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Abstract. The Internet of Things (IoT) envisions an ecosystem in which
everyday objects are enhanced with sensing, computation, and communi-
cation capabilities. These ‘smart’ devices (i.e., IoT devices) can sense and
collect considerable amounts of data and share it with each other via the
Internet. This paper proposes an [oT middleware platform enhanced with
context- and situation-prediction capability, called Context-Prediction-
as-a-Service (CPaaS). CPaaS offers real-time context prediction capabil-
ities to a variety of IoT applications as a service and enables more effec-
tive decision support using relevant validated dependable information. A
number of use cases where CPaaS can be deployed are also discussed.

Keywords: Context + Context prediction - IoT - Situational
awareness * Distributed context management platform

1 Introduction and Background

The Internet of Things (IoT) envisions an ecosystem in which everyday objects
(e.g., refrigerator, air conditioner, smartphones, weather stations, cars, industrial
robots, just to name a few) are enhanced with sensing, computation, and com-
munication capabilities. These ‘smart’ devices (i.e., IoT devices) can sense and
collect very large amounts of data and share it with each other via the Internet.
Due to proliferation of IoT devices, their numbers are expected to reach 20 to 30
billion in 2021 [1]. It is then possible to build services that can share rich, useful
and relevant information with users about an ‘entity’ and situation of interest.
We define data external to such an entity and interpreted by the IoT application
as context. Sharing context enables a wide range of context-aware and smart
applications that can adapt their behavior according to the current context of
one or several entities.

The need for contextual intelligence is a fundamental and critical factor for
delivering IoT intelligence, efficiency, effectiveness, performance, and sustainabil-
ity. Contextual intelligence enables intelligent interactions between IoT devices,
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such as sensors/actuators, mobile smart phones, smart vehicles to name a few.
Context management platforms (CMP) for IoT applications are emerging as the
ETSI (European Telecommunications Standards Institute) efforts on standardi-
sation [2] prove. Existing CMPs only take the current context of IoT devices and
entities into account. However, in many IoT applications, it is essential to pre-
dict the future context of IoT entities with acceptable confidence above specified
threshold and to provide important relevant dependable real-time information
and valuable recommendations for better decision support and actuation. For
example, with context prediction and proactive adaptation, it would be possible
to predict direction, speed and scope of fire spread to proactively deploy mobile
hardware assets like robots and/or drones to set up virtual fences, herd, direct
and save wildlife in case of bushfires, which are common to Australia.

To address this shortcoming of existing CMPs, in this paper, we propose a
novel framework, coined Context-Prediction-as-a-Service (CPaaS). CPaaS can
create new capabilities for context management platforms (CMPs) that enrich
ToT applications with proactive and preventive behaviour. Such applications can
predict the future context and complex situations and take pre-emptive actions,
and continuously re-evaluate the impact of the actions and update/extend the
existing knowledge. CPaaS will be extremely beneficial to building intelligent
systems as it will provide the following novel components:

e A context prediction selector that can match the requirements of IoT appli-
cations to the prediction techniques and determine the most appropriate pre-
diction technique.

e An evolutionary learning approach that constantly re-evaluates context pre-
diction and updates the existing model with new knowledge.

e An actuation mechanism that enhances context prediction with the capability
to support preventive and mitigating actions.

e A standard, formal and flexible context prediction model that will extend an
existing context query language (CDQL) [3] developed by authors.

In the rest of this paper, we will first discuss the vision of CPaaS and highlight
its importances and also the main challenges that need to be addressed to develop
such a framework. Then, we will describe our proposed architecture for CPaaS
and explain its underlying components.

2 Motivational Use-Case

An important application domain in dire need of context and situation prediction
is wildlife conservation. Australia is home to distinctive wildlife and a number of
extant species. While a great deal of effort is spent on wildlife conservation, bush-
fires pose a significant danger to already endangered species [4]. In 2009, Black
Saturday bushfires in Victoria burnt over 450,000 hectares, killing about one mil-
lion wild and domesticated animals, reported by RSPCA [5]. Recent bushfires in
New South Wales, Victoria, Queensland, South Australia and Kangaroo Island
destroyed millions of hectares, and left more than one billion animals dead [6].
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In Kangaroo Island bushfires, it was estimated almost 30,000 koalas perished [6].
Figure 1 shows map of recent Australian bushfires during Summer of 2019-2020.
Accurate prediction of fire behaviour, size and spread (including its shape, area
and speed) can significantly help with mitigating and reducing the catastrophic
effects of bushfires on wildlife and allow managing and sustaining fire-prone and
safe ecosystems for them. A promising solution that can mitigate the effects of
bushfires on wildlife is to create a virtual fence that translocates animals to safe
fire-free areas. Virtual fence devices have been already tested in another signifi-
cant threat to Australian wildlife, which is roadkill [7,8]. A trial of virtual fences
in Tasmania over three years showed a reduction rate of 50% [7]. Virtual fencing
is also used as an animal-friendly system to move or confine livestock. Context
prediction can be used to predict future fire threats, and animals can be moved
to a safe area (where no fire is predicted) by creating a virtual fence.

Fig. 1. Map of Australia with recent bishfires (https://sydneynews.sydney/sydney-
news/1-billion-animals-perish-in-australian-bushfires /5762/, accessed on 12 Septem-
ber, 2020)

More practical and hotly needed motivational scenario is related to context-
aware car parking availability prediction. Australia’s capital cities have been
transforming at a staggering pace. In 2011 the total population of the top five
largest cities of Australia were around 13.5 million people [9]. Today, that figure is
more than 16 million people, which means around 20% growth of population [10].
By 2055, the expected population of Australia’s capital cities is predicted to reach
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more than 26 million people [11]. This growth in the population of the urban
areas of Australia will undoubtedly put significant strain on the environment and
infrastructures of the capital cities. For instance, without having a sophisticated
plan to deal with the population explosion, in the near future, Australians will
face several major problems such as traffic, air pollution, and water problems.

Therefore, to mitigate the possible negative impact of population growth, it is
vital to design and develop effective and efficient solutions for better management
of urban cities that contribute to environmental and urban sustainability and
resilience.

One of the new raising challenges due to the population growth in large
cities is searching for parking. As cities become more congested, the direct and
indirect costs of parking are growing quickly. A survey completed in Melbourne
and Sydney in 2014 showed that Australian drivers spend on average around
20 min a journey looking for parking during peak hour at busy areas of the city
[12]. A similar study in the US has shown that Motorists spend an average of
17h a year searching for carparks on-streets or in parking facilities [13]. Based on
this report, the amount of wasted time, fuel, and emissions for each driver will
add up to around $345 per year. This problem becomes worsen in large cities.
For instance, In New York City drivers on average spend 107h a year looking
for parking spots, which about $2,243 in wasted time, fuel, and emissions per
driver. To deal with the aforementioned problem and minimise the amount of
wasted time, fuel, and emissions during parking search, a promising solution is
to design, and implement a smart parking application by utulising IoT data.
Such a solution can work with existing infrastructure and provide benefits to a
wide range of stakeholders - from drivers to car manufacturers, parking space
vendors and government.

However, most of the existing research in this domain take only real-time
availability of parking facilities into account during the decision-making proce-
dure. For example, if a driver is planning for a trip to a location that is 30 min
away from its current location, and the IoT application suggests parking options
based on their current availability, that parking might not be available any-
more by the time the smart vehicle reaches the destination. Hence, to maximise
the potential of such an application, it is vital to predict the future availabil-
ity /capacity of parking facilities. Therefore, the smart parking application can
navigate drivers to the best available parking bay that will be available when
the vehicle reaches its destination.

3 Related Work and State-of-the-Art

3.1 Context- and Situation-Awareness

Context is a key characteristic of modern IoT-enabled systems. According to
the widely acknowledged definition given by Dey and Abowd [14], context is
“any in-formation that can be used to characterize situation of an entity”. In
plain words, any piece of information that the system has is a part of the sys-
tem’s context. The aspects of context include, but are not limited to, location,
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identity, activity, time. The system is context aware “if it uses context to pro-
vide relevant information and/or services to the user, where relevancy depends
on the user’s task”. In simple words, the definition means that the system is
context aware if it can use the context information to improve its performance,
efficiency, effectiveness and utility. Although recognised as an interdisciplinary
area, context-awareness is often associated with pervasive computing, and more
recently with the Internet of Things (IoT). Context awareness is a core func-
tionality in IoT, and any pervasive computing system is context aware to some
extent.

IoT devices have sensing, actuation, computational and storage capabilities.
These devices directly measure the environment characteristics (like tempera-
ture, light, humidity). Observation can be also considered as direct user input
using keyboards, touchscreens, and voice recognition. Sensor information and
user inputs are often processed in a similar manner. After highly heterogeneous
input data is delivered, the first processing step is the data fusion and low-level
validation of sensor information. Sometimes raw sensor data, collected in a single
vector of values, are already viewed as low-level context. The distinction between
different levels of context depends on the amount of pre-processing performed
upon the collected sensor information. Usually raw or minimally pre-processed
sensor data is referred to as low-level context, while the generalized and evalu-
ated information is referred to as high-level context [15].

The situation awareness in pervasive computing and IoT can be viewed as
the highest level of context generalisation [16]. Situation awareness aims to for-
malise and infer real-life situations out of context data. From the perspective of
a context aware IoT system, the situation can be identified as “external seman-
tic interpretation of sensor data”’, where the interpretation means “situation
assigns meaning to sensor data” and external means “from the perspective of
applications, rather than from sensors” [15]. Therefore, the concept of a situation
generalises the context data and elicits the most important information from it.
Properly designed situation awareness extracts the most relevant information
from the context data and provides it in a clear manner.

3.2 Prediction Techniques

Context prediction aims to predict future context information. It can be done on
any level of context processing, starting from low-level context prediction and
ending with situation prediction. The existing prediction techniques which can
be adapted to context prediction include [17]:

Sequence Prediction Approach. This approach to context prediction is based
on the sequence prediction task from theoretical computer science and can be
applied if the context can be decomposed into some kind of event flow.

Markov Chains Approach. Context prediction techniques based on Markov
chains are quite widespread. Markov chains provide an easily understandable
view of the system and can be applied if the context can be decomposed into a
finite set of non-overlapping states.



688 A. Zaslavsky et al.

Bayesian Network Approach. This can be viewed as the generalisation of
the Markov models. It provides more flexibility but requires more training data
in turn.

Neural Networks Approach. Neural networks are biologically inspired formal
models that imitate the activity of an interconnected set of neurons. Neural
networks are quite popular in machine learning. Context prediction approaches
based on neural networks are extensively used and perform well.

Branch Prediction Approach. This approach initially comes from the task of
predicting the instruction flow in a microprocessor after the branching command.
Some context prediction systems use similar algorithms.

Trajectory Prolongation Approach. Some context prediction approaches
treat the vector of context data as a point in multidimensional space. Then the
context predictor approximates or interpolates those points with some function,
and that function is extrapolated to predict future values.

Expert Systems Approach. Based on expert systems and rule-based engines,
the expert systems approach appears in some works on context prediction. The
goal of the approach is to construct the rules for prediction. It provides a clear
view of the system.

One of the context prediction research challenges is the development of a
general approach to context prediction. Many context prediction approaches
were designed to fit a particular task and most of them were not designed to
be generaliseable (although some of them have generalisation capability). The
context prediction process consists of several steps [18]:

Sensor Data Acquisition. This step takes data received from multiple sen-
sors and arranges them into the vector of values. Feature extraction. This step
transforms raw sensor data for further usage. From vector of sensor data, vector
of features is formed.

Classification. Performs searches for recurring patterns in context feature
space. Growing neural gas algorithm was considered to be the best choice. The
result of the classification step is a vector of values that represents degrees of
membership of a current vector to a certain class.

Labelling. This is the only step that involves direct user interaction. The fre-
quency of involvement depends on a quality of clustering step if classes are often
overwritten and replaced that will result in more frequent user involvements.

Prediction. This step takes the history of class vectors and estimates a future
expected class membership vector. Context prediction is a relatively new prob-
lem for computer science research. The area of context prediction is just being
developed and still there are numerous challenges yet to be addressed. Those
challenges include [17]:

Lack of General Approaches to the Context Prediction Problem. Most
current solutions predict context for particular situations. There have been only
a few attempts to define and solve the context prediction task in general.
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Lack of Automated Decision-Making Approaches. Most context
prediction-related works focused the efforts on prediction itself, but proper act-
ing on prediction results usually was not considered. Most context prediction
systems employed an expert system with pre-defined rules to define the actions
based on prediction results. With one notable exception of Markov decision pro-
cesses, almost no systems considered a problem like “learning to act”.

Mutual Dependency Between System Actions and Prediction Results
Is Not Resolved. This challenge is somewhat related to the previous one.
Many context prediction systems considered the tasks of predicting the context
and acting on predicted context in sequence: predict and then act on prediction
results. That approach can handle only simplified use cases when actions do not
affect prediction results. For example, in a smart home the system can employ
any policy for switching the light or opening the door in advance, depending
on user movement prediction results. But whatever the system does, it will not
affect user intentions to go to a particular room. However, in a general case sys-
tem, actions do affect prediction results. For example, consider a system which
is capable of automatic purchases to some degree and which needs to plan the
expenses, Or in a more serious use case, consider a pervasive system that is capa-
ble of calling the ambulance and that needs to decide whether to do it or not
depending on observed user conditions. In those and many more use cases, pre-
diction results clearly will depend on what the system does. However, there are
almost no work that considered the problem of mutual dependency between sys-
tem actions and prediction results. So far, the only works that did address that
problem were the ones on the Markov decision processes as discussed above. The
task of resolving that dependency is actually a special case of a reinforcement
learning task. In our opinion, although comparing to most reinforcement learn-
ing task pervasive computing systems have their own specifics (e.g., relatively
obscure cost and reward functions, high cost of errors and therefore very limited
exploration capabilities), recent advancement in the reinforcement learning area
can help to over-come that problem.

If all those context prediction challenges are resolved, it will IoT systems
handle more sophisticated use cases, enhance the applicability and the effective-
ness of context prediction techniques and therefore enhance overall usability of
ToT-enabled context-aware systems.

The next section will present and discuss the proposed Context Prediction-
as-a-Service (CPaaS) engine.

4 Context Prediction as a Service—Vision and Open
Challenges

As a step towards operationalising context-awareness in the realm of IoT, IoT
middleware platforms, also known as Context Management Platform (CMP),
have become a significant research challenge. CMPs manage interactions with
sources of context (context providers (CP)) and offer contextual information to
context-aware applications (context consumers (CC)) as a service. In our earlier
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research, we have developed a novel CMP called Context-as-a-Service (CoaasS)
[19]. As it is illustrated in Fig. 2, CoaaS acts as a middleware that facilitates
communication between CC and CP. One of the main features of CoaaS that
distinguishes it from other existing CMPs is its generic and flexible query lan-
guage that allows developers of context-aware IoT applications to query and
monitor context of the entities of interest in real-time [3]. More importantly,
Context Definition and Query Language (CDQL) supports queries about mul-
tiple entities and their situations (i.e., high-level, inferred context), which can
be defined as part of the query at run time [3]. Another unique distinguishing
feature of CoaaS is continuous reasoning and applying Al over IoT data streams
and situations monitoring. Our experimental results show that CoaaS platform

Context
Consumers

Context providers

Fig. 2. CoaaS conceptual architecture
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has a better overall performance in the execution of complex context queries
compared to its main rival Fiware Orion [20] developed as part of EU research
projects.

While current version of Coaa$S platform can be utilised by context-aware IoT
applications to seamlessly acquire and monitor the current context/situation of
ToT entities, it does not support predicting future context/situations. IoT appli-
cations generally operate in unstable and unpredictable environments, where the
context of entities constantly changes. It is insufficient to perform querying and
adaptation solely based on the current context. To fully realise the potential
benefits of context-awareness, it is essential to provide IoT applications with the
capability to predict the future context and situations so they can adapt proac-
tively to future changes, and take preemptive smart actions to mitigate any
undesired or negative consequences. Context prediction will also enable applica-
tions to make better decisions and manage resources more efficiently.

A CMP that supports context prediction can offer distinct advantages to IoT
ecosystems. It will enable a range of intelligent and proactive IoT applications
and services in multiple domains. For example, it can enable smart parking with
near real-time accurate prediction of parking availability and navigate drivers to
available parking spaces hence saving fuel, time, and reducing emissions’ impact
on the environment.

The existing context prediction research is rather limited in meeting IoT
applications’ prediction demands. First, they do not support predicting multi-
ple contexts and real-world complex situations that are highly important for
operating in dynamic IoT ecosystems. Second, they mostly lack the ability to
update their prediction model and suffer from the ’stale’ model problem that
can degrade accuracy. Third, they generally do not incorporate any actuation
mechanism for mitigation purposes. Finally, the major shortcoming in existing
context prediction approaches is that they are application-specific, and not appli-
cable and accessible to IoT applications as a general service. The key challenges
of context prediction and learning over predicted context in IoT ecosystems are
listed below:

e Developing theoretical underpinnings and enhancing the prediction tech-
niques for context/situation prediction, and incorporate them into a library
where the best technique can be selected at run time according to the require-
ments of IoT applications in order to increase the accuracy and efficiency of
prediction.

e Developing an advanced learning approach, using the state-of-the-art Al and
machine learning techniques, to monitor system evolution and adaptation
based on predicted context, and continuously update and extend the existing
knowledge and heuristics to increase the prediction accuracy and efficiency.

e Developing a proactive actuation mechanism that can automatically re-
evaluate and react to predicted context/situations by recommending actu-
ations and mitigating actions to context consumers (entities and/or applica-
tions) that might be affected by the predicted context/situations.
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e Developing new query language constructs for context and situation predic-
tion to allow interactions between the CMPs and context consumers in a
uniform way.

To address these challenges, in this paper, we propose to extend CoaaS by
introducing a new component, called Context Prediction Engine (CPE). CPE
will provide a generic mechanism for real-time context prediction, i.e., Context-
Prediction-as-a-Service (CPaaS). Accordingly, we will extend the CDQL lan-
guage with new constructs for context prediction, which can be used to satisfy
the needs of context consumers.

5 Context Prediction Engine (CPE)

Significant challenges have to be addressed in researching, advancing, integrat-
ing and validating a generic real-time context prediction mechanism to enhance
CoaaS and supporting real-time context prediction over IoT data. In [17], we con-
ducted a comprehensive investigation into the context prediction techniques and
challenges and identified the essential requirements of such a system while also
identifying knowledge gaps in the current literature. Seven prediction approaches
have been identified that can be used to predict context of IoT entities. These
prediction approaches are Sequence prediction approach, Markov chains app-
roach, Bayesian network approach, Neural networks/deep learning approach,
Branch prediction approach, Trajectory Prolongation/Approximation approach,
and Expert systems approach. Each of these approaches works best for a certain
type of context data and would also depend on other corresponding meta-data,
such as what amount of data is available, frequency of observations, and seasonal-
ity of the data to name a few. Hence, development of a generic context prediction
mechanism, implies a dynamic context prediction mechanism that contains the
library of the above-mentioned prediction techniques integrated, and based on
the type of context data (e.g., location), the characteristics of data (e.g., observa-
tion frequency), and requirements of context provide (e.g., accuracy), applies the
matching prediction techniques (e.g., Trajectory prolongation/approximation).

5.1 Problem Definition

To formulate the context prediction algorithm selection problem, consider a
library of prediction techniques with n registered prediction algorithms and
a given prediction task. The set of prediction techniques is denoted by P =
{p1,p2,---,pn}, and the prediction task is denoted by:

pri = (metaContext;, metaData;, requirments;, contextV alues;) (1)
where

metaContext; = (entitytype, contextattributetype, fressness, ontology, . ..)

(2)
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requrments = (ccuracy, responsetime, predictioninterval, . . .)
contextValues = {cvy, cvvi_1, cli—a,...}

The goal of a context prediction selection is choosing the most appropriate
prediction technique for a given prediction task in a way that the prediction
accuracy is maximised. Hence, the problem of context prediction selection can
be formulated as an optimization problem:

min;(ca} ™" — p;(pr:)), wherep; € {p1,p2, ..., pn} (3)

5.2 Context Prediction Engine Framework

Figure 3 presents the architecture of the proposed CPaaS framework, with a spe-
cific focus on the context prediction engine (CPE). CPaaS has five main com-
ponents, namely Communication & Security Manager (CASM), Context Rea-
soning Engine (CRE), Context Storage Management System (CSMS), Context
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Fig. 3. Context-Prediction-as-a-Service framework
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Query Engine (CQE), and Context Prediction Engine (CPE). CASM acts as
a proxy and distributes all the incoming messages from CPs and CCs to the
corresponding components after performing authentication and authorisation.
CQE is responsible for parsing the incom-ing queries, generating and orchestrat-
ing the query execution plan, and producing the final query result. CSMS is in
charge of storing descriptions of context services and facilitates service discovery,
caching contextual information, and storing and analysing the historical context.
The main task of CRE is to infer situations from raw sensory data or existing
primitive low-level context. The details of these components are available in our
earlier publications [21,22].

Lastly, CPE, which is the main focus of this paper is responsible for predict-
ing the future context and complex situations and taking preemptive actions to
mitigate any undesired or negative consequences. CPE consists of six main sub-
components, namely, Context Prediction Coordinator (CPrC), Ontology Man-
ager (OM), Prediction Technique Selector (PrTS), Context Predictor (CPr),
Prediction Evaluator (PrE), and Actuation Manager (AM).

When a CDQL query with a prediction task is issued to CPaaS, after passing
the security checks, it will be sent to the Context Query Engine (CQE) by
Communication and Security Manager (CASM). Then, the parsed query plus
some additional information, such as meta-data about the context of interest,
will be sent to the Context Prediction Coordinator (CPrC).

The CPrC plays an orchestration role in the prediction engine. This module
is responsible for managing and monitoring the whole execution procedure of a
prediction task. In the next step, prediction tasks will be pushed into OM mod-
ule. This module is in charge of finding the possible correlated context attributes
that can be used to better predict the future context of interest. Moreover, the
OM identifies the ontology class of the context entity of interest as well as its
context attribute type. CPaaS allows Context Consumers to define and register
their own ontology to offer more flexibility to developers of context-aware IoT
applications.

After discovering the correlated context attributes, the prediction task is
sent to PrT'S. PrTS searches the library of available prediction techniques and
chooses the most suitable one based on several parameters related to the incom-
ing prediction task, such as type of context, context meta-data, and correlated
context-attributes.

The goal of the PrTS is to select the most appropriate prediction technique
from a prediction set P that matches a given prediction task pr;. There are
a number of similarity measures such as Euclidean and Manhattan distance
measurements, Pearson coefficient measurement, and Cosine similarity measure-
ments that can be used [23]. However, these methods are not able to deal with
the impreciseness and vagueness associated with prediction requirements of IoT
applications and the uncertainty of context. Fuzzy set theory has been recog-
nized for its strength in modeling imprecise and uncertain information. By using
a fuzzy matching method, similarity measurement can take the context uncer-
tainty into consideration, and as a result increase the prediction accuracy. We
can represent the fuzzy selection of a prediction algorithm as below:
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Juzzyselectiony, = {(prm; Pm; lipro, pp))> M = 1,...,n} (4)

The membershiop degree of p,, for pr, is represented by ti(py,. p..)- The fuzzy
selection aim is to find a prediction algorithm p,, for the application which has
a fuzzy matching with the prediction task pr,,, using a fuzzy rule that implies
Pr'm — Pm.

In parallel with the previous step, a request is sent to the Context Stor-
age Management System (CSMS) to fetch the related historical context of the
attribute of interest and other correlated attributes. Lastly, all the retrieved
information in previous steps is passed to the CPr module.

CPr builds a prediction model based on the provided information and per-
forms the requested context prediction. The outcome of the prediction is sent
back to the Context Consumer though the CASM. CPr also caches the prediction
result and model for future usage. Moreover, the predicted context/situation is
sent to AM.

AM is responsible for identifying the possible actions that need to be taken
proactively based on the outcome of the prediction and notifying corresponding
context consumers. To achieve this goal, AM uses OM to discover the severity of
the predicted situation and possible actions. Then, AM query for all the context
consumers that subscribed for the predicted situation and push an actuation
signal to them.

After the prediction task is completed, the CPE keeps monitoring the real-
time value of the context attribute of interest for a certain amount of time. The
motivation behind this procedure is to evaluate the generated prediction model
against the new knowledge and update it if needed to improve the prediction
accuracy at the next cycle. PrE is in charge of this task. To do so, the real-
time value of the context attribute is sent to the CPrC. Then, after performing
a pre-processing on the value, it is passed into the PrE. In addition to the
cleaned, real-time value of the context-attribute, other relevant information, such
as the predicted value(s), generated prediction model, the prediction task, and
historical values is also shared with the PrE. Then, PrE measures the accuracy
of the prediction engine and tries to enhance the prediction accuracy by applying
machine learning techniques, in particular, evolutionary learning.

Here, one of the major drawbacks of discriminative machine learning tech-
niques, such as deep networks, are the lack of explainability and interpretability.
More even so since deep networks do not have an inherent representation of
causality. Moreover, with the rapid development of autonomous sensing plat-
forms and decision support using deep learning there is an urgent need to add
an automated interpretation and identification of the underlying processes and
parameter states that govern the predictive behaviour of the network. This is
even more important for legal and ethical evaluation and compliance particu-
larly with mission-critical applications. Expressing the knowledge implicit in the
network using hierarchical models so as to represent the knowledge in the net-
work in an easily interpretable manner has analogies with mixtures of learners
in the literature. This is an important observation since these have an explicit
syntactic richness to support the extraction of declarative rules, a property that
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has been used in syntactical and structural pattern recognition for SVMs and
shallow networks. Further, these mixtures of learners have been used in formu-
lations based upon mixture models, Markov Logic Networks, decision trees and
Bayesian Networks, all of which provide the ability to extract complex proba-
bilistic relationships and impose constraints on the inference process.

6 Conclusion and Future Work

In this paper a novel Context Prediction Engine was proposed. It supports
real-time context prediction and machine learning using deep networks, such as
GANNSs. Future work is concerned with prototyping, integrating and testing the
software components, as well as collaborating with ETSI in further developing
and improving standards related to context management platforms.
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