differential diagnosis of
IPF and COPD.

DISCUSSION

In this work, we have presented the CausalMGM web
server, which is designed for automated identification of
cause-and-effect relationships from multi-modal, observa-
tional, biomedical data. We have described the details un-
derlying the server implementation and shown a use case
for how CausalMGM can improve data exploration. Future
directions to improve CausalMGM could include measur-
ing the uncertainty in the causal graphs, including methods

to deal with hidden confounders, and allowing the user to
encode their background knowledge and assumptions into
the causal discovery methods. CausalMGM is a free service
open to all non-commercial applications.
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