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Abstract—The Internet of Things (IoT) revolution has mas-
sively introduced sensor-rich tracking devices to an ever growing
landscape of smart spaces (e.g., factories, hospitals, and ships).
One problem that remains unsolved over the years is the
localization problem for IoT, given that Satellite-based solutions
are inaccurate in indoor spaces where human activity takes place
80-90% of the time. In this paper, we introduce a novel open-
source architecture for IoT localization, coined Anyplace 4.0 IoT
(A4IoT), which exploits signal fingerprinting to organize under
the same roof a wide range of different localization technologies
(e.g., Wi-Fi, BLE, Cellular, UWB, Computer Vision). We present
the technical requirements of A4IoT inspired by the Alstom SA
smart factory, operating worldwide in rail transport markets.
A4IoT comprises a crowdsourcing architecture where deployers
can collect and organize fingerprint signals inside smart spaces
in a designated localization service running on the Edge (from
Raspberry to Datacenter). The service incorporates timeseries
databases for tracking targets and deployers can provide accurate
room-level localization accuracy (≈ 2 m) on a variety of platforms
(e.g., Android, Linux, Mac, Windows, Robot OS) but also
integrate A4IoT through Web 2.0 endpoints to their software
ecosystems.

Index Terms—IoT, mobile, indoor, location, crowdsourcing

I. INTRODUCTION

Internet of Things (IoT) refers to a large number of physical
devices being connected to the Internet that are able to see,
hear, think, perform tasks as well as communicate with each
other using open protocols [1]–[4]. IoT devices are connected
to Cloud and Edge computing appliances through massively
parallel I/O channels (e.g., 5G, WiFi6) with millisecond la-
tency offering new opportunities in industrial optimization,
human health and well-being as well as safety. A typical
household in the developed world currently operates around
5 to 10 smart devices, and this number is expected to increase
to 500 [5] by 2022. TVs, power plugs, light bulbs, security
sensors to name a few, become interconnected with open
protocols [6]–[9], creating whole new ecosystems. In absolute
numbers, the IoT revolution is expected to bring the number
of such devices close to a staggering 40 billion in 2020, more
than double from 2019 [10].

The omni-present availability of sensor-rich smartphones
and IoT devices along with the fact that people spend 80-90%
of their time in indoor environments has boosted an interest
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Fig. 1: A4IoT is a localization service for the Edge aligned towards
the needs of the new industrial IoT revolution in various smart spaces
(e.g., factories, health and ships).

around indoor location-based services, such as in-building
guidance and navigation, inventory management, marketing
and elderly support through Ambient and Assisted Living [11],
[12]. The key enablers for the uptake of such indoor applica-
tions are what nowadays we call the open-source Localization
Services, like Anyplace [13], Redpin.org [14] and Find3 [15].
These consist of indoor models, such as floormaps and Points-
of-Interest (POIs), along with wireless, light and magnetic
signals used to localize users. Anyplace 3.41 [16], has been
a predecessor technology for A4IoT providing infrastructure-
free 3-D (dimensional, i.e., floor-level) localization combined
with modeling and crowdsourcing under the same hood. Even
though the open source software stacks have helped to the
wider adoption of important scientific findings (enabling the
integration of new localization algorithms) but also trans-
parency of what happens behind the service, none of these
architectures provide elements for IoT tracking at Internet-
scale (e.g., Cloud) and at Minuscale (e.g., Raspberry).

In this paper, we introduce a novel open-source architecture
for IoT localization (see Fig. 1), coined Anyplace 4.0 IoT
(A4IoT), which exploits signal fingerprinting to organize under
the same roof a wide range of different localization technolo-
gies (e.g., Wi-Fi, BLE, Cellular, UWB, Computer Vision). We
present the technical requirements of A4IoT inspired by the

1Anyplace. https://anyplace.cs.ucy.ac.cy/
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Fig. 2: Three real life scenarios have motivated the A4IoT architecture. (Left) Alstom deploys our architecture to built a smart factory (main
focus of this paper). (Center) Lash-Fire will deploy our indoor localization for emergency response of fire fighters on cargo ships. (Right)
Endorse will navigate its robotic fleet to provide elderly care to the aging population.

Alstom SA smart factory, operating worldwide in rail transport
markets. A4IoT comprises a crowdsourcing architecture where
deployers can collect and organize localization signals inside
smart spaces in a designated localization service running on
the Edge (from Raspberry to Datacenter). The service incor-
porates timeseries databases for tracking targets and deployers
can provide accurate room-level localization accuracy (≈ 2
m) on a variety of platforms (e.g., Android, Linux, Mac,
Windows, Robot OS) but also integrate A4IoT through Web
2.0 endpoints to their proprietary software ecosystems.

The localization literature is very broad and diverse as
it exploits several technologies. GPS is obviously ubiqui-
tously available but has an expensive energy tag and is also
negatively affected by the environment (e.g., cloudy days,
forests, downtown areas). Besides GPS, the localization com-
munity proposed numerous proprietary solutions including:
Infrared, Bluetooth, visual or acoustic analysis, RFID, Iner-
tial Measurement Units, Ultra-Wide-Band, Sensor Networks,
Wireless LANs, etc.; including their combinations into hybrid
systems [17]. A4IoT uses a hybrid Radiomap-based indoor
localization, which stores radio signals from (like Wi-Fi APs,
BLE/UWB/Cellular/CV) in a database at a high density.

We next explain the localization subsystem of A4IoT, which
utilizes the notion of fingerprinting in order to bring forward a
localization technology that works seamlessly on the edge/IoT
device with optional extensions for intermittent connectiv-
ity [18] and privacy [19]. The A4IoT localization process
works as follows: in an offline phase a logging application
records the so called fingerprints, which consist of Received
Signal Strength Indicator (RSSI) of these sensors at certain
coordinates (x,y) pin-pointed on a building floor map (e.g.,
every few meters). Subsequently, in a second offline phase
the sensor fingerprints are joint into several NxM matrices,
coined the RM (i.e., one RM per sensor type), where N is the
number of unique (x,y) fingerprints and M the total number of
beacons. Finally, a user or IoT device can compare its currently
observed fingerprint against the respective sensor-type RM in
order to find the best match, using known algorithms such as
KNN or WKNN [20]. Our solution is infrastructure-free, as it
operates best effort with whatever sensor-type is available.

It is important to notice that the requirement of localization
accuracy is very use-case dependent. For example, 50cm

is required for realtime guidance, 2m is required for asset
localization like car, forklift and any big parts. While ultra-
fine accuracy is still a challenge with many technologies (like
Wi-Fi), current achievable accuracy is acceptable for many
use-cases. Our goal is to integrate different types of RM to
make 3-D localization available in a variety of environments.
A4IoT is designed to cope with the Industry 4.0 and motivated
by the following three real-world scenarios:

Asset tracking at Alstom SA2: This scenario, which is
detailed extensively throughout the paper, incorporates A4IoT
in a rail manufacturer corporation to add location-awareness
for tracking factory assets (see Fig. 2, left). The manufacturer
aims to optimize routes, enhance guidance, improve safety
and supply reliability, and reduce warehouse overall costs. The
system must easily integrate to a complex software ecosystem
of services with the predominant role of a containerized
Localization Service using existing Wi-Fi technology, while
visualization tools should provide analytics for internal reports
and monitoring. Support for new localization technologies is
also considered, such as Ultra-Wideband (UWB) (available in
iPhones 11 [21]) or LoRa [22], with the aim of improving
accuracy.

Emergency response with Lash-Fire3: This scenario incor-
porates A4IoT to increase fire safety on RO-RO (roll on, roll
off) cargo vessels that transport cars. What is necessary is
a backend on the edge (i.e., the vessel itself), capable of
providing 3D localization means with room-level accuracy.
The A4IoT must integrate as a localization service next to
the Ship Information System (see example from the Stena
Jutlandica Ro-Ro/Passenger Ship in Fig. 2, center) enabling
to track spatio-temporal targets in real time, to detect fire
hazards and guide fire-personnel. In the lack of infrastructure,
this scenario focuses on no-infrastructure localization with
computer vision fingerprinting techniques (e.g., using YOLO
or Google ARCore).

Robotic fleet in healthcare with Endorse4: This scenario
aims of creating a safe, efficient, and integrated fleet of robots
for logistic applications in health-care (see Fig. 2, right).

2Alstom: https://www.alstom.com/
3Lash-Fire: https://lashfire.eu/
4Endorse: https://www.endorse-project.eu/
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The deployment of A4IoT on custom environments like the
RobotOS [23] is necessary, for carrying equipment, drugs,
and give assistance to elderly people. It will additionally track
personnel, patients, and equipment. Given that Robots have a
variety of sensors for local IMU-based localization, A4IoT is
the component bringing the global localization perspective.

The contributions of this work are summarized as follows:
• We propose a new containerized backend architecture,

able to run from a low-end configurations to powerful
multi-node clusters with minimal effort;

• We propose a data layer that can accommodate new
signals for localization, handle high volumes of spatio-
temporal data and present visual analytics in realtime;

• We provide a modular library that allows the deployment
of clients in no-time on a diverse set of frontends.

Section II describes the business requirements of Alstom
SA for incorporating Industry 4.0 in their factories. It is
followed by Section III that gives an overview of our new
backend architecture. Section V describes our modular library
that enables easy deployment of A4IoT in any environment.
In Section VI we detail the necessary changes to our data
layer to support high-velocity spatio-temporal data, while
decreasing our minimum hardware requirements. Our realtime
visualization analytics are described in Section VII and our
concluding remarks are in Section VIII.

II. A4IOT TECHNICAL REQUIREMENTS

This section showcases how Internet of Things (IoT) re-
quirements are materialized in a real-world business. Particu-
larly, we describe the business requirements of Alstom SA to
incorporate localization technologies into their IoT processing
stack. We analyze the IoT applications and categorize them
based on the asset typology across different departments. We
also analyze specific use-cases that define key IoT criteria in
asset tracking and elaborate on how Anyplace 4.0 fits their
business requirements.

A. IoT Applications per Asset Typology

Assets are divided based on their typology into three cate-
gories, namely workers, tools and parts. They are associated
with interconnected buildings, which collectively constitute
a smart factory. Such buildings are offices, depots, and
manufacturing plants. All indoor localization use-cases span
over different stakeholders within the company. These are
the departments of Environment Health and Safety (EHS),
Information Technology (IT), Industrial, and Facilities.

Workers: Location data analysis and emergency alerts could
improve the worker’s safety. For example, when a worker
enters a prohibited section of the facility and a hazardous
operation is underway. Localization data can also enhance
the work guidance especially when specialized vehicles (e.g.,
forklifts) are involved by optimizing the routing.

Tools: Realtime tracking can significantly improve the tool
management. Location context can increase tools utilization
and therefore availability. The process of checking-in or

ba
tt

er
y

re
lia

nt
no

 p
ow

er
pe

rs
is

te
nt

po
w

er

Lifecycle

to
ol

s

small

pa
rt

s

Localization
Frequency

to
ol

s

*consumables

small

big

Assets

months

to
ol

s

big

small

big

size

t
l

c

t
t

l
t

l

months

5-10 years minutes

5 years hours

months days

hoursmonths

minutes5 years

3 years variable

Fig. 3: Asset categories based on IoT criteria for tracking.

checking-out a tool can be automated, maximizing prevention
on accidental losses or even theft. With data analysis the usage
patterns of the tools can be deducted, which will provide
insights on their performance checks and maintenance. Finally,
a more accurate and automated management of the tools can
potentially reduce their fleet, which will decrease overall costs.

Parts: A precise tracking of parts can increase the supply-
chain reliability and is divided into three phases. In the first
phase, a part is stored in a depot and therefore it is mostly
stationary. In the second phase, a part is within a container
and in transit. In the last phase, a part is moving within
a manufacturer plant and progresses on the assembly line.
With realtime tracking, the risk of under-stocking or over-
stocking parts will be eliminated. Additionally, data analysis
aggregated by time and accurate time tracking for each part in
each phase can expose the manufacturing efficiency. All above
collectively contribute to an IoT-based smart inventory system
that minimizes the warehouse management costs.

B. Key IoT Localization Criteria in Asset Tracking

An extensive study was done to determine the key IoT
criteria for asset tracking in smart factories. With power source
being a major point of consideration, we have divided assets
in three categories, as shown in Fig. 3. In the first category
assets have persistent power supply. In the second category
assets rely on a battery source. In the final category assets
have no power supply whatsoever.

Persistent power: In this category assets are assumed to have
a constant power supply. A real example for this category
is a vehicle asset, for example a forklift. In this example,
the asset is expensive with a long lifecycle. Also, the size
of the asset is large, and the target localization accuracy is
2 meters. Solutions include attaching a Raspberry PI or an
Android-powered smartphone on the board of the vehicle.
Both solutions will use vehicle’s power sources, and report Wi-
Fi RSSI values and/or GPS coordinates to the Anyplace server.
The smartphone application and the Raspberry PI will use our
Android client and command line interface respectively, which
are described in Section V.
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Battery-reliant: Assets like tools or workers will utilize
battery-reliant solutions for localization. The power source is
assumed to be adequate for a full working day. Workers in
particular will utilize smartphones, tablet devices, or laptops.
Those devices will have built-in support for Wi-Fi, GPS,
and/or mobile data. Examples of tool assets include cordless
tools like drills or wrenches. Those do not support any
communication or localization technologies at the hardware
level. All battery-reliant assets have a lifecycle of roughly 3
years. The solution for smart devices used by workers is to
utilize a modified version of our Android client for communi-
cating with the Anyplace server. For tools, externally attached
modules will augment their functionality to incorporate Wi-
Fi, GPS, and/or mobile data. Then, custom scripts embedded
into the attached modules will communicate with our service.
Those scripts will utilize the Anyplace Java library.

No power: Assets like tools or parts may come without a
power source. Tools have a lifecycle of many years and are
divided according to their size, small or big. Parts, which have
a lifecycle of a few months, are also divided into small or
big. There is, however, a special third category for consum-
able parts, like bolts or nuts. Small tools, like hammers or
screwdrivers, move quite often and require 0.5-meter accuracy.
Some big tools, like trolleys, require constant tracking. For
other big tools, like jigs, periodic tracking suffices. In both
cases the target accuracy is 2 meters. Small parts usually have
low costs, so the tracking mechanism should rely on passive
tags. Such tags rely on other equipment, i.e., a smartphone,
for tracking. Big parts tend to move less than once in a
day. Consumables come in large quantities, have a very small
footprint, and a low cost per unit thus their tracking is not
necessary.

The solution covering all tools and small parts is to utilize
passive tracking, such as UWB tags. They are small enough to
be attached on those assets and will be supported by Anyplace
4.0. Small parts or tools can also utilize other forms of passive
tracking, such as barcodes, or RFID tags. The same solution
can be applied to track cabinets filled with consumables. As
an added functionality, an embedded device with a weight
sensor attached to the cabinet can estimate quantities and
update inventories for consumables. For infrequently-moving
assets, like big tools or particular parts, active tracking can
be used. Specifically, a low-powered device will be utilized to
report a few times a day positioning through Wi-Fi or a mobile
network. All described solutions will be using our library to
feed Anyplace servers with localization context.

III. A4IOT ARCHITECTURE

The A4IoT architecture is divided into five main compo-
nents, visualized in Fig. 4. The Server and the Data Store
constitute the backend, and the Web, the Library, and the
IoT clients constitute the front-end. The additions for the
A4IoT are emphasized with dotted lines and are described
in Sections IV-VII.

Backend: The Server component contains the application
logic of the A4IoT service. It is implemented using Play [24], a
lightweight MVC framework for web applications. A RESTful
API is exposed that enables crowdsourcing, spatio-temporal
queries, and has interfaces for various data stores. Other fea-
tures include visual analytics, tiling of architectural floormaps,
and secure OAuth 2.0 authentication. The Data Store compo-
nent is responsible for storing and retrieving raw data using
a Distributed Filesystem (DFS), IoT data using a time-series
store, and JSON objects using a document store.

Front-end: Architect, Viewer, and Analytics modules are Web
Apps built with HTML5, CSS3, and AngularJS. Architect
allows users to insert buildings by uploading architectural
floorplans and then interactively designing on top of them
routes and Point of Interest (POI) elements. Viewer is a
search and navigation engine built on top of the crowdsourced
data. Analytics is a data visualization dashboard that interacts
with the Data Store and is described in Section VII. Logger
and Localization are native Android applications that enable
fingerprinting and localization, respectively [25].

Logger in particular, enables users to crowdsource collected
Wi-Fi RSSI values by recording them from nearby Wi-Fi
Access Points and batch-feeding them to the Server. Local-
ization allows users to view their location inside buildings. It
also allows navigation between POIs, similarly with Viewer.
Localization however has superb accuracy as it queries the
A4IoT backend with collected Wi-Fi RSSI values. Additional
sensor input is used too (i.e., accelerometer, compass, and
gyroscope) to enhance the navigation experience. For both
localization and navigation, the results are drawn on top of
architectural floorplans for uploaded buildings, with multiple
floors supported.

IV. A4IOT CONTAINERIZATION

This section describes the containerization of the A4IoT
software stack. It utilizes Docker to enable the deployment
of single-node or multi-node configurations, regardless of any
dependencies or the underlying OS.

A. Single-node deployment

The A4IoT docker image initially installs any software
dependencies used by the service. Then, depending on the
target environment, development or production, relevant code
is pulled from A4IoT’s GitHub repository using Jenkins and
compiled using the sbt tool. Configuration for all A4IoT com-
ponents is conveniently managed through a single .env file, re-
moving any sensitive information from the source code. Then,
separate container instances are spawned for each database
service to enhance security and resource handling. All com-
munication is encrypted even in internal networks, as A4IoT
image automatically creates and uses SSL certificates based
on the configuration. Also, any relevant database initialization,
including bucket and views creation, is automatically handled
by the image. Finally, A4IoT is launched as a service and a
set of scripts allow operations like automatically trimming the
log files or managing the lifecycle of the service.
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B. Multi-node cluster deployment

In the case of a cluster deployment, additional configuration
is needed for each node of the cluster that can be passed
through the .env files. Specifically, it allows plugging in exter-
nal database or DFS clusters, and SSL certificate authorities.
Finally, on a separate node a HaProxy [26] container is
spawned and set-up to balance the incoming load and provide
protection from attacks like DDoS.

A4IoT Cluster: Our production environment uses a 3-node
cluster with two replicas, for both the database engines and
the DFS. This setup allows for a full operation with just a
single node active at any time and clearly adopters of A4IoT
can adjust the configuration scale to their requirements. For
the DFS in particular, we configured GlusterFS that exposed
exceptional performance for a variety of loads. Our results
indicate that for a 2 GB file we can achieve 136 MB/s
sequential read and 127 MB/s sequential write, which is
satisfactory for our purpose. For much more massive loads
the Hadoop HDFS file system, with its 128MB block size
and replication factor of 3, provides much more scalable and
fault-tolerant alternatives for datacenter scenarios.

For the public running instance of A4IoT we have also
reconfigured our network configuration on the hardware, OS
virtualization level and security level. Particularly, we have
created a Demilitarized Zone (DMZ) network to isolate our
service from any other machines in our clusters. In DMZ
resides only the load-balancing node (LB) that runs the
HAProxy container that also thwarts data crawlers. All nodes,
including LB, are part of an isolated network. This network
is unroutable by others, allowing only outgoing Internet con-
nections to satisfy 3rd-party service dependencies like OAuth
2.0, or software vulnerability updates. The network uses 2
physical uplinks, which are configured for fault-tolerance,
load-balancing, and double throughput.

V. A4IOT LIBRARY AND IOT CLIENTS

This section describes the front-end libraries that simplify
development of A4IoT clients. A list of the currently devel-
oped libraries and clients is shown in Table I.

A. Java library: anyplace-core

The anyplace-core Gradle library encapsulates the main
functionality for IoT clients. It is as generic as possible to
facilitate clients’ development for different environments and
operating systems. The library emits statically or dynamically
generated information to the users. Finally, it allows dynamic
switching between different A4IoT backends, and wraps each
API endpoint with code that transparently handles communi-
cation with the backend.

Static Content: It relates mostly to raw, infrequently mutat-
ing data, such as buildings. There are endpoints that return
buildings to the proximity of a user, buildings that belong to
a campus, or the complete list of all the buildings. Given a
building, the library can return a list of all the floors and all
the POIs. The list of POIs can be further narrowed down to
the ones that belong to a particular floor. It may also return
the valid connection points between different POIs. Finally, it
may return raw, crowdsourced data, which include RadioMap
(RM) of Wi-Fi RSSI values, heatmaps of the Wi-Fi coverage,
and tiled architectural floorplans.

Dynamic Content: It relates to user localization and tracking
requests. There are endpoints that return navigation directions,
either between two points or two POIs. It also provides server-
side or offline localization on the IoT. The former sends to
the server a list of Wi-Fi RSSI values and gets back and an
estimated user location. The latter requests from the server
a bounding box of pre-generated RM, and then uses it in
combination with the Wi-Fi RSSI values to run the localization
algorithms on the IoT.
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Language Type Published
Java Library (anyplace-core) Gradle
OS Type Published
Linux-based Tool -
macOS Tool -
Windows Tool -
Android Library (anyplace-android) Gradle
Android Application Google Play
ROS Application Robot App Store

TABLE I: List of libraries, applications, and tools that are developed
in the scope of the A4IoT architecture.

B. Command Line Interface (CLI)

The anyplace-core library also has a CLI. Instead of
including the library JAR file into another Java-based project,
it is executed directly from shell applications from either local
cache or the A4IoT service. The snippet in Fig. 1 performs a
server-side localization using a bash script. The Wi-Fi RSSIs
are extracted and fed to the tool along with the user’s id,
the floor that the user is in, and the localization algorithm.
While it works specifically for Linux, with a minor adjustment
it can also run on macOS. In particular, the Wi-Fi RSSI
scanning should be performed through the Network Manager
tool nmcli5 instead. The CLI is particularly convenient as it
allows developing IoT clients with minimal effort.

1 #!/bin/bash
2 ALGO=$KNN
3 interface="wlo1"
4 # Get RSS values (Linux specific)
5 rssi=$(jsonFormat $(iwlist $interface scan))
6 # Localize
7 CMD=$(java -jar anyplace.jar)
8 $CMD -estimatePosition $user $floor $algo $rssi

Listing 1: Localization on Linux using the A4IoT CLI.

The settings that relate to the backend servers are read from
a configuration file that resides on a user’s home directory. It is
initialized with reasonable defaults and then the user is advised
on how to modify it.

C. Android Library and Demo Client

Android provides its own APIs for carrying out tasks for
increased security and performance. This additional function-
ality is included into anyplace-android, another Gradle library
that includes the anyplace-core library.

5NetworkManager: https://linux.die.net/man/1/nmcli

1 // load backend settings from user preferences
2 SharedPreferences sp = getSharedPreferences(..);
3 String host = sp.getString("pref_host", _HOST);
4 String port = sp.getString("pref_port", _PORT);
5 // Get private storage within the Android app
6 String cache = getApplicationContext().getFilesDir();
7 // Create a connection & fetch a building’s floors
8 Anyplace ap = new Anyplace(host, port, cache);
9 String response = ap.allBuildingFloors(b_id);

Listing 2: Demo client utilizes the anyplace-android library
to fetch all floors of a given building id.

The anyplace-android library declares any permissions that
are necessary for the successful operation of the service.
These include Internet access, permissions to read the Wi-
Fi RSSI values, ability to run code in the background, and
access to storage. Network communications and subsequent
computations are wrapped into asynchronous tasks as nec-
essary, since their associated overheads might affect the UI
responsiveness. Finally, offline navigation data are securely
cached and managed by a client application in private storage.

The anyplace-android library can then be used to create
clients, like the demo application shown in Listing 2. The
client has a dedicated user-preferences XML file for the
backend configuration, which enables dynamic switching to
different servers. This enables individuals to use local, privacy-
preserving deployments to manage their smart-homes, and
effortlessly switch to bigger clusters when needed like ours,
which has accumulated data from tens of thousands of users.

VI. A4IOT SPATIO-TEMPORAL DATA STORE

This section describes the additions to the Data Store
component of A4IoT. A spatio-temporal database is integrated
into the backend to efficiently consume input streams of IoT
sensor data. Additionally, existing views are being migrated to
MongoDB [27] in an effort to reduce the minimum hardware
requirements.

Time-Series store: For the efficient consumption of raw IoT
data a time-series database is incorporated into the Data Store.
This enables real-time analytics and visualizations presented
in Section VII, instead of selectively performing them with
manual batch operations. In particular, we have implemented
controllers for InfluxDB [28], which was consistently ranked
top for write-intensive workloads. It is also optimized for
spatio-temporal queries, in contrast with CouchbaseDB [29]
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Fig. 6: Fingerprint Management Studio (FMS) provides analytics that visualize: (A) accuracy estimation using Wi-Fi readings; (B) the
density of collected Wi-Fi fingerprints, (C) the Wi-Fi coverage; and (D) the Timeline can filter results on particular periods in time.

that is a more generic document-store. With temporal queries
we can now consume high-volume input streams to provide
real-time IoT tracking. For spatial queries we are gradually
replacing our existing spatial views that are inefficient in
CouchbaseDB. In particular, we are replacing the views re-
sponsible for processing data that generate heatmaps and RM
files, and for the server-side localization. We have found that
those views get invalidated quite frequently, spiking high disk
usage in our clusters.

To track IoT devices somebody could complementary also
have used complete IoT tracking platforms, like Things-
board.io (for general IoT) or OpenHAB (for smart homes). In
the future we intend to integrate A4IoT into these ecosystems
in the form of widgets (i.e., loading A4IoT assets through
the GUIs of these instruments). Providing native tracking
capabilities from within A4IoT, as opposed to third party tools,
is important to simplify the anatomy of the A4IoT Service
Oriented Architecture (SOA).

Additionally, we implemented two endpoints that combine
spatial and temporal semantics. The first, retrieves entries
in a timespan that are within two geometric points. The
second, retrieves points within a geometric fence (geofence)
that were submitted for a particular period in time. The
geofence is essentially a variable-length radius applied to a
particular geometric point. Those are used for our Fingerprint
Management Studio (FMS) module, described in Section VII.

Document-store: The initial version of our software used
CouchbaseDB, which is a document store with a built-in dis-
tributed in-memory layer (memcached), enabling easy eventu-
ally consistent distributed replication. However, the computa-
tional requirements of this approach constitutes this inefficient
for edge devices, such as, the popular ARMv7 Raspberry PI.
As such, A4IoT is expected to migrate to the less demanding
MongoDB document store in the near future.

Micro-benchmarking: In Fig. 5 we present the results of our
Data Store evaluation by comparing InfluxDB against Couch-
baseDB. We have used datasets ranging from 1 thousand to 1
million entries, built from real RM data from Anyplace. Error
bars show the standard deviation and results are presented on

a logarithmic scale, where appropriate.
Fig. 5 (left) shows data ingestion with different number of

insertions. We observe that InfluxDB has almost an order of
magnitude less ingestion time for any number of insertions.
For 1 million entries, InfluxDB is impressively 7x faster
than CouchbaseDB. Fig. 5 (center) shows the performance
of InfluxDB against CouchbaseDB over a variety of query
operations. The time-series database is consistently faster in
all cases. Particularly, for the RANGE query, which filters
out about 50% of the tuples over a time-slice, InfluxDB is
28% faster. InfluxDB is 2.3x faster considering the AGGR
query that aggregates the output of the RANGE query. For
the EXACT query, which returns a random entry from the
database, InfluxDB is 3.6x faster. Finally, the SCAN query
simply emits all the entries and still the InfluxDB is 20%
faster. Fig. 5 (right) shows that InfluxDB requires from 13%
to 5.6 times less space than CouchbaseDB.

VII. A4IOT ANALYTICS & VISUALIZATION

This section presents additions to the Analytics component.
By raw IoT data analysis we are able to deduce valuable
information over accumulated data. FMS, shown in Fig. 6, is a
signal management studio that is fully integrated into A4IoT.
It manages a collection of location dependent sensor readings
for indoor environments and provides visual analytics. The
implemented visual operators into A4IoT are:

Accuracy Estimation: It is a visual accuracy assessment tool
for localization at arbitrary locations. Our approach applies
a black-box technique for fingerprint interpolation based on
Gaussian Processes. It allows us to predict sensor readings
at chosen locations given the initial RM, and then estimate
the uncertainty of such predictions. Finally, we can derive
a theoretically, solid lower bound for the uncertainty in the
location estimation, i.e., the localization error, in the form of
a Cramer-Rao Lower Bound (CRLB). We utilize the derived
CRLB as the localization score and show its results in the
form of a heatmap as shown in Fig. 6 (A).

Fingerprint heatmaps: It visualizes the density of the col-
lected Wi-Fi fingerprints that was done while mapping a
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building, as shown in Fig. 6 (B). With red color the density is
higher. It can be useful to the crowdsourcing community as it
shows which areas need denser fingerprints.

Wi-Fi Coverage: It is an estimate of the Wi-Fi coverage that
is anticipated within buildings, as shown in Fig. 6 (C). It also
shows the expected data rates. It can easily show the areas
that need more Wi-Fi Access Points to be installed, in order
to improve the network coverage and/or speeds.

For all visual analytics a temporal window can be set, shown
in Fig. 6 (D). These filters result to a time-slice in the past,
or to new incoming data. With the enhancements presented
in SectionVI, a time-series database accomplishes those tasks
in real-time, replacing our previous approach where select
buildings were analyzed in batch and subsequently cached.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a novel open-source architecture
for IoT localization, coined Anyplace 4.0 IoT (A4IoT), which
exploits Fingerprinting principles to organize under the same
roof a wide range of different localization technologies (e.g.,
Wi-Fi, BLE, Cellular, UWB and CV). We present the technical
requirements of A4IoT inspired by the Alstom SA smart
factory, operating worldwide in rail transport markets. We
have implemented an InfluxDB controller, to consume high-
volumes of IoT generated data, and we are gradually migrating
the remaining of our data views to the more lightweight
MongoDB. This allows our architecture to run on low-end
single board computers, placed on the edge, while being able
to scale to sophisticated multi-node cluster setups. In the
future we aim to also investigate the usage of higher location
accuracy technologies, community integration blockchain, and
Web 3.0. We will also investigate map-matching algorithms to
localize the RM on the backend graph and CV localization.
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