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description of the target items. The entire exploration can be
done by answering simple binary (i.e., yes or no) questions.
This is as opposed to Query Recommendation techniques
that require intensive query logs and user profiles, which
are often unavailable when users are exploring datasets for
the first time. Similarly, Query Refinement techniques require
the user to provide some initial imprecise queries to be
progressively refined into a more precise one, a process that
clearly requires users to possess some good understanding
of the underlying database schema as well as the ability to
formulate meaningful queries. More importantly, Explore-by-
Examples based exploration systems can further be used to
enhance traditional search results. Especially, they can be used
to address the problem of having overwhelming results due to
a broad query or search conditions [6], [10].

To further explain how Explore-by-Examples works, con-
sider the scenario in which a user is searching for “interesting”
articles or tweets regarding COVID-19. The user has a mental
representation of the characteristics of the COVID-19 articles
that suit his/her interest but he/she are not fully acquainted
with the actual keywords, author, or topic that would select
these interesting articles. Given the fact that a simple key-
word of “COVID-19” leads to a deluge of COVID-19 news
and articles, mining all or most relevant articles, news, and
tweets that satisfy the user’s specific interest becomes another
“mission impossible”. However, if we show the same user an
example article or news title that they have seen and ask them
“Is this the type of article that you have in mind? Yes or no?”,
people can answer such ordinal questions with more ease than
absolute judgments (i.e., finding the exact words or queries to
describe their interest) [12].

The aforementioned scenario is not restricted to searching
for articles or news only. Browsing for images, videos, or
searching for nodes in large interconnected graphs, users face
the same challenge of not being able to accurately describe
items that are of interest using traditional search interfaces.
However, a user can easily provide a relative judgment based
on an actual example, that is, answering questions such as “Do
you find this image example interesting: Yes or No?”, rather
than describing in detail the characteristics of their intended
images.

Motivated by the above scenarios, the main idea underlying
the Explore-by-Examples techniques, which is the focus of
this work, is to automatically discover all relevant items
intended by the user based on their feedback on a small
set of sample objects, called “examples” [6], [10], [11].
Typically, an Explore-by-Examples exploration starts with a
large set of initial data resulting from a loose search query
that contains mostly uninteresting data items with a small
percentage of interesting items. Later, the user is prompted

Abstract—Driven by the increasing gap between the exponen-
tial growth of data and the limited human ability to comprehend 
them, recently, a novel interactive data exploration approach 
called Explore-by-Examples has generated a lot of attention for 
its capabilities to bridge this gap and to help the user obtain 
high-value content from the data that are often hidden using the 
traditional search methods. However, despite their effectiveness 
in extracting valuable information, existing Explore-by-Examples 
systems focus solely on structured data, which represents a 
small portion of the data available today. In this work, we 
present a novel data exploration framework, namely ExNav 
(Exploration Navigator), which enables the user to effortlessly 
explore the world of unstructured data for insights that are often 
unreachable from traditional search and exploration methods. 
In particular, we exploit the space of advanced machine learn-
ing, data embedding, and active learning algorithms to design 
effective exploration and space pruning approaches tailored 
for unstructured datasets. Our experimental evaluation using 
multiple real-world unstructured datasets (i.e., text, image, and 
graph) show that ExNav can reduce users’ effort by up to 9x 
while still achieving the same accuracy as the state-of-the-art 
alternative. Moreover, ExNav is also able to identify relevant 
data items that are often undetectable by current techniques, 
even when a large number of samples are explored.

I. INTRODUCTION

Search is central to our daily interactions with data, ranging
from rudimentary tasks such as online shopping to more com-
plex ones such as retail analytics. With the rapid growth of the
complexity and volume of available data, the traditional search 
methods relying on explicit keywords or queries can quickly
lose their effectiveness. As reported in recent studies [1], it 
is often difficult f or u sers t o c onstruct p recise articulations
that describe their interests. In such cases, traditional search 
methods usually fail to deliver satisfying results, and the user
often needs to deal with results that are too big in size 
due to loose queries or keywords. Consequently, to obtain
a satisfying result, users need to execute numerous ad-hoc
queries with tightened conditionals to reduce the search space, 
which requires a considerable amount of time and human
effort.

In order to address the challenges outlined above, recent 
research efforts have been directed towards designing data
exploration techniques that aim to assist users in finding 
their intended items (e.g., [2], [3], [4], [5], [6], [7], [8]).
Examples of such techniques include Query Recommendation 
(e.g., [2], [3]), Query Refinement (e.g., [4], [5]), and Explore-
by-Examples (e.g., [6], [9], [10], [11]). Among those tech-
niques, Explore-by-Examples is rapidly becoming an attractive
choice, due to its efficiency i n fi nding re levant it ems that 
are often undiscoverable using traditional search methods.
In particular, Explore-by-Examples does not require users to
formulate any complex queries, nor does it need any form of
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to label a small set of strategically collected examples as
relevant or irrelevant to her exploration task. Based on the
feedback, the system generates a predictive model that is used
to collect a new set of sample objects. Subsequently, these new
samples are presented to the user, and her relevance feedback
is incorporated into the model. In the background, the system
leverages the predictive model to discover and identify more
objects relevant to the user’s task. A list of potentially relevant
objects can be retrieved at any time during the exploration, and
the exploration stops once the user is satisfied with the results.

Despite being effective in retrieving relevant data items,
existing Explore-by-Examples systems focus only on struc-
tured data with low dimensionality, which does not apply to
unstructured data (e.g., image, text, and graph) due to their
more complex nature and much higher dimensionality. In this
paper, we describe our framework, coined ExNav (Exploration
Navigator), which is the first interactive data exploration
framework that leverages Explore-by-Examples paradigm for
unstructured data. ExNav is capable of supporting any form
of unstructured data as long as an underlying vector represen-
tation of the data can be created. It dynamically refines the
exploration space based on a set of interactions with the user,
such that in each interaction, the user is presented with an
example and is asked to provide only binary feedback (e.g.,
interesting or not interesting) on each example. Furthermore,
it implements a number of optimizations that further improve
its exploration efficiency and ensures the desired interactive
performance during the exploration.

We experimentally evaluated ExNav on three real-world
unstructured datasets (i.e., [13], [14], [15]), each with different
data types. The experimental results show that ExNav can
reduce users’ effort by up to 92.3% while still achieving the
same accuracy as the state-of-the-art alternative. Moreover,
ExNav is also able to identify with high accuracy relevant
data items that are often undetectable by current techniques,
even when a large number of samples are explored.

Specifically, our contributions in this paper are as follows:
• We propose ExNav, an effective generic interactive data

exploration framework that is tailored for unstructured
data. Our ExNav is able to work with any unstructured
data (e.g., images, text, audio, and graph) as long as
an underlying embedding representation can be created
(Sections II-III).

• We introduce several optimizations that reduce the time
and effort required to learn the user’s interest, and in turn,
boost the accuracy of the result and reduce the number
of examples required during the exploration (Section III).

• We realize several instances of ExNav framework for
different data types and experimentally verify their ef-
fectiveness and efficiency with real-world image, text,
and graph datasets. Our experimental results that ExNav
significantly outperforms state-of-the-art data exploration
systems in accuracy while achieving the necessary effi-
ciency for interactive performance (Section IV).

II. PROBLEM DEFINITION & BACKGROUND

In this section, we formally introduce our problem and
provide the necessary background of our ExNav.

A. Data Exploration Task
To illustrate visually the data exploration task handled by

ExNav, we assume each item of the data has been reduced to

Fig. 1: 2-D data space with 3 relevant regions.

2 dimensional. Figure 1, shows the data objects (e.g., image,
article title) in 2-dimensional space, where each data object
is represented by a 2-attribute data point. Meanwhile, the
dashed rectangles represent regions of the data space that are
of special interest to the user’s current data exploration task.
Consequently, the goal of Explore-by-Examples techniques,
including ExNav, is to effectively identify all or most relevant
items (items in dashed rectangles) with high precision.

B. Problem Settings

The data exploration problem addressed in this work can be
formalized as follows. Consider a d-dimensional data space D
of size N data items created using an embedding algorithm.
Further, consider L, a small subset of D of size n data items,
where n << N . Each data item in L is interactively labeled
by the user as relevant or irrelevant. The goal is to construct a
predictive model ρ, which accurately predicts the set of regions
of the data space <+ that are of interest to the user using the
labeled data items in L. That is, all data items predicted by ρ
as positive are relevant to user exploration, and all data items
predicted by ρ as negative are irrelevant.

Given the fact that the user is unaware of the proper
specification that describes <+, the user can only recognize it
in hindsight based on the data items predicted as relevant and
retrieved by ρ. Hence, the objective is to predict accurately all
regions in <+, which can be naturally measured using the F -
measurement [6], [10], the harmonic mean between precision
and recall. Particularly, for q data space D of size N and
a predictive model ρ, all the data items in D predicted by
ρ as positive should be relevant to user exploration, and the
remaining data items in D should be irrelevant. Accordingly,
our goal is to design a solution that would maximize the F -
measure for a fixed amount of user labels, such that F -measure
is defined as:

F (N) =
2 · Precision(N) · Recall(N)

Precision(N) + Recall(N)
(1)

Here, precision measures the portion of true relevant data
items among all the data items predicted as relevant by ρ.
Hence, true relevant, or true positive, indicates that a data item
is both relevant to the user and has been predicted as relevant
by ρ. If a data item is irrelevant but predicted to be relevant by
ρ, it is considered a false positive. Recall measures the ratio
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of the true relevant data items captured by ρ to all the data
items that are actually relevant to the user.

C. Active Learning
As the goal of the predictive model in Explore-by-Examples

is to seek the most informative next example to be labeled from
a large dataset, it is aligned with the goal of Active Learning
[16]. Active learning refers to a set of approaches that aim
to learn an accuracy model with minimum labeled data for
regression and classification tasks. One key component of
active learning is the query strategy that sequentially selects
the most informative unlabeled sample (i.e., data object) from
the entire database to be labeled by the user.

In previous literatures, numerous query strategies [16] have
been proposed to define the “informativeness” of samples,
including: Uncertainty Sampling, Query-By-Committee, Ex-
pected Model Change, Expected Error Reduction, and Ex-
pected Model Output Change. Among these query strategies,
Uncertainty Sampling is the most commonly used one because
of its simplicity and efficiency, as pointed out in [16].

1) Uncertainty Sampling: Uncertainty sampling [17] is a
query strategy that can be used with any probability-based
classification model (e.g., Naive Bayes, SVM, etc..). The
intuition underlying uncertainty sampling is that patterns with
high uncertainty are hard to classify, and thus, if the labels
of those patterns are obtained, they can boost the accuracy of
the classification models. Particularly, in binary classification
models (e.g., with class labels 0 and 1), the most uncertain
example x is the one which can be assigned to either class label
z(x) with probability 0.5. Inspired by the idea of uncertainty,
also known as least confidence, [17] proposes a measurement
of uncertainty for binary classification models:

u(lc)(x) = 1− p(ŷ|x) (2)

where u(lc)(x) is the uncertainty score with the least confi-
dence measurement of x, and ŷ is the predicted class label of
the unlabeled x. Accordingly, after measuring the uncertainty
of each unlabeled sample, the unlabeled sample with highest
uncertainty is selected:

x∗ = argmaxxu(x) (3)

where u(x) can be any other measurement of informativeness
over the unlabeled sample x.

III. THE EXPLORATION NAVIGATOR (EXNAV)
In this section, we formally describe our proposed ExNav.

A. Proposed Solution
Our solution ExNav is designed to be independent of the

underlying types of data and aims at the following goals 1)
minimize the user labeling effort during an exploration task,
and 2) obtain all data objects relevant to user exploration with
the highest accuracy.

As shown in Algorithm 1, ExNav identifies relevant ob-
jects through an iterative interaction with the user. In each
iteration, ExNav presents the user with one example (e.g., an
image, a news title) from the entire dataset and requests the
user’s feedback on the relevance of this example to his/her
exploration. Inside the system, ExNav decides and utilizes the
data embedding method based on the data type involved in
the exploration to cover each data item into its corresponding
feature representations (i.e., embeddings) (Line 1). Leveraging

Algorithm 1 The Exploration Navigator
Require: The raw data set D
Ensure: The set of relevant objects R

1: Convert D into a set of embeddings E
2: Es ← dataReduction(E)
3: L← obtain initial set of samples
4: Unlabeled set U ← Es

5: M ← initialize query selection method
6: while user continues the exploration do
7: Choose one x from U using M
8: Solicit user’s label on x
9: L← L ∪ {x}

10: U ← U − {x}
11: M ← trained with L to update M
12: end while
13: Return relevant objects R captured by the most recent M

these embeddings, ExNav employs a predictive model to
wisely select the example to be presented that will maximize
the benefit to the exploration task once its relevance with
respect to the exploration is provided by the user (Lines 5-
7). Once labeled, this example, along with its label (i.e., user
feedback) will be incorporated with all previously labeled
examples to update the predictive model for better subsequent
explorations (Lines 8-11). The user terminates the exploration
once he/she is satisfied with the exploration results, and the set
of relevant data objects captured by the most recent predictive
model will be returned (Line 13).

In the following sections, we will present each main com-
ponent of ExNav in detail.

B. Data Embedding
Currently, there exists a large body of embedding algorithms

that encompasses various methods for learning of feature rep-
resentations of different unstructured data types (e.g., image,
graph, text) in numerical vector space. Typically, embedding
methods aim to create embeddings (i.e., vector representations)
based on the assumption that the similarity between data
items in their original form should be reflected in the learned
feature representations. To achieve this goal, a large variety of
algorithms have been proposed for a wide range of data types
using both supervised and unsupervised learning methods. For
instance, Word2vec [18], Universal sentence encoder [19], and
GloVe [20] are some well recognized methods for embedding
text into its corresponding vector space. Similarly, for image
data, there exists a large body of embedding methods that
range from deep learning-based methods (e.g., Resnet-18 and
Alexnet) to more traditional keypoint-based embedding meth-
ods (e.g., Scale Invariant Feature Transform (SIFT), Speeded
Up Robust Features (SURF)). Even for more complex data
types such as graphs, the problem of embedding each data
node into its vector space is also well studied (e.g., [21], [22]).
These embedding methods provide good representations of its
data items in the corresponding vector space that preserves
the relative similarity between the data items in its original
space. In our work, we leveraged these data embedding
algorithms and designed ExNav to be a generic interactive
data exploration framework that works with any unstructured
data as long as an embedding representation can be produced.

Different embedding methods may produce embeddings
with different dimensionality, which can range from 128
dimensions to 32768 dimensions [23]. Such a large variation
in the length of the embeddings can lead to inconsistent
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performance in the subsequent exploration task and slow
convergence of the predictive model. Furthermore, many of
these embeddings are loosely embedded, and thus, many of
their attributes (i.e., dimensions) do not provide much value
in identifying relevant data items. To address this challenge, in
ExNav, we use dimensionality reduction algorithms to com-
press each high dimensional embedding into more condensed
lower-dimensional vector representations. In particular, we
used a well-known dimension reduction algorithm called Prin-
cipal Component Analysis (PCA), which aims to minimize the
reconstruction error between the compressed low dimensional
vector and its original high dimensional representation.

C. Exploration Space Pruning
In a typical active learning setting, query strategies are ap-

plied over the entire set of unlabeled data objects to select the
next example to be presented to the user for labeling. However,
such exhaustive search incurs high processing costs, causing
delays between each user-machine interactions, and leads to
slower convergence of the predictive model. To address this
challenge, data exploration approaches typically employ space
pruning techniques for minimizing the number of unlabeled
objects to be searched. In the ExNav framework, we consider
simple yet effective space pruning methods, called Multi-
Instance Space pruning (MIS pruning). Our MIS pruning is
inspired by the Multi-Instance Active Learning (MIAL) [24],
which is a set of popular approaches for reducing user labeling
effort.

The idea in MIAL is that data objects can be grouped into a
set of bags, and the user is asked to label each bag as positive
or negative. Accordingly, MIAL assumes that a bag is negative
if every object in that bag is negative; otherwise, the bag
is positive. Subsequently, these bag-level labels will be used
in the training of either bag-level or instance-level classifiers
[25]. Compared to the more traditional instance-level active
learning, MIAL has proven to be very effective in further
reducing the labeling cost in many domains and applications
[25]. For instance, in a text document, image, or a biological
sequence, consider the case where individual instances tend
to form very distinct clusters. In such cases, it may often
be easier to label a group of strongly similar objects rather
than each individual one, and all objects of the group inherit
this label. Previous works have shown that MIAL efficiently
reduces annotation costs in various applications such as object
detection [26], web search results [27],and medical analysis
[28], as well as different data types such as text [29], [30],
image [28], and audio [31].

In contrast to MIAL that uses the bag-level labels for the
training of classifiers, our MIS pruning uses the bag-level
labels to identify and prune sub exploration spaces that are
completely irrelevant to the exploration task, and in turn,
reduces the amount of data that needs to be searched during the
exploration. In particular, MIS pruning first uses the popular
K-Means clustering algorithm to divide the items in the current
exploration space into a set of bags based on their similarity.
Given that each bag is created by grouping similar items, it
ensures that the items within each bag are much more similar
to each other compared to items across different bags. Thus,
users only need to quickly skim through the items in each
bag to see whether the bag is far away from the regions that
contain relevant objects, without needing to closely examine
each object of the bag. Such pruning technique enables us

to leverage the benefit of MIAL and bag-level labels, while
still preserving the high precision capability of instance-level
active learning in identifying precisely all relevant regions.

D. Query Strategy
Query Strategy is the component of our ExNav framework

that aims to minimize the labeling effort while maximizing
the accuracy in discovering relevant objects. It is worth men-
tioning that in this context, a “query” refers to the process
of selecting an example object to be presented to the user
for labeling. In ExNav, we leverage uncertainty sampling to
quickly learn the interest of the user and steer them towards
all relevant data regions.

Uncertainty Sampling: As previously mentioned in Section
II, uncertainty sampling is a popular active learning technique,
which aims to choose the data points which are most beneficial
to build a classification model that precisely distinguishes
relevant and irrelevant data objects. According to Equation
2, to measure the uncertainty of a data object x, we need
a probabilistic-based predictive model that would report the
probability of x being positive or negative. Based on empirical
studies, we selected a probabilistic based classification model,
called Gradient Boosting Decision Tree Classifier, [32] to
determine the uncertainty score.

Gradient Boosting Trees: Gradient boosting [33] is a
machine learning technique for regression and classification
problems, which produces a prediction model in the form of
an ensemble of weak prediction models. Gradient boosting is
typically used with decision trees, and the trees are trained in
a sequential fashion, such that the subsequent tree is trained
towards the residual (i.e., the difference between the observed
value and the predicted value) of the current tree. For a binary
classification problem, the observed value is 1.0 for positive
(relevant) data points and 0.0 for the negative (irrelevant) data
points. And the predicted value is the predicted relevance
probability of the data point.

For example, to build the mth tree, the algorithm would
first calculate the residuals from the (m− 1)th tree using:

rim = −
[
∂L(yi, F (xi))

∂F (xi)

]
F (x)=Fm−1(x)

for i = 1, . . . , n.

(4)
where L(yi, F (xi)) is the loss function and Fm−1(x) is the
output from the (m − 1)th tree in log-odds form. Next, the
algorithm would fit a new decision tree (i.e., the mth tree) to
the residuals rim, which will have Jm terminal regions (i.e.,
leaves), R1m, . . . , RJmm. Then, the algorithm would calculate
an output for each region using:

γjm = argmin
γ

∑
xi∈Rjm

L(yi, Fm−1(xi) + γ) (5)

where xi’s are the data points, yi is the observed value for xi,
and Fm−1(xi) is the predicted value for xi in log-odds form
from the (m− 1)th tree.

Finally, the output of the mth tree would be:

Fm(x) = Fm−1(x) + ν

Jm∑
j=1

γjm1Rjm(x) (6)

where ν is the learning rate to prevent over-fitting, and the
summation is in place in case a data point ends up in multiple
leaves.
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Equation 6 is also used for the prediction of new data points,
and the output is converted to probability using the sigmoid
function. The predicted probability will, in turn, be used in
the uncertainty calculation for the data point.

Uncertainty Sampling for Big Data: Uncertainty sampling
is widely adopted in active learning to minimize the user la-
beling effort. However, traditional uncertainty sampling suffers
from two major drawbacks: 1) shortsightedness (as point out in
[34]), and 2) low scalability [10]. Shortsightedness refers to the
issue where the uncertainty of unlabeled samples is estimated
solely based on the information obtained from labeled samples,
which usually represents only a tiny portion of the whole data
space; therefore, it causes bias in the estimated uncertainty
score, and in turn, leads to less effective decisions when
selecting samples for labeling. Low scalability is caused by the
fact that traditional uncertainty sampling requires performing
an exhaustive search over the entire unlabeled datasets before
one sample can be selected and presented to the user.

Randomized Uncertainty: To overcome the first drawback
mentioned above, the work in [35] combines uncertainty
with some degree of randomness. In particular, an unlabeled
object that would be presented to the user as an example
is probabilistically selected from the entire set of unlabeled
objects. The probability that an unlabeled object x is selected
is proportional to its uncertainty score:

p(x is selected) =
u(x)∑

xu∈U u(xu)
(7)

where U is the set of unlabeled objects and u(x) is the
uncertainty score of x.

Since the probability that an unlabeled object x is chosen
as an example is equal to its normalized uncertainty score,
therefore, less uncertain objects can still have a small chance
of being accepted as examples, which essentially reduces the
bias introduced by the labeled samples.

Randomized Accept/Reject Uncertainty (RARU): When ex-
ploring large datasets, randomized uncertainty still suffers
from low scalability due to the fact that the computation
of the normalized uncertainty score requires going through
all the unlabeled objects at least once. Thus, to address
the second drawback of uncertainty sampling, we employed
an accept/reject query strategy approach, called Randomized
Accept/Reject Uncertainty (RARU) [10]. Particularly, in each
iteration, RARU chooses the example to be presented to the
user by randomly picking unlabeled objects from the entire set
of unlabeled data, and then for each picked object x, RARU
calculates the uncertainty score of x. Subsequently, RARU
uses the uncertainty score of x as the way to determine its
acceptance (i.e., whether to request user’s feedback on x),
such that the probability of an unlabeled data sample x being
accepted under RARU is:

p(x is selected) = min
k∈0,1

Pr(Ck|x)
0.5

(8)

where Pr(Ck|x) is the probability of x being assigned a
binary class label Ck, and 0.5 is a normalizing factor since a
prediction score of 0.5 indicates the classifier is most uncertain
about an object.

RARU randomly visits each unlabeled object, until one
object is accepted according to the above Equation 8, and the
accepted object (i.e., example) will then be presented to the

TABLE I: PARAMETERS

Number of data objects 6786 (All datasets)
Number of dimensions 32
Number of target relevent regions 1, 2, 3
Pruning question count 16
Example batch size 5
Max example allowed 3000
Target region cardinality 0.5% (S), 1.0% (M), 2.0% (L)
Considered Query Strategies Traditional, RARU
Predictive Model GBDT
Performance measure F-Measure (Accuracy)
Schemes RANDOM, REQUEST,

ExNav TU, ExNav RARU
Number of runs per result 10

user for labeling. Clearly, RARU provides an early termination
to the exhaustive search of the unlabeled data objects, while
still preserving the feature of randomized uncertainty, which
alleviates the issue of the shortsightedness of the traditional
uncertainty sampling.

IV. EXPERIMENTAL EVALUATION

In this section, we will present the results of our experi-
ments. We begin this section by introducing the experimental
setup. Then we demonstrate the performance of our schemes
and of other alternatives.

A. Experiment Setup
Datasets In our experiments, we used three real-world

unstructured datasets. The CBC news dataset (Text) contains
news articles about COVID-19 [13]. The Caltech-256 image
dataset (Image) contains images of 256 different categories
[14]. The Mashup PPI dataset (Graph) contains nodes infor-
mation in a protein-protein interaction graph [15].

Learning Representation We used off-the-shelf algorithms
to generate the learning representations for the data. For the
Text dataset, we used the Universal Sentence Encoder [19] to
generate a 512 dimensional vector for each article. For the
Image dataset, we used the ResNet [36] to generate a 512-
dimensional vector for each image. For the Graph dataset, we
used the pre-trained 500-dimensional vector from the Mashup
project [37] for each node. Each vector is a compact repre-
sentation of a node that accurately captures the topological
patterns of the corresponding node in the original graph. All
vectors in each dataset are projected to a 32-dimensional space
using PCA as the final learning representation for that dataset
and are used across all models.

Schemes We experimented with one baseline scheme, one
state-of-the-art scheme, and two ExNav schemes. The baseline
scheme is the random scheme (RANDOM), where the system
selects examples randomly (based on uniform distribution)
from the unlabeled set. The state-of-the-art scheme REQUEST
[10] with all the recommended settings as described in the
paper. The first scheme for ExNav is called ExNav TU. It
uses traditional uncertainty sampling [16] to select examples.
The second scheme for ExNav is called ExNav RARU. It uses
RARU as the query strategy for example selection. We also
use ExNav TU P and ExNav RARU P to denote ExNav TU
and ExNav RARU with MIS pruning, respectively.

Target Interest Regions The exploration task characterizes
user interests and eventually predicts the interest regions by
iteratively gathering user labeled tuples. As mentioned before,
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Fig. 2: Accuracy, 1 Large Region (Text
Dataset)

Fig. 3: Accuracy, 1 Large Region (Image
Dataset)

Fig. 4: Accuracy, 1 Large Region (Graph
Dataset)

Fig. 5: Accuracy, 1 Small Region (Text
Dataset)

Fig. 6: Accuracy, 1 Small Region (Image
Dataset)

Fig. 7: Accuracy, 1 Small Region (Graph
Dataset)

Fig. 8: Accuracy, 1 Medium Region
(Text Dataset)

Fig. 9: Accuracy, 1 Medium Region (Im-
age Dataset)

Fig. 10: Accuracy, 1 Mediums Region
(Graph Dataset)

Fig. 11: Accuracy, 2 Medium Region
(Text Dataset)

Fig. 12: Accuracy, 2 Medium Region
(Image Dataset)

Fig. 13: Accuracy, 2 Mediums Region
(Graph Dataset)

we focus on predicting the user interest regions. Particularly, in
our experiments, we generate each target interest region (i.e.,
relevant region) with random range queries, and experimented
with three different interest region amounts {1, 2, 3}. Further,

we vary the single region complexity based on the data space
coverage of the relevant regions. Specifically, we categorize
relevant regions to small, medium, and large. Small regions
have cardinality with an average of 0.5% of the entire exper-
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Fig. 14: Accuracy, 3 Medium Region
(Text Dataset)

Fig. 15: Accuracy, 3 Medium Region
(Image Dataset)

Fig. 16: Accuracy, 3 Mediums Region
(Graph Dataset)

imental dataset, medium regions have a cardinality of 1.0%,
and large regions have a cardinality of 2.0%.

User Simulation Given the target relevant regions, we
simulate the user by collecting the exact target set of relevant
tuples in the region. We rely on this “oracle” set to simulate
user feedback for the multi-instance space pruning questions
and the example relevance questions. For a pruning question,
the user will give positive feedback if the bag covers at least
one tuple in the “oracle” set, and a negative feedback if the bag
does not cover any tuple in the “oracle” set. For a relevance
question, the user will give positive feedback if the example
is in the “oracle” set, and negative feedback is the example if
not in the “oracle” set. This “oracle” set is also used as the
ground truth set to evaluate the accuracy (F-measure) of our
final predicted relevant regions.

Environment We implemented all algorithms with Python
3.8 and all the experiments were run on an Intel Core-
i9 7980XE processor with 128GB RAM. All experiments
reported are averages of 10 complete runs.

Parameters Table I shows a list of all settings and schemes
of the experiment. In order to asses accurately the impact of
different data types, by default, we extract 6786 distinct data
objects for each data set, which is the size of the text data.
Note using the same data object size across all three data sets
allows us to show clearly the impact of different data types,
as having inconsistent dataset size can influence the number
of examples needed to achieve a certain accuracy level. In
addition, the default batch size is 1. Note that the default size
of the target relevant region cardinality is 1.0%, and default
target relevant region size is 1 unless otherwise specified. The
words “f-measure” and “accuracy” are used interchangeably
in the text below.

B. Experimental Results
Accuracy Comparison Figures 2-16 show the number of

examples needed to reach an accuracy (f-measure) of 60%,
70%, and 80% of all participating schemes with different target
region numbers and three different datasets (i.e., text, image,
and graph). Here we also vary the target region size from
large to small. From these figures, we observe that both ExNav
schemes have consistently demonstrated significantly higher
effectiveness compared to REQUEST and RANDOM.

In particular, for the text data set, 1 relevant region, and
ExNav TU, for example, to reach an accuracy of 60%, Ex-
Nav TU only requires around 125 examples for the large
region, around 125 examples for the medium region, and
around 250 examples for the small region on average. To

achieve the same level of accuracy for the three target region
sizes, REQUEST requires 2x, 3x, and 5x more examples,
and RANDOM requires 8x, 11x, and 5x more examples,
respectively. To reach an accuracy of 80%, ExNav TU only
requires around 180 examples for the large region, around 225
examples for the medium region, and around 325 examples for
the small region on average. To achieve the same level of accu-
racy for the three target region sizes, REQUEST requires 10x,
8x, and >9x more examples, and RANDOM requires 13x,
9x, and 9x more examples, respectively. When we compare
the performance for one relevant region, the largest deviation
we see between ExNav and REQUEST is for image data set
with one medium-sized relevant region, such that REQUEST
requires 13x more examples than ExNav in order to reach
an accuracy of 60%. Here, we would like to point out that
13x more examples required by REQUEST can be translated
to a 92.3% reduction in users’ effort when switching from
REQUEST to ExNav. Note that in our experiment, we set the
example limit to be 3000 as we believe it is not meaningful
to label more examples beyond this point, we use the > sign
to indicate that the scheme is not able to reach the required
accuracy level at 3000 examples.

Moreover, for different medium target region numbers, to
reach an accuracy of 60%, ExNav TU requires around 125
examples for 1 region, around 150 examples for 2 regions,
and around 450 examples for 3 regions on average. To achieve
the same level of accuracy for the three target region numbers,
REQUEST requires 3x, 9x, and 5x more examples, and RAN-
DOM would require 11x, 7x, and 3x more examples. To reach
an accuracy of 80%, ExNav TU only requires around 225
examples for 1 region, around 670 examples for 2 regions, and
around 1050 examples for 3 regions on average. To achieve
the same level of accuracy for the three target region numbers,
REQUEST requires 8x, >4x, and >3x more examples, and
RANDOM would require 9x, 4x, and 3x more examples,
respectively. During the experiment, we also observed that one
of the main reasons for REQUEST to perform poorly is due to
its predictive model Naive Bayes, which is not able to overfit
well with respect to these high dimension embeddings.

Furthermore, when looking at the two ExNav schemes, we
observed that ExNav TU on average performs better than
ExNav RARU in the case of only 1 relevant region. This is
to be expected as ExNav TU performs an exhaustive search
over the entire exploration space in each iteration to find the
most uncertain object for labeling. However, such benefit fades
when more relevant regions exist in the space, such that we
see ExNav RARU on average outperforms ExNav TU with 2
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TABLE II: ExNav Runtime with Different Query Strategies

Query Strategy 10,000 instances runtime 100,000 instances runtime 1,000,000 instances runtime
Traditional Uncertainty 5.88 ms 61.02 ms 675.04 ms

RARU 0.51 ms 5.44 ms 52.79 ms

Fig. 17: Accuracy, 3 Medium Regions
(Text Dataset)

Fig. 18: Accuracy, 3 Medium Regions
(Image Dataset)

Fig. 19: Accuracy, 3 Medium Regions
(Graph Dataset)

Fig. 20: Accuracy, 1 Medium Region
(Text Dataset)

Fig. 21: Accuracy, 1 Medium Region
(Image Dataset)

Fig. 22: Accuracy, 1 Medium Region
(Graph Dataset)

Fig. 23: Accuracy, 3 Medium Regions
(Text Dataset)

Fig. 24: Accuracy, 3 Medium Regions
(Image Dataset)

Fig. 25: Accuracy, 3 Medium Regions
(Graph Dataset)

and 3 relevant regions by a noticeable margin. This is again as
expected, since its limitation of shortsightedness, as discussed
in Section III, will hinder its capability to discover multiple
discrete relevant regions.

Lastly, as shown in the Figures 2-16, the results for the
other two datasets also show similar trends for the accuracy
comparison. To summarize, the two ExNav schemes have sim-
ilar performance and consistently and significantly outperform
REQUEST and RANDOM with respect to accuracy.

Scalability Table II, illustrates the runtime per iteration
of ExNav under different query strategies. In particular, we
extracted 10000 images from the Caltech-256 dataset and
then duplicated the data in order to assess the runtime. The
runtime for other data types is similar, as it is independent of

a particular data type. The result showed that RARU helps to
improve the scalability and the efficiency of the exploration
by up to an order of magnitude. This is due to the fact
that RARU does not require an exhaustive search over the
entire exploration space, and thus, can deliver examples much
quicker than traditional uncertainty sampling. These results,
combined with the results of accuracy comparison, confirmed
RARU’s claim to address both the shortsightedness and low
scalability drawback of the traditional uncertainty sampling.
Furthermore, as Explore-by-Examples systems are often used
as a post enhancement to the traditional keyword, faceted,
or query search results, in these scenarios, the efficiency of
ExNav can be further improved due to fewer data involved in
the exploration.
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Zoom-in into ExNav Schemes In order to better illustrate
the comparison between our proposed schemes, in Figures
17-19, we zoom-in to the two ExNav schemes and show
the number of examples needed to reach different levels of
accuracy from 30% to 90%. For this set of comparisons, we
consider a relatively complex scenario with three medium
relevant regions. Compared to ExNav TU, we have noticed
that ExNav RARU typically requires more labeled examples
in the early stages of the experiment (e.g., below 70% of
accuracy). This is due to the fact that in the early stages,
to raise accuracy, it does not require all relevant regions to
be identified accurately. However, when improving accuracy
beyond 70%, ExNav TU appears to be more struggled than
ExNav RARU (i.e., has a larger slope), which is expected due
to its limitation of shortsightedness, as described in Section III.

Impact of Multi-instance Space Pruning As mentioned in
the experiment setup, we have evaluated the effectiveness of
our MIS pruning strategy. In particular, we created 16 bags
by grouping similar objects and asking the user to tell us
if any of the 16 bags are far away from the relevant region
(i.e., contain no relevant objects). These regions will then be
pruned from subsequent exploration. Note that the number
of examples reported in the figures for ExNav TU P and
ExNav RARU P does not include the 16 bags question, which
has been applied as a fixed preprocess for these two schemes.
The accuracy comparison between the ExNav schemes with
and without pruning is shown in Figures 20-25. We can see
that, for ExNav TU P, the pruning can reduce or save around
25%, 27%, and 40% user effort on average for the three
datasets, respectively. For ExNav RARU P, the pruning can
save around 26%, 21%, and 36% user effort on average for
the three datasets, respectively. These results indicate that
Multi-instance Space Pruning is effective in reducing the
exploration space as well as the amount of feedback needed for
exploration. Therefore, as discussed early in Section III, when
exploring any data domains where group labels are inexpensive
to provide, using ExNav with MIS Pruning is recommended.

V. RELATED WORKS

Interactive Data Exploration
As mentioned in [38], there are many works aiming to

facilitate exploration for data analytics. Among the existing
works, we review those directly relevant to us. Faceted search
is a technique that iteratively suggests query attributes, which
helps the user drill down into structured databases. However, it
requires the user to either continuously provide attribute values
until the desired set of relevant data objects are discovered
[39], [40], [41], or provide certain quality measurements along
with its threshold [42]. Semantic windows [43] is another
data exploration technique that allows the user to interactively
explore the data space with multidimensional shape-based and
content-based predicates that are pre-defined. Unfortunately,
the utility of this approach is restricted only to the case where
such shape-based, or content-based patterns exactly match the
user’s interest. Both faceted search and semantic windows
require the user to manually control the exploration direction,
as opposed to our ExNav, where the system automatically
steers the user towards all interesting tuples.

Two of the most recent works that are closely related to ours
are AIDE [6] and REQUEST [10]. Both aim to interactively
construct the exploratory query. The main idea underlying

AIDE’s predictive model for sample selection is to divide the
space into equally sized subspaces and randomly sample one
object from each subspace. Based on the user’s feedback of
this sample, AIDE would either sample more objects from its
surrounding area, if the sample is relevant to the user’s interest
or further partition this subspace into smaller subspaces if
the sample is irrelevant to the exploration. Recently, there is
an improved version of AIDA [44], [11] that considered a
new predictive model and space pruning technique for faster
model convergence. However, this model can only discover
one relevant region per each exploration session and is still
optimized towards structured data, whereas our ExNav support
multiple relevant regions and is designed for unstructured data.

REQUEST is the first Explore-by-Examples system that em-
ploys active learning for the selection of examples and divides
the exploration process into two stages: data reduction and
query selection. The data reduction stage aims to selectively
reduce the search space while keeping all relevant data regions,
whereas the query selection stage utilizes an active learning-
based predictive model to iteratively improve the accuracy of
the constructed exploratory query through interactions with the
user. As shown, in Section IV, REQUEST is again design for
structured data, therefore, it does not perform well with high
dimensional unstructured data.

Example-based Search
During the past decade, a lot of interest has been generated

in discovering new search interfaces beyond the traditional
keyword and faceted search. For instance, in [45], a system is
created to provide users with the capability to query relevant
images by providing real-world photographs of the item. Based
on the provided example, the system retrieves results that
are visually similar to the user-provided photograph. Social
media service providers such as Pinterest has designed systems
that allows users to find items visually similar to the current
viewing item (e.g., [46]). Recently, many studies [47], [48],
[49], [50], [51] explored the problem of effectively learning
the relative similarities of images. In particular, each image is
mapped to a numerical vector, so the visual similarities can
be captured by measuring the distance between two vectors.
Leveraging these works, many enterprise visual search plat-
forms have been developed, such as Google Similar Images,
Amazon Flow, Microsoft (Bing) [52], Pinterest [46], eBay
[53], and Alibaba [54]. However, all these systems still require
the user to describe their desired items explicitly in some form
(i.e., provide photographs that describe the desired items),
before any meaningful results can be retrieved—just like tra-
ditional keywords, or query-based search systems. Therefore,
these systems would fail when the user does not have an actual
visual representation of the desired items, but instead a mental
awareness of it.

In real-world, users often find themselves in a situation
where they do not know how to properly describe their
desired data or items, which is essentially the challenge that
ExNav aims to address. Most importantly, ExNav is capable of
working with any unstructured data types (e.g., visual, textual,
and audio) as long as an embedding representation for each
data element can be created. Additionally, ExNav provides
the capability to dynamically adapt the exploration based on
the interactive user feedback, whereas the above-mentioned
systems do not allow the user to fine-tune their search session
with additional feedback.
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VI. CONCLUSION

Motivated by the challenge of reducing human effect in ex-
ploring large unstructured datasets, in this work, we proposed
ExNav, a novel generic Explore-by-Examples data exploration
framework for effective interactive exploration of unstructured
data. ExNav effectively navigates users through the large
exploration space to find relevant data items that are often
undiscoverable by traditional exploration or search methods.

Our ExNav enables exploration of any unstructured data
as long as an embedding representation can be obtained. In
addition, we described in detail two key components of ExNav,
namely, Multi-instance Space Pruning and Query Strategy,
along with a set of optimization techniques that helps to
improve the effectiveness of ExNav.

We implemented a prototype of ExNav and experimentally
verified its performance with three real-world datasets. The
results have shown that our proposed ExNav exhibits sig-
nificantly better performance when compared to the state-
of-the-art while achieving desired interactive performance.
Specifically, ExNav can reduce users’ effort by up to 92.3%
(i.e., 13x less than the state-of-the-art) while still achieving
the same accuracy as the state-of-the-art alternative.
Acknowledgment: We would like to thank Brian T. Nixon for
his thoughtful comments on this paper. This work was partially
supported by NIH award U01HL137159 and reflects only the
authors’ opinions.

REFERENCES

[1] C. H. Teo, H. Nassif, D. N. Hill, S. Srinivasan, M. Goodman, V. Mohan,
and S. V. N. Vishwanathan, “Adaptive, personalized diversity for visual
discovery,” CoRR, vol. abs/1810.01477, 2018.

[2] A. Anagnostopoulos, L. Becchetti, C. Castillo, A. Gionis, “An optimiza-
tion framework for query recommendation,” in ACM WSDM, 2010.

[3] H. Feild and J. Allan, “Task-aware query recommendation,” in ACM
SIGIR, 2013.

[4] S. Islam, C. Liu, and R. Zhou, “A framework for query refinement with
user feedback,” in J. Syst. Softw., 86(6):15801595, 2013.

[5] B. Qarabaqi and M. Riedewald, “User-driven refinement of imprecise
queries,” in IEEE ICDE, 2014.

[6] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Explore-by-example:
an automatic query steering framework for interactive data exploration.”
in ACM SIGMOD, 2014.

[7] Y. Diao, K. Dimitriadou, Z. Li, W. Liu, O. Papaemmanouil, K. Peng,
and L. Peng, “Aide: an automatic user navigation system for interactive
data exploration.” in PVLDB, 2015.

[8] H. Li, C.-Y. Chan, and D. Maier, “Query from examples: An iterative,
data-driven approach to query construction,” in PVLDB, 2015.

[9] K. Dimitriadou, O. Papaemmanouil, and Y. Diao, “Aide: An active
learning-based approach for interactive data exploration,” IEEE TKDE,
vol. 28, pp. 2842–2856, Nov 2016.

[10] X. Ge, Y. Xue, Z. Luo, M. A. Sharaf, and P. K. Chrysanthis, “Request: A
scalable framework for interactive construction of exploratory queries,”
in IEEE BigData, 2016.

[11] E. Huang, L. Peng, L. D. Palma, A. Abdelkafi, A. Liu, and Y. Diao, “Op-
timization for active learning-based interactive database exploration,”
PVLDB, 2018.

[12] N. Stewart, G. Brown, and N. Chater, “Absolute identification by relative
judgment.” Psychological review, vol. 112, pp. 881–911, 11 2005.

[13] “CBC coronavirus news dataset,” 2020. [On-
line]. https://www.kaggle.com/ryanxjhan/cbc-news-coronavirus-articles-
march-26

[14] “Caltech-256 object category dataset,” 2020. [Online]. Available:
https://authors.library.caltech.edu/7694/

[15] “Mashup PPI dataset,” 2020. [Online]. Available:
http://cb.csail.mit.edu/cb/mashup/

[16] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison, Tech. Rep., 2009.

[17] D. D. Lewis and W. A. Gale, “A sequential algorithm for training text
classifiers,” in ACM SIGIR, 1994.

[18] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013.

[19] Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law, N. Constant, G. H. Ábrego,
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