o.)

Check for
updates

loT Data Prefetching in Indoor Navigation SOAs

ANDREAS KONSTANTINIDIS, University of Cyprus, Cyprus and Frederick University, Cyprus
PANAGIOTIS IRAKLEOUS and ZACHARIAS GEORGIOU, University of Cyprus, Cyprus
DEMETRIOS ZEINALIPOUR-YAZTI, MPI for Informatics, Germany and University

of Cyprus, Cyprus
PANOS K. CHRYSANTHIS, University of Pittsburgh, USA

Internet-based Indoor Navigation Service-Oriented Architectures (IIN-SOA) organize signals collected by IoT-
based devices to enable a wide range of novel applications indoors, where people spend 80-90% of their time.
In this article, we study the problem of prefetching (or hoarding) the most important IoT data from an IIN-
SOA to a mobile device, without knowing its user’s destination during navigation. Our proposed Grap (Graph
Prefetching) framework structurally analyzes building topologies to identify important areas that become
virtual targets to an online heuristic search algorithm we developed. We tested Grap with datasets from a
real IIN-SOA and found it to be impressively accurate.

CCS Concepts: « Information systems — Data management systems; Mobile information processing
systems; « Human-centered computing — Ubiquitous and mobile computing systems and tools;

Additional Key Words and Phrases: Internet-of-things, indoor navigation, mobile prefetching

ACM Reference format:

Andreas Konstantinidis, Panagiotis Irakleous, Zacharias Georgiou, Demetrios Zeinalipour-Yazti, and Panos
K. Chrysanthis. 2018. IoT Data Prefetching in Indoor Navigation SOAs. ACM Trans. Internet Technol. 19, 1,
Article 10 (November 2018), 21 pages.

https://doi.org/10.1145/3177777

1 INTRODUCTION

Internet of Things (IoT) refers to a large number of physical devices being connected to the In-
ternet that are able to see, hear, think, perform tasks as well as communicate with each other
using open protocols [1, 2, 15, 30]. IoT enables the development of smart applications in impor-
tant domains, such as transportation, health care, industrial automation, emergency response and
business, having significant impact on the quality of people’s life and the growth of the world’s
economy and security [1]. Studies showed that a typical family in the developed world owns about
5-10 internet-connected devices, such as smartphones, smartTVs, smart-home devices, and the

Authors’ addresses: A. Konstantinidis, University of Cyprus, Nicosia, 1678, Cyprus, Frederick University, Nicosia, 1036,
Cyprus; email: akonstan@cs.ucy.ac.cy; P. Irakleous and Z. Georgiou, University of Cyprus, Nicosia, 1678, Cyprus; emails:
{pirakl02, zgeorg03}@cs.ucy.ac.cy; D. Zeinalipour-Yazti, MPI for Informatics, Department 5: Databases and Information Sys-
tems, Campus E1 4, Saarbriicken, 66123, Germany, Univ. of Cyprus, Nicosia, 1678, Cyprus; email: dzeinali@mpi-inf.mpg.de;
P. K. Chrysanthis, University of Pittsburgh, Pittsburgh, PA, 15260; email: panos@cs.pitt.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

1533-5399/2018/11-ART10 $15.00

https://doi.org/10.1145/3177777

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

https://doi.org/10.1145/3177777
mailto:permissions@acm.org
https://doi.org/10.1145/3177777
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3177777&domain=pdf&date_stamp=2018-11-30

10:2 A. Konstantinidis et al.

like, and according to Gartner! it is expected that this number will increase to more than 500
smart devices by 2022. To realize this potential growth, emerging technologies, innovations, and
service applications need to grow proportionally to match market demands and user needs [10].

The omni-present availability of sensor-rich smartphones along with the fact that people spend
80-90% of their time in indoor environments has recently boosted an interest around the so-called
Internet-based Indoor Navigation Service-Oriented Architectures (IIN-SOA) [32]. These comprise in-
door models, such as floor-maps and points-of-interest (POIs), along with IoT-based raw data, such
as wireless, light, and magnetic signals, used to localize users. There are numerous IIN-SOAs ([32]
provides a taxonomy), including Skyhook, Google Indoor Maps, Infsoft, Indoo.rs, IndoorAtlas, and
our in-house Anyplace IN-SOA.? There is a wide range of domain-specific IN-SOAs, in domains
such as in-building guidance and navigation, inventory management, marketing, and elderly sup-
port through ambient and assisted living [28]. Collectively, these are expected to improve location
awareness providing thus smart answers to a variety of smart transportation, smart houses, and
smart cities scenarios and having a remarkable role on the evolution of intelligent decision-making
that can improve they quality of our lives. For example, consider a smart IIN-SOA for elderly sup-
port that provides instant emergency notifications to caregivers when elderly people leave their
bed at night without returning (thus being in need of help) or a smart IIN-SOA for an airport that
can predict future traffic patterns in the terminals and allocate resources accordingly.

A major problem with collected IoT data in IIN-SOA is that this data changes very dynamically,
requiring users to continuously synchronize their state with the IIN-SOA to enjoy an accurate
localization service. For instance, consider a hypothetical scenario related to the US Library of
Congress, where a user u aims to interactively carry out content-based search, exploration, and
navigation (i.e., the user is interactively exploring the space in a “targetless”manner). The oblivious
solution is to provide a traditional IIN-SOA (s) that can perform the queries in the cloud. Unfor-
tunately, internet connectivity in indoor spaces is intermittent due to inadequate Wi-Fi coverage,
blockage of 3G/LTE signals, and so on. As such, u cannot reach s on an ongoing basis to refine
upcoming search and navigation targets as these emerge. An alternative to cloud-based search is
to hoard the complete IoT data on the mobile app of user (i.e., by caching it a priori). Unfortunately,
IoT data is massive and dynamic, making complete hoarding a resource-wasteful, time-consuming,
and error-prone solution, due to outdated data. Clearly, there is a need to strike a balance between
these two alternative solutions, the solution of no hoarding, and the solution of full hoarding.

In this article, we study the problem of prefetching (or hoarding) the most important IoT data
blocks from an IIN-SOA s to a mobile user u, without knowing the target of u during navigation. Such
a prefetching functionality is of paramount importance for the maintenance of a reliable IIN-SOA,
because mobile devices suffer from intermittent internet connectivity. This results in high latencies
for accessing the IIN-SOA and, subsequently, to location inaccuracies. Our proposed framework,
named Grap (Graph Prefetching), decides which pieces of the IoT data space are required by a user
during navigation in two steps: (i) an offline pre-processing step, named createDG, during which a
target building is structurally analyzed as a graph to identify important areas in a target building;
(ii) an online search step, named Graph-Distance A*-based (GDA) algorithm, during which these
multiple “virtual” targets are iteratively explored using domain-specific indoor heuristics. Grap
results in an intelligent prefetching service that hoards spatial indoor context on the mobile device
of u whenever u has network connectivity. In cases of intermittent connectivity, u localizes itself
from its local hoarded data.

1Sept. 08, 2014, Gartner Inc., URL: https://goo.gl/c6VTWG.
2 Anyplace, URL: https://anyplace.cs.ucy.ac.cy/.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

https://goo.gl/c6VTWG
https://anyplace.cs.ucy.ac.cy/

loT Data Prefetching in Indoor Navigation SOAs 10:3

A preliminary formulation of the IoT data prefetching problem has appeared in our previous
work [12]. Our prior work was established on the assumption that historic user trajectories inside
buildings were available to solve this problem efficiently. In practice, however, such user trajec-
tories are hard to obtain due to rising privacy concerns [11] and respective legislation (e.g., EU
General Data Protection Regulation). Additionally, even though the discussion and examples in
our article only focus on indoor spaces, situated within a building and isolated from the outside
world through some physical door, our propositions can be extended into outdoor spaces as well,
which also aim to support effective offline support for the disconnected workforce. For example,
even though Google Maps maintains centrally public transportation timetables, predicted traffic,
satellite, or terrain tiles, labels and description of POIs, none of these are available, at the time of
this work, when a user is operating in offline mode. The IoT data prefetching propositions of this
work could therefore provide a way for a user to download the most relevant data blocks from the
navigation service, providing full resolution to the available data and taking into account issues of
intermittent connectivity and limited data availability. Overall, our contributions in this work are
summarized as follows:

—We propose a generalized framework, named Grap, for prefetching IoT-based location data
that yields high prefetching accuracy and high localization performance under intermittent
network connectivity.

—We propose a dependency graph generation technique, named createDG, during which a
target building is structurally analyzed in an offline manner to determine the most signif-
icant parts of a building. We also propose GDA, which is a multi-target Graph-Distance
A*-based algorithm that chases multiple targets iteratively using indoor domain-specific
heuristics.

—We evaluate our design with extensive experimentation and analysis on real datasets that
we obtained through an open source indoor navigation architecture (IIN-SOA) that we have
developed over the years and that has won several awards for its accuracy and utility [31].

— We show how Grap has been integrated to an open source [IN-SOA. This exercise has helped
us to validate that our propositions are practical and can be implemented in a real system.

The remainder of the article is organized as follows: Section 2 provides background details and
related work on IoT-based IIN-SOA, prefetching, and graph-based algorithms. Section 3 provides
our system model and formulates the problem. Section 4 presents the Grap framework and its in-
ternal components. Section 5 provides an overview of our real prototype system. Section 6 presents
our experimental methodology and results while Section 7 concludes the article.

2 BACKGROUND AND RELATED WORK

In this section, we provide background and related work on IoT-based IIN-SOA, prefetching, and
graph-based algorithms, upon which our presented techniques are founded.

2.1 loT-Based IIN-SOA and Anyplace

A major characteristic of IoT is the inter-connectivity of things in the network and that the IoT
architecture must ensure their proper operation in both the physical and the virtual world [15].
While this can be achieved by taking into consideration the scalability, extensibility, adaptiveness,
modularity, and interoperability of heterogeneous devices, things may move geographically, may
need to communicate in real-time, and interact dynamically [26]. Therefore, a Service-Oriented
Architecture (SOA) [15, 29], which treats a complex system as a set of well-defined simple ob-
jects of subsystems that can be re-used and maintained individually [29], is a good choice for
IoT-demanding features.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:4 A. Konstantinidis et al.

An example of an IoT-based IIN-SOA is our own Anyplace [31], which follows an SOA design
that allows plug-n-play additional modules, either for extending system capabilities—by imple-
menting new features—or for enhancing user-experience by improving existing functionalities
(e.g., map-matching and sophisticated data fusion to increase localization accuracy). The pub-
lic Anyplace service has to this date supported more than 100,000 real user interactions, with
many more users using its standalone installations. The Anyplace native Android application is
composed of the Navigator and the Logger that can benefit from Wi-Fi fingerprinting [19, 21, 32]
available under this platform. The Logger application enables users to record Wi-Fi readings from
nearby Wi-Fi Access Points (APs) and upload them to our Server through a Web 2.0 API (in JSON).
It is used by volunteers for contributing Wi-Fi data and for crowdsourcing the radiomaps (RMs) of
buildings [6] (i.e., four directional fingerprinting in multiple rounds to remove noise). The Naviga-
torallows users to see their current location on top of the floorplan map and navigate between POIs
inside the building with high accuracy (i.e., 1.96 meters at the Microsoft Indoor Localization Com-
petition at ACM/IEEE IPSN °14 [19]). The localization function loc() of Anyplace comprises the
following phases: in the first offline phase, it records the so-called Wi-Fi fingerprints, which com-
prise Received Signal Strength (RSS) indicators of Wi-Fi APs at certain locations (x,y) pin-pointed
on a building floor map (e.g., every few meters). In the second offline phase, the Wi-Fi fingerprints
are joined into a NxM matrix, named the Wi-Fi RadioMap, where N is the number of unique (x, y)
fingerprints and M the total number of APs. Finally, a user can compare its currently observed
RSS fingerprint against the RM to find the best match, either on the server side or in situ at the
smartphone device after downloading the whole RM by using known algorithms such as KNN or
WKNN [14].

One fundamental drawback of the Anyplace’s final RSS fingerprint comparison step is that
users on-the-move require communicating with the Anyplace service continuously over a Wi-Fi
network, which negatively affects their localization accuracy when there is intermittent connectiv-
ity [27]. The alternative of downloading to the smartphone device the massive RM (e.g., WiGLE.net
had 5.4 billion unique records by November, 2017) prior to the localization may potentially lead
to high overhead time, waste of limited smartphone battery, as well as high cost due to expensive
mobile data plans. Thus, this study aims at advancing the literature with intelligent prefetching
techniques that allow users to carry out accurate indoor navigation in a targetless manner us-
ing only a selective portion of the IoT-based data residing on the IIN-SOA provider, which pro-
vides high performance (time and network capacity) but also resilience to intermittent connectivity
scenarios.

2.2 Prefetching and Mobile Connectivity

Caching is the process of storing data locally, so that future requests for that data can be served
faster. It finds applications in the complete spectrum of the computing memory hierarchy (i.e.,
from low-level hardware to high-level software). Prefetching (or hoarding) on the other hand, is the
process of downloading and then storing data locally in a cache, so that future requests for that data
can be served in the event of a network failure. Prefetching was originally used in file systems [23]
for optimizing the I/O operations on a disk by caching disk blocks that will be needed in the near
future. File system prefetching was also adopted by network and distributed environments such as
CODA [22], which is a distributed file system that provides novel features such as the disconnected
operation that makes server data available in mobile computing environments when the network
connection is lost. Prefetching is also used on the web for allowing browsers to pre-load frequently
visited web links and content (like music and videos) to reload them faster and therefore optimize
the web navigation performance [4, 20].

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:5

In mobile networks, the connectivity in indoor spaces is often intermittent, referring to the
frequent disconnection of a mobile node in random time intervals. This often occurs due to the
following two reasons [27]: (i) there is a gap between the coverage of two APs and thus the con-
nectivity experienced by mobile users passing by will likely to be intermittent and (ii) because of
physical obstacles as well as high mobility patterns of the mobile users. In either case, intermittent
connectivity may break data connections, if the connectivity disruption between a mobile node
and an AP is long enough and the available transfer rate provided is below a certain threshold.

Several techniques have been proposed to tackle the intermittent connectivity problem in mo-
bile networks such as mobility management [16], cooperative downloading schemes [25], AP de-
ployment algorithms [34], prefetching [9], routing [33], or combinations of those techniques [27].
Prefetching systems in mobile networks aim at hiding the frequent disconnections and/or the
latency of data transfers over poor and intermittently connected environments. In particular, a
prefetching system predicts what data an application will request in the future and speculatively
retrieves and caches that data in anticipation of those future needs [9]. All these prior solutions are
not directly applicable to our formulated problem as we both do not have access to historic user
data (used for learning and future predictions) but only data capturing the structural semantics of

buildings.

2.3 Graph-Based Search

Our proposed Grap (Graph Prefetching) framework uses preprocessed building topology graphs to
search for important areas that have to be prefetched. Graph-search algorithms can be classified
into: Uninformed (blind) algorithms and Informed search algorithms [18]. Uninformed algorithms
have no domain knowledge of the problem state and traverse the graph by using unsophisticated
approaches that may have only information about the state, the successor function, the goal test,
and the path cost. Uninformed search algorithms are characterized by the order in which the nodes
are visited to reach the goal-solution and include approaches such as Random-Walk, Breadth-First
Search (BFS), Depth-First Search (DFS), and Iterative Deepening. Informed search algorithms on the
other hand are characterized by a utility in scanning the solution space to reach the goal. These
algorithms utilize some kind of an evaluation function that assesses a set of options either brute-
force (e.g., BFS), stochastically (e.g., simulated annealing and hill climbing) or using some heuristic
function that assesses the distance of the current solution from a target (e.g., A* heuristic).

However, Al research focuses on simple prediction graph-related problems by applying Machine
Learning (ML) techniques. For example, predicting a sub-structure of a given graph for mobility
prediction of wireless users using artificial neural networks or variants is proposed in [8]. The
hard part in ML techniques is training, for example a neural network, with real annotated location
trajectories, because such trajectories have to be collected at scale and there are rising privacy
concerns behind massive location tracking of the mobile workforce [11]. In the context of this
work, we designed a framework that proposes an informed-search algorithm that is independent
of sensitive user-centric data and can operate solely based on structural semantics available in
building plots (i.e., no user data).

3 SYSTEM MODEL AND PROBLEM FORMULATION

This section formalizes our system model, assumptions, and problem. The main symbols and no-
tation used in the rest of the article are summarized in Table 1.

3.1 System Model

We assume a planar indoor area I containing a finite set of locations that are partially covered by a
set of Wi-Fi APs {ap,, ap,, ..., ap,,}. Each ap; has a unique ID (i.e., MAC address) that is publicly

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:6 A. Konstantinidis et al.

Table 1. Key Notation and Symbols

| Notation | Description
Il Indoor space, location inside I
ap;, AP, M | Access point i, set of all ap;, |AP|
s,u, U Localization service, user requesting localization, set of all u
r, R Timestep of current localization request, set of all prior r
Vi, Vy Fingerprint (RSSs and ap-IDs) at location [(used in offline mapping),

Fingerprint at request r
RM, RMY | RadioMap mapping V, to [, Partial RadioMap of u at r ([RM}|<|RM)|)
I, A%, loc() | Actual, estimated location of u computed by loc() at r

0 RSS threshold below which u is considered disconnected from s
A, T, C, Point accuracy, CPU time, and network capacity costs for request r
a, K Best possible A, at r, dwell time (time required to download K data blocks)

broadcast and passively received by anyone moving in the coverage of ap;. The signal intensity
at which the ID of ap; is received at location [is termed the RSS of ap; at I, where —110 indicates
when an ap; is out of reach. The set of RSS values measured and the ap-IDs read at a location [is
termed fingerprint V, at timestep r of location /.

We further assume an indoor positioning server s that has constructed beforehand an RM that
is a database of offline fingerprint V; measured at various locations [€ I. Any subset of RM rows
will be denoted as partial RM (RM¥), requested by some user u at timestep r. Server s uses a
localization function loc() to compute from RM (or RM}') an estimation A}, of some new unknown
location I” given the fingerprint V.. An RM} includes a set of entries that are geographically close
and surround [allow for a better estimation Aj, (or A},). Therefore, the fingerprints are spatially
grouped into equal-sized blocks at s for facilitating the localization process.

Since we assumed that the arrangement of Wi-Fi APs in I results in partial coverage and weak
RSS at some locations, we can define an RSS threshold 8, below which the data transmission rate is
practically zero. Such a definition will help us to articulate our analytical and experimental argu-
ments pertinent to intermittent network connectivity. Specifically, client u with a fingerprint V, at
timestep of request r is practically offline if the maximum signal strength maxvy, it receives from
any covering ap; is below threshold 0, i.e., maxy, < 0.Formally, this is captured by the connected,
definition that follows:

(1)

The number of blocks that can be downloaded while being connected, depends on the amount
of time that the user stays connected at r, denoted as the dwell time. For experimentation purposes,
dwell time is configured to K blocks.

0, i <0
connected, = { if maxy, }

1, if maxy, >0

3.2 Research Goal and Metrics

Research Goal: Enable a mobile user to consecutively localize itself accurately and efficiently in an
indoor environment, where connectivity is intermittent, using an IIN-SOA holding RM.

The efficiency of the proposed techniques to achieve the above research goal is measured by the
following client-side metrics: (i) the point accuracy achieved by u while localizing, (ii) the CPU Time
required for the localization, and (iii) the Network Capacity for the complete localization operation.

Definition 3.1. Point Accuracy (A,) is the Euclidean error distance between the location esti-
mation A¥ (i.e., the estimated location over the partial RM¥) and the actual location [of user u

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:7

(i.e., the estimated location over the whole RM) at the timestep of localization request r, given by:
A, = |A¥ = I¥] + a (« is the lower bound localization accuracy achieved by any function loc()).

Definition 3.2. CPU Time (T,) is the processing time used on u for running the localization func-
tion loc() given a localization request r. This includes the time costs for transmitting/receiving the
RM (or RM}) and for executing the loc() function on the mobile device.

Definition 3.3. Network Capacity (C,) is the total number of messages |RM;| needed on u for
localization request r.

Our research goal can be expressed by the minimization of the following three objective
functions:

. 1 . 1) 1
min Fy = m ZA” min Fr = ﬁZTr’ min Fo = WZCr. (2)
R R R

3.3 Baseline Approaches

Existing techniques for indoor localization using Wi-Fi fingerprinting can be categorized as
follows:

(i) Server-Side Approach (SSA): In this approach, u starts out by obtaining a V, that is shipped
to s. The location estimation A¥ of u is computed on s executing loc(V,, RM), and trans-
mitted back to u. In this approach, the values of the objective functions Fr and F¢ are
minimum, as we will show in both the performance analysis and evaluation sections,
given that u does not carry out any computation. The drawback of this approach is that
it suffers from intermittent connectivity. Particularly, in the case of successful commu-
nication, the best possible localization can be achieved by loc() using RM (i.e., the case
where point accuracy A, = «). Otherwise, the location estimation of u at timestep r’ (i.e.,
AY) can only be inferred upon the last estimation computed, i.e., A, = |A}, — [| + a. We
observe that the parameter A, grows worse as u moves further away from [*. Therefore,
in the SSA approach, the objective function F4 for point accuracy grows worse, as 6 gets
smaller.

(if) Client-Side Approach (CSA): In this approach, u downloads the whole RM from s. As-
suming that the download process has completed, u can obtain a localization estimate
by obtaining a V, that is compared against RM. This approach minimizes the objective
function Fg4, since it achieves the best possible point accuracy A = « and it is not affected
by intermittent connectivity. The drawback of the CSA is that the objective functions Fr
and F¢ are maximum, as we will again show in both the performance analysis and eval-
uation sections, given that u has to both download the complete RM but also delay its
computation by going through the complete RM. Although this is a one-time cost, which
might seem bearable for continuous localization, it can still be prohibitive in real-world
scenarios where RM changes quickly over time or for complex building structures.

4 THE GRAP FRAMEWORK

In this section, we describe our general Graph Prefetching (Grap) framework and discuss its various
parameters and techniques.

4.1 Outline of Operation

The Grap framework comprises the following conceptual steps (see Figure 1): (i) it structurally
analyzes building topologies yielding a Dependency Graph (DG) that represents the probability/

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:8 A. Konstantinidis et al.

Connected Operation
777N r
Sy
PRYI ug)
0.2 ° ¢ o8 Partial RadioMap (RM")) on u -
~u u
_!\', - Location|| ap, ap, apy 2 r, RM';
— o V\A:E ‘,1 o I %0 | 8 N’
. - L -1 -1 -1 e .
1 /‘:'L g . S 5 ™ D/sconnec\t]ed Operation
N ‘1‘ 1 1 80 | 1 | . | - N
(S s uh) @6,
e
B DG & GDA Prefetching Localization

Fig. 1. The conceptual steps of the proposed Grap framework.

likeliness of users visiting other nodes in the building. This can be calculated using problem-
specific information such as structural information of a buildings or even historical traces as we
used in [12]; (ii) a proposed GDA algorithm then finds the nodes with the highest probability to
be visited from the current location of u; (iii) the fingerprints falling within the selected nodes
form a partial RM, RM}; and (iv) in connected operation, u forwards its fingerprint V, to server
s and receives its location A% and RMY while in disconnected operation, u calculates A¥ locally
using only the prefetched RM¥. Using the above framework, Grap prefetches a small group of RM
entries (partial RM) on u, which can aid localization at u in case it looses connection to s. In this
way, it overcomes the drawbacks of both SSA and CSA discussed in the previous section.

4.2 Graph-Distance A* (GDA) Algorithm

In this section, we discuss our proposed GDA algorithm and its major components, namely the
createDG() technique for generating the DG and the graphSearch() technique for selecting the
best possible partial RM, RM}*. We also discuss how each single parameter of GDA influences its
performance in terms of the three performance metrics we defined in Section 3, i.e., point accuracy
A,, CPU time T,, and network capacity C,.

4.2.1 Dependency Graph Generation. The createDG() technique summarized in Algorithm 1
constructs a DG and connects the nodes through physical transitions by consulting the actual
plan B = (N, E) of the building (we ignore the associated raster graphic of the building). The N-
set contains the POIs, which refer to rooms, intersections, elevators, staircases, and so on in the
building as these have been provided by architects or crowdsourcers (so these are always up-to-
date). The E-set contains the corridors, physical pathways, and so on, as these are aligned to floors
inside a building. The DG has been proposed to represent the connectivity on indoor POIs as well
as the POI’s importance in a building (with respect to the probability to be visited) and the POI-to-
POI distances. Formally, the DG is defined as a weighted undirected graph DG = (N, E’), where

(1) N’ is the set of nodes, each corresponding to a POI along with a self-importance
s(n;) weight indicating its probability to be visited by a random user. Formally, N’ =
Y(ni, s(n:)).

(2) E’is the set of edges, each corresponding to an edge along with an edge-weight indicating
the L,-Norm distance between two connected nodes. Formally, E = Y((n;, n;), d(n;, nj)).

The createDG() technique assigns weights to all nodes (lines 3 to 12 of Algorithm 1) by estimat-
ing their self-importance in terms of how likely users pass from a particular node (a.k.a. authority
hub) to reach their destination. The algorithm also uses a damping factor (d f) to capture a probabil-
ity of a random user to continue navigating at any step of the iterative computation. In particular,
the importance of a node is defined iteratively and depends on the degree (number of links) of that

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:9

ALGORITHM 1: createDG(): builds the dependency graph

Input: Building plan B = (N, E): un-weighted graph, ¢: convergence iterations
Output: Dependency Graph DG = (N’, E")

1: nb « neighbors(B) > nb: set of neighbors for each node
2: vs « horizon(B) > vs: horizon set for each node
3: forall n; € N do > Step 1: Calculate Node Weight Set N’ = ¥(n;, s(n;))
4: s(n;) = [nb(n;)| + |lvs(n;)| D> initialize self-importance of node n;
5: end for

6: df < 0.85 > df: damping factor
7: while t > 0 do

8: for all n; € N do

9: s(ni) = % +df X Xnenbn) % D> iteratively refine self-importance of node n;
10: end for
11: te—t—1 D> t: alternatively, iterate until 3., e n (Is(ni)s — s(ni)e+1ll2) < t
12: end while
13: for all (n;,n;) € E do D> Step 2: Calculate Edge Weight Set E’ = V((n;, nj),d(n;i, n;j))
14: d(nj,nj) = {/(n; — nj)2 B> d: any L, norm distance metric (e.g., Euclidean distance)
15: end for

particular node as well as on how many nodes in N can be visited via that node (i.e., the so-called
horizon) to favor nodes with low number of links but high betweenness (such as nodes that bridge
two buildings or central corridors). This differentiates our approach from similar approaches like
the PageRank algorithm [5], which does not use any horizon or outlook during its computation
process. Finally, the create DG() technique assigns weights to all edges by calculating the Euclidean
distance between them (lines 13 to 15 of Algorithm 1).

4.2.2 Partial Radiomap Selection. In this section, we design an A” search approach using
domain-specific indoor heuristics to explore the DG generated in the previous section to find the
best nodes that u should prefetch from s.

In an intermittently connected environment where u might be in a disconnected state during
the next timestep, u greedily hoards as much data as possible from s before being disconnected.
An A” search algorithm comprises an evaluation function f(a, z) = g(a, b) + h(b, z), where g(a, b)
denotes a cost function that gives the path cost from the start node a to intermediate node b and
h(b, z), a heuristic function that estimates the cheapest path from b to the goal z. In our context,
both g() and h() are calculated using the graph-distance cost G, [3, 17], which reflects the topolog-
ical constraints and physical entities of a building, such as elevators, corridors, walls, and so on,
given that the L,-norm distances (e.g., Euclidean, Manhattan) are unsuitable [3]. For example, as-
sume two nodes n;, nj, and an edge (n;, n;) on the graph if and only if there is a physical transition
between the two nodes. The Euclidean distance L,-norm is equal to the line segment directly con-
necting them. In cases where the path between n; and n; contains some intermediate nodes (i.e.,
n; ~» n;), then the distance between them, denoted as graph distance estimation d(n; G2 nj), is
not a direct line from n; to n;, but the summation of the Euclidean distances from start node n;
to n;.

In Algorithm 2, we present the detailed steps of the GDA algorithm (i.e., also denoted as graph-
Search()) executed once per timestep r. It is important to recall the fact that we aim at finding the
best nodes to be prefetched in a target-less manner before u is disconnected from s and therefore
there is no goal state for h() to be calculated. In line 1 of Algorithm 2 we show how, in the absence
of a target, the graphSearch() technique initially finds m virtual targets that represent the m most

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:10 A. Konstantinidis et al.

ALGORITHM 2: GDA:=graphSearch(): executed at each r and generating a new RM* while u is
moving

Input: DG = (N, E), RM, ny;: user current location, m: number of virtual targets
Output: Partial Radiomap RM¥

1: Hy, « top(sort(find(ny, w, DG)), m) > identify virtual targets in DG w hops away from n,,
2: resultSet := {}; openSet := {ny} > set of nodes evaluated in GDA; set of nodes to be evaluated
3: g(ny,n) =0 > Graph Distance Cost (from n, to some intermediate node n)
4: h(n,nj) = oo > Heuristic Cost (from intermediate node n to a virtual target n; € Hp,)
5. f(ny,nj) = o0 > Total Cost (from n, toward one virtual target n; € Hp,)
6: while (connected,) do > u is connected to s at timestep r according to Equation (1)
7: n := findMin(openSet) > n: Next intermediate node (with minimal cost)
8: for all n; € neighbors(n) do > n;: Neighbor of next intermediate node
9: if nj ¢ resultSet then

10: g(n,n;) « d(n ~52 n;) > Graph distance cost of n to n;

11: forj=1,...,mdo

12: h(ni,nj) « Dijkstra(n;, nj) > Heuristic cost from n; to target n;

13: f(ni,nj) = g(n,n;) + h(n, nj) > Total cost from n; to n;j

14: end for

15: add(openSet, ni, min(f (ni,nj)j = 1,...,m)) > Add n; using its least cost toward n;

16: end if

17: end for

18: remove(openSet, n); add(resultSet, n) > Evaluation for node n has been completed

19: RM¥ « pRM(resultSet, RM) > Build RMY incrementally and stream results to u

20: end while

possible destinations of u based on its current node location (n,). The technique selects those m
destinations based on their self-importance s(n;) of DG presented in the previous section. It is
important to explain that these m destinations are selected within w hops from n,, so that these
are not very far destinations (we use the notation w"° to refer to an unlimited window).

After the m virtual targets are selected and data structures are initialized, in lines 6-19 our A*
approach aims to identify the best possible targets to be explored next using two sets (an openSet
used for nodes to be evaluated and a closedSet used for nodes already evaluated). In an intermit-
tently connected environment, where u might be in a disconnected state during the next timestep,
u has to greedily hoard as much data as possible from s before being disconnected. This idea is at
the algorithmic level shown by line 6. In lines 7-9, we iterate over the next possible intermediate
nodes one node at a time. For each explored node, we calculate g() from a current location n to
each neighboring node n; and calculates k() by running the Dijkstra algorithm to find the shortest
path in terms of G, from n; to each potential target n;,j = 1,. .., m in lines 10-14 of Algorithm 2.
The node n; with the lowest f() is recorded in line 15. Given that the user might disconnect at
any given moment of the above algorithm execution, the server s streams results back to user u
as these become available (i.e., line 19). User u utilizes these updates to build RM}, which will be
used for localization in subsequent disconnected states.

One optimization is that in cases where w"° is used, the m destinations are not required to be
updated among successive GDA executions (i.e., line 1). To further optimize the performance of
Grap, a cache on the smartphone’s internal storage (e.g., sdcard, flash memory) is used to keep pre-
vious RMY. When this optimization process is utilized, the user checks if any of the locally cached
RM} can serve its localization request. This reduces the occasions where localization requests to
s are initiated and thus, network resources are conserved.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:11

Dependency Graph (DG) Graph-Distance A* (GDA) [based froma to (,1,1}

select K=5 nodes

fromAtoH
Round 1) fiD) =21
Round 2) fiG) =16
Round 3) fiH) =7 -
M Fomawsi~ ~ K=5
Round 1) f{F) =23
Round 2) f{G) =18
\ [Round3)fill=8_ _ _ _ _ K=5
FromAto)

Round 1) fiF) =7

|Round2)fi)=2_ _ _ .
Round 3) Ta rget

/\‘l,v —————— ‘I’/\ S N K nodes selected for prefetching
Round 1) D, F
Set of m=3 targets: {H, |, J} Set of K=5 nodes: {D, F, G, J, H} goux ;) g.i
for w=3 based on graph-distance estimation L™ X

Fig. 2. Example execution of the GDA algorithm.

Example. Consider the scenario in Figure 2 where a user u is at node A and requests a RM}
while in a connected operation state. Grap constructs a dependency graph of 10 nodes {A, ..., J}
as illustrated in Figure 2 (left) by analyzing some building plan. The edges represent the physical
transitions between the nodes. The createDG() function of Grap selects the m = 3 targets with the
highest probability of being the destination to u within a window w = 3. This denotes that the
targets should be at least three hops away from node A (i.e., the current location of u). Let us
assume that the m most promising targets (i.e., the virtual targets) are nodes H, I,] denoted with
dotted circles.

In the second stage of the Grap framework shown in Figure 2 (right), we invoke GDA
graphSearch() to identify the best possible nodes to prefetch along the way to the m destina-
tions. Let us assume w.l.o.g. that in our example scenario u is enough time to download K =5
nodes before being disconnected from s. At the beginning, GDA expands all neighboring nodes of
A and finds the best with respect to f(n) toward each of the m target. From the available options,
node D is the best choice towards target H with f(D) = 21 and node F toward targets I,] with
f(F) =23 and f(F) = 7, respectively. Both D and F are selected to be prefetched in round 1. In
the second round, GDA selects node G as the best choice towards targets H, I with f(G) = 16 and
f(G) = 8, respectively, and reaches target J. Therefore, nodes G and] are selected to be prefetched
and the search toward target J stops. Finally, the algorithm selects nodes H and I as the final nodes
to be prefetched with f(H) = 7 and f(I) = 8, but because we have already selected four nodes to
be prefetched, there is space for just one more node. GDA selects node H (and discards node I)
because its overall cost function f(n) is better.

4.3 Performance Analysis

We analytically derive the performance of Grap with respect to the estimated Accuracy A, CPU
time T and Network capacity in messages C at the client side u. We adopt a worst-case analysis
as it provides a bound for all input. Our experimental evaluation in Section 6 shows that, under
real datasets, our approach performs more efficiently than the projected worst case. The analysis
is based on our system model and ignores any other performance costs not directly associated
with the localization phase during the disconnected operation, any offline calculations performed
by s (e.g., running the createDG() technique) or any idle time at u while s performs calculations
(e.g., running the graphSearch() technique) since we consider these costs negligible. For ease of
exposition, our analysis uses the notation TTX gRX and TF to denote the computational cost
needed by u for transmitting, receiving, and processing a single RM entry V; from s.

LEMMA 1. Grap guarantees an estimated localization accuracy of at least A, = maxy;epar(|AY —
I¥]) + a, for a user u at a localization request r.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:12 A. Konstantinidis et al.

Proor. The maximum Euclidean distance error that can be provided by the Grap framework
is equal to the maximum distance between any two locations in the whole RM plus the estimated
point accuracy constant «. Particularly, let us assume that user u enters a building from its one end
and at r requests to prefetch a partial RM, RM}' from s. Server s runs our graphSearch() technique
and generates a RM} composed of the fingerprints associated to a single node around the user’s
initial location [}*. Then u moves to a location [} at the other end of the building, facing discon-
nections along the whole path. At that location, u runs the loc() function using the prefetched
RM}, received from s at the very beginning, and calculates an estimated user location 1Y, that is
the farthest location available in RM with respect to [}}. In this worst-case scenario, Grap provides
aA, =A% -1 +a |

Similar to Lemma 1, CSA guarantees the best possible localization accuracy A, = « because u
has downloaded the complete RM and thus A¥ = [for every r. On the other hand, SSA has a
similar worst-case accuracy bound as the Grap framework given that it also does not have the
complete RM.

LemMA 2. The Grap framework has a computational cost of O(T TX +T' - M- TRX 4+ 7. 77F),
where I’ is the number of RM entries retrieved from s and M the number of RM dimensions.

ProoF. During the connected operation, u sends a request for localization to s spending 7~ 7%
time. Then s responds to u with an estimated location A“ = (x,,y,) of size equal 7 ’X, as well as
I’ << I database entries, where each entry has M + 2 values, therefore u spends I’ - M - T RX time.
The I’ entries represent the fingerprints associated with the nodes selected by our GDA approach
to be prefetched by u. Finally, during the disconnected operation, u localizes itself using the I’
entries spending I’ - 7¥. We can safely assume that I’ < I, therefore, adding all computational
time costs in an asymptotic manner yields O(7 ™%X + 1" - M- TRX + . 7F), |

Similar to Lemma 2, CSA has a max computational cost O(7~ X 47 M-TRX 4+ 1.7P) and
SSA a min computational cost O(7 T + 7 RX) for each r. The message cost for all three techniques
CSA, SSA, and Grap is thus O(I), O(1) and O(I’), respectively.

5 GRAP PROTOTYPE IMPLEMENTATION

In this section, we describe the system that we implemented to evaluate the efficiency of the Grap
framework and to validate that our propositions can easily be integrated in a real system. Our
system comprises the Grap Evaluator and the Grap Navigator. Both components where imple-
mented on-top of our in-house Anyplace IIN-SOA, which allows entities (i.e., users, companies,
organizations, and so on) to realize indoor information management systems, including product
search and POI navigation, on top of existing wireless network infrastructure by leveraging rich
multi-sensory data available on smartphones (see Section 2.1).

5.1 Grap Evaluator

The aim of the Grap Evaluator is to allow trace-driven evaluation and visualization of the presented
techniques with data available through the public Anyplace IIN-SOA. The evaluator comprises a
data connector, a simulator, and a visualizer. The data connector connects to Anyplace and down-
loads IoT-data available through its open APL For this task, we had to introduce some new JSON
endpoints to Anyplace. The simulator then implements all the algorithms along with evaluation
metrics discussed in the next section. The visualizer shows the graph generated by various build-
ing plans (e.g., see Figure 3) but also allows tracing the presented algorithms to understand their
behavior. All components were written in JAVA, compiled using JDK 8.0 and comprising ~16,040

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:13

(a) Hotel (b) Campus (c) Mall

Fig. 3. Datasets. The topologies of the three datasets obtained through the Anyplace IIN-SOA JSON API. The
visualization is carried out with the Grap Evaluator/Visualizer.

Fig. 4. The Grap Navigator (left) showing the menu for switching the prefetching feature on/off; and (center)
varying the GDA parameters; (right) viewing the prefetched loT data and user’s location.

lines of- code (LOC). After concluding our trace-driven experimentation, we ported the prefetching
algorithms to an android client app presented next.

5.2 Grap Navigator

The aim of the Grap Navigator was to create a proof-of-concept realization of our propositions in a
real mobile indoor search, exploration and navigation tool. We particularly adapted the Anyplace
navigator with options to introduce intelligent prefetching and caching. The installation pack-
age of the Grap android client we developed was only around 5MB. Overall, our code consists
of approximately 34,575 LOC, including 2,010 lines of XML elements that go in the Manifest file
(settings) and the user interface XML descriptions of the navigator.

Our prototype GUI in Figure 4 allows a user to select the prefetching functionality to navigate
in a building without suffering by intermittent connectivity along with supplementary control
features that are useful for demonstration purposes. The GUI allows a user to visualize the RMY
prefetched at each localization step on a map. The interface uses the actual plan of a building and
overlays a heatmap that represents the signal strength values in dBm collected from nearby APs
(i-e., the fingerprints) and prefetched on the user’s smartphone. Figure 4 (right) shows a heatmap
of the partial RM prefetched on the mobile device, which is considerably smaller in size than the
fingerprints of all floors.

6 EXPERIMENTAL EVALUATION

This section presents an extensive experimental evaluation of our proposed Grap framework. We
start out with the experimental methodology and setup, followed by our experimental studies.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:14 A. Konstantinidis et al.

6.1 Methodology

Real Datasets: We constructed three realistic datasets from three real IoT-data obtained through
the publicly available API of our Anyplace IIN-SOA described in Section 2.1.

Hotel Pittsburgh: This dataset was collected at the Wyndham Grand Pittsburgh Downtown Hotel
in Pittsburgh, PA. In particular, it consists of around 500 reference fingerprints taken from ~308
Wi-Fi APs installed in the two floors of the hotel and neighboring buildings. The structure of the
hotel is of a rectangular shape as shown in Figure 3(a), it covers around 6,500m? and consists of
201 POIs and 247 edges.

Campus CSUCY: This dataset was collected at the Department of Computer Science (CS), Uni-
versity of Cyprus. In particular, it consists of 5,000 reference fingerprints taken from ~266 Wi-Fi
APs installed on the four floors of the CS and neighboring buildings. We collected our data by
walking over a path that consists of ~2,900 locations. The structure of the CSUCY campus is of
a bus-like shape as shown in Figure 3(b), it covers around 2,500m? and consists of 397 POIs and
440 edges.

Mall of Cyprus: This dataset was collected at the Mall of Cyprus. In particular, it consists of
800 reference fingerprints taken from ~279 Wi-Fi APs installed on the two floors of the mall and
neighboring buildings. The structure of the mall is of a mesh-like shape as shown in Figure 3(c), it
covers around 18,500m? and consists of 214 POIs and 289 edges.

User Traces: To evaluate the scalability of our propositions, we generated realistic user traces of
various scales where a user follows and localizes at pre-defined locations. The traces are designed
for our evaluation study to show the performance versus accuracy tradeoff in using Grap. Particu-
larly, the distinct locations are of fixed distance between each other (e.g., around 5 meters) and the
size of traces varies from 15-30 localizations steps (i.e., a user moving in a multi-floor building and
travels around 50-150m). The RM is also spatially grouped into equal-size blocks that correspond
to the POIs of a particular building. Both the traces and blocks can be viewed and verified using
the Grap visualizer described in Section 5.

Algorithms: We compare the proposed Grap framework with two Anyplace (no-prefetching)
baseline approaches and two Grap (with prefetching) baseline approaches.

Anyplace (no Prefetching) Baseline Approaches: SSA and CSA, as described in Section 3.3, do not
prefetch any localization data since the former keeps the whole RM at the server-side and the latter
downloads the whole RM on the mobile device of the user u prior localization.

Grap (with Prefetching) Baseline Approaches: The proposed GDA approach of the Grap frame-
work, as described in Section 4, the BFS approach that selects nodes to be prefetched level-by-level
based on user’s current location starting from the neighbor nodes before moving to the next level
nodes and the Random (RND) selection approach, which selects nodes to be prefetched randomly.

Metrics: Our cost metrics are CPU Time (T), Location Accuracy (A), and Network Capacity (C) as
defined in Section 3.2. The mean and standard deviation of the results is shown with error bars in
all experimental studies that follow, each entailing 37 localization steps (i.e., the route length of
trajectories in our experiments).

Parameters: In all experiments that follow, the simulation parameters were configured as fol-
lows: dwell time K = 15 (i.e., time required to download K data blocks), number of virtual
targets m = 3,lookahead window w = 3, effective network threshold = —40dBm, and localization
method = WKNN. The influence of each of those parameters on the proposed approach is inves-
tigated individually in Experiments 2-5 (Sections 6.3 to 6.6) by fixing the rest of the parameters
accordingly.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:15

Average Point Accuracy erage CPU Tim Average Network Capacity
Methods=ALL; Loc-Method=WKNN; Methodes AL CoeMethodWKNN; Methods=ALL; Loc-Method=WKNN;
(K=15; m=3; 6=-40; w°"=3;) (K-15m39-40w”3; (K-15m39-40w”3)
5000

30 300

4000

200
3000

150

CPU Time T (in ms)

Network Capacity C (in messages)

Average Accuracy A (in meters)
=

2000
10 100
5L Eﬂ f] 50 & 1000 -
JABEL BBed i eesd HERK mme NEEETE Y
B N X XX N R XXX B I A XN
Hotel Bﬁa‘v;ggf Mall Hotel %aaraggf Mall Hotel %aagg\éf Mall

Fig. 5. Experiment 1—Performance Evaluation: GDA evaluation in terms of average point accuracy A (left),
average CPU Time T (center), and network capacity C (right) in all datasets.

6.2 Experiment 1: Performance Evaluation

In the first experiment, our main target was to assess the performance objectives A, T, and C for the
compared algorithms. As shown in Figure 5, the no-prefetching approaches CS and SS are the ex-
treme cases, providing the best A and the best resources consumption, respectively, demonstrating
a clear tradeoff between A versus (T and C). The proposed GDA approach of the Grap framework
performs well (<5m) and better than both prefetching RND and BFS approaches in all datasets.
In particular, GDAprovides an average A = 1.84m in the Hotel dataset that is an improvement of
65% w.r.t. RND and 40% w.r.t. BFS. In the Campus dataset, GDA provides an average A = 1.26m
that is an improvement of 83% w.r.t. RND and 60% w.r.t. BFS. Finally, in the Mall dataset, GDA
provides an average A = 4.52m that is an improvement of 68% w.r.t. RND and 50% w.r.t. BFS. The
accuracy of GDA is relatively close (i.e., 2.54m, on average) to the best possible localization A of
the CS approach and provides an improvement of at least >70% in all three datasets over the SS
approach. This shows that GDA calculates and prefetches an almost best set of fingerprints (partial
RM, RM¥) and therefore it successfully overcomes the intermittent connectivity issues.

We observe that all approaches sacrifice performance (i.e., T and C) for the sake of better quality
(i-e., A). The CS approach requires the highest T (118.6 msec, on average) and C (2,060 messages, on
average) since it downloads the whole RM (the actual numbers are summarized in Section 6.1) and
uses all fingerprints at each localization step. For the Campus dataset, which entails one order of
magnitude more fingerprints, this drawback is even more apparent. The prefetching approaches
including the proposed GDA require less T and C than CS, since they utilize a partial RM, and
more resources than SS, which does not download any fingerprints and does not calculate its loca-
tion locally at the client side. In particular, GDA requires 28msec more T and 683 more messages,
on average, compared to SS. In some cases, the proposed GDA approach consumes slightly more
resources than the other two prefetching techniques due to the fact that it performs more sophis-
ticated computations (e.g., calculates the graph distance toward m destinations) to calculate the
RM} than the RND and BFS approaches. However, the slight increase on the resources consump-
tion offers much better A, as discussed earlier.

6.3 Experiment 2: Dwell Time (K)

Experiment 2 examines how dwell time K influences the behavior and the performance of the
proposed Grap framework. Recall that K represents the available time for downloading the finger-
prints associated to K nodes of the DG and therefore represents the size of the partial RM, RM¥,
which is downloaded by u when connected and processed by u when in a disconnected state. In
particular, in this experiment we evaluate the performance of all prefetching approaches (RND,
BFS, and GDA) that incorporate the K parameter in their solution in terms of A, T and C. We also
include the performance of the no-prefetching (i.e., CS and SS) approaches that are independent
of K for comparison purposes.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:16 A. Konstantinidis et al.

Average Point Accuracy erage CPU Tim Average Network Capacity
Methods=ALL; Dataset=CSUCY; Loc-Method=WKNN; Methods=ALL; Dasee SEsucy; Loc Method=WKNN; Methods=ALL: DAtaset=CSUCY; Loc-Method=WKNN;
(m=3; 6=-40; w*"=3;) (m=3; 6=-40; w*"=3;) (m=3; 6=-40; w"'=3))

25 300
&

5000 = g = g

&

20 4000 [~ H

3000 [H

2000

100 |

CPU Time T (in ms)

1000 H

5 50 - H

o
g
I
Network Capacity C (in messages)

Average Accuracy A (in meters)

’ e W G VEER Ve ’ sy Wes Viap Wesp VisH ’ Vs a5y sy Wsh WsH

5 15 20 5 15 20 5 15 20

Dwell'fime k Dwell Fime K Dwellfime k

Fig. 6. Experiment 2—Dwell Time (K): examining the GDA accuracy (left), CPU time (center) and Network
Capacity C (right) while varying the Dwell Time (K).

Figure 6 (left) shows that all prefetching approaches are positively affected by the increase of
K, since high K means that there is more time to download more fingerprints for a more fine lo-
calization. However, this negatively affects the two performance metrics (i.e., T and C in Figure 6
(center) and (right)) since the increase of K results in more fingerprints to be downloaded during
a connected state and a larger RM¥ to be processed while localizing in a disconnected state. More-
over, the results in Figure 6 also show that the delicate selection of fingerprints by the proposed
GDA approach overwhelms the absence of a large number of fingerprints when K is small since the
provided A varies from 6m for K = 1 to 0.8m for K = 20 and therefore it is influenced less than its
counterpart prefetching approaches. In particular, GDA provides an average of 75% better A than
RND, around 52% than BFS and it is preferable than the no-prefetching SS approach in all cases
except the extreme case for K = 1, where the amount of prefetched fingerprint does not suffice to
outweigh the SS approach.

Note that all prefetching approaches will reach an A equal to the best possible A of the CS
approach when the dwell time of a localization step is enough for downloading the whole RM.
This increase of K, however, results in an increase on the resource consumption with the results
of the CS approach showing the T and C needed in the worst case. The slight variations between
the prefetching approaches in terms of T and C for the same K are due to the additional effort
needed for calculating the K nodes, which consequently selects K different nodes with varying
number of fingerprints.

Clearly, there is a tradeoff between the dwell time K << N and the benefit (i.e., the A, T, and
C metrics we defined). Particularly, with larger K, better A is expected on the one hand but more
C and T is spent, since K — N and I’ — I. If user u sets K = N then I’ = I and RM¥ = RM and u
will receive the whole RM. In this case, Grap is the same as the CSA described earlier.

6.4 Experiment 3: Effective Network (0)

Experiment 3 examines the sensitivity of the proposed GDA approach and all other approaches
for various 0 parameters. Recall that the 6 parameter represents the effectiveness of the network
with respect to a user being connected, meaning that the lower the 6 of a network is, the less
intermittent connectivity inside a building exists and therefore the highest the probability of user
u to be connected while navigating in the building.

Figure 7 (left) shows that all prefetching approaches are positively affected by the decrease of
0 since user u is more frequently connected and therefore communicates with the server s more
often for enriching its RM} with more nodes and consequently more fingerprints. The proposed
GDA approach provides, however, the best A in all cases that increases while the 0 parameter
decreases due to the fact that its has more opportunities to download an efficient set of nodes and
represent the actual path that the user will follow as well, as there is an increased probability to
correct possible flaws at the initial calculations. In particular, GDA provides a poor A of around

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:17

Average Point Accuracy Average CPU Time Average Network Capacity
Methods=ALL; Dataset=CSUCY; Local. Aco SWKNN; Methods=ALL; Dataset=CSUCY; Local. Acc.=WKNN; Methods=ALL; Dataset=CSUCY; Local. Acc.=WKNN;
(K=15; m=3; W' oh=: 3;) (K=15; m=3; w°"=3;) (K=15; m=3; w*"=3;)
25 Z 5000
7 250 8
g § S 4500
g 2 F 200 4§ 4000 8
£ £ E 3500
< 15 £ £ 3000 _!
3 = 150 = b
8 o Z 2500 4
g 10 £ 100 .| § 2000
< 8 2 & 1500 4
g 51 © 50 £ 1000 0l .
5 2 500 q
g H
2, Eﬂﬁim il . HER REE HHH 5 L ERE
R X) % B %,% %% B %% N RS
30 Effective Nem?ork 6 (in RSSI) 50 %0 Effective Nedoork 0 (in RSSI) 50 30 Effective Nem}ﬁfrk 6 (in RSSI) 50

Fig. 7. Experiment 3 — Effective Network (0): examining the GDA accuracy (left), CPU time (center) and
Network Capacity C (right) while varying the effective network 6 threshold.

Average Point Accuracy Average CPU Tim, Average Network Capacity
Methods=ALL; Dataset=CSUCY; Methods-ALL; Datasel- csucv Methods=ALL; Datasei=CSUCY;
(K=15; m=3; 6=-40; w*"=3;) (K=15; m=3; 6=-40; w*"=3;) (K=15; m=3; 6=-40; w*"=3;)
T 14 300 5 g 5000 -
g 2 4500
2 12 & 250 # & 5 2 4000 4
£ 10 < 2w £ 3500
< < = 3000
g 8 [o
g FRREY 4 > 2500 .
g 6 E 8 2000
S 100 5]
S 4 a & 1500
-] ° 5 £ 1000
g ,L 4 5 5
g 2 500 .
< 0 0 2 0
Pl % %Afo‘ls‘ %Q&)(‘a SRS SPgaRds % %Afo‘lx‘ %ﬁv@o“c LR RO SRS g’ﬁ&‘o“a USRS ShFRls
KNN WMSSE KNN WMSSE N WMSSE

MMSE
P aton A\gcmhm P ation Algonthm Y tion Algorithm

Fig. 8. Experiment 4—Localization Methods: examining the GDA accuracy (left), CPU time (center), and
network capacity C (right) with respect to various localization methods.

10m for 6 = —30dBm that is 58% better than the accuracy provided by RND and 2% better than
the BFS and a fine A of 0.33m for § = —50dBm that is 75% better than the one provided by RND
and 43% better than BFS. Regarding the no-prefetching approaches the SS is influenced from the
network effectiveness more than any other approach, since for high 6s (—30dBm) and consequently
for high intermittent connectivity, u cannot communicate with s and therefore it cannot localize
and navigate in the building. Therefore, SS provides worse A than both BFS and GDA in all cases,
due to the fact that the latter prefetch fingerprints when connected to localize at the smartphone
in cases of disconnections. On the other hand, the CS approach is independent to the 6 parameter
since u downloads the whole RM a priori and does not require any communication with s during
navigation.

In terms of resource consumption, however, the CS is the worst since it utilizes maximum re-
sources in all cases irrespective of the actual needs of the localization process. The SS approach
is the best in these performance metrics since it requires the minimum resources at each local-
ization step. The most important information, however, with respect to T and C comes from the
prefetching approaches since the results show that all approaches are not influenced by the 0 pa-
rameter and provide similar results in all cases. This is another major benefit of the proposed GDA
approach since it provides considerable better A by utilizing similar resources compared to RND
and BFS.

6.5 Experiment 4: Localization Algorithms

Experiment 4 examines the impact of various localization algorithms (i.e., K-Nearest Neigh-
bors (KNN), Weighted-KNN (WKNN), Minimum Mean Square Error (MMSE), Weighted-MMSE
(WMMSE)) available in the Anyplace IIN-SOA [32] on the performance of all approaches. Any
localization technique can be used in the loc() step of the Grap framework for calculating the
user’s current location by utilizing a (partial) RM at every localization step. The results in Figure 8
show that neither the prefetching approaches nor the no-prefetching approaches are considerably

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:18 A. Konstantinidis et al.

Average Point Accuracy Average CPU Time Average Network Capacity
Methods=ALL; Loc-Method=WKNN; Methods=ALL; Loc-Method=WKNN; Methods=ALL; Loc-Method=WKNN;
(K=15; 8=-40;) (K=15; 6= (K=15; 6=-40;)

2000

1500

s ol . &
1000 —
0
s

262G 7 @0 > 270 0 p

4l

CPU Time T (in ms
© &
S
T
XSk

2L Pl

o LRI B il

626, 7 0 o 2 % 7

@
2
8

Network Capacity C (in messages)

Average Accuracy A (in meters)

1 1

0
B 6o 0r 7 @ S 2 % 7 0 S 2

S

GDA Distance De&hnat\?rg ‘ml*‘ Lookahead Window (w) GDA Distance De&hnat\?rg ‘n’”y‘ Lookahead Window (w) GDA Distance DeétmathBs (m) Lookahead Window (w)
(to m destinations) Control Parameters (to m destinations) ~ Control Parameters (to m destinations) ~ Conirol Parameters

Fig. 9. Experiment 5—Control Parameter Experiments: examining the GDA accuracy (left), CPU time (cen-
ter), and network capacity C (right) with respect to various control parameters.

influenced by the localization algorithm since they provide similar results with respect to A, T,
and C in all cases. In general, all approaches provide slightly worse A when the KNN algorithm
is used and utilize almost negligibly more resources. In all cases, however, the proposed GDA ap-
proach provides better results than all prefetching approaches and successfully adopts the tradeoff
between A and resources consumption T and C with respect to the no-prefetching approaches, SS
and CS.

6.6 Experiment 5: GDA Sensitivity Analysis

In these experiments, we examine several control parameters of the proposed GDA approach and
how these parameters influence its performance in terms of A, T, and C. Recall that for the Ex-
periments 2—4 we presented above, we already evaluated the parameters that had to do with the
system configuration (e.g., effective network, dwell time, and localization algorithms), but not the
algorithmic parameters of Grap that we carry out in this section.

The first control parameter experiment in Figure 9 (left) studies the GDA distance parameter as
discussed in Section 4.2, which is the h(n) heuristic of the evaluation function f(n) of our A*-based
approach that estimates the cost from node n to each of the m virtual targets. We examined three
different h(n) heuristics: (i) L,, which calculates the Euclidean distance from n to m nodes, (ii) G,
which calculates a graph distance by using the Dijkstra algorithm, and (iii) the greedy G; heuristic,
which finds the shortest path by using the (node) weights of the dependency graph DG (i.e., the
self-importance). The second control parameter experiment varies the number of virtual targets m
taken into consideration at each iteration. The third control parameter experiment examines the
lookahead window parameter that represents the maximum distance in number of hops between
the current node and the m nodes. The w"° means that there is no constraint in the number of hops
and therefore the GDA approach finds the m most popular virtual targets of the whole building.

The results of the first control parameter experiment in Figure 9 (left set of parameters at each
plot—for various GDA distance heuristics) show that the proposed approach performs better when
the graph distance G, estimation is used, since it provides about 74% better A than L, and 16%
better accuracy than Gy, utilizing less T and similar C, at the same time. This is due to the fact
that the G, heuristic can more easily adopt the constraints and explicit characteristics of an indoor
environment and can more easily provide a more representative distance cost between two indoor
locations. The variations on m of the second control parameter experiment in Figure 9 (center at
each plot) show that GDA is slightly affected by this parameter and demonstrate a slight preference
for an m that is neither too high (e.g., m = 7) nor too low (e.g., m = 1). This is due to the fact
that a high m means that GDA will have a large number of goals and therefore it may divide the
limited number of K nodes that will be selected for prefetching into many paths and subsequently
may result in a BFS-like behavior. On the other hand, with a low K there is a high probability of
selecting a wrong virtual target and therefore prefetch nodes along a wrong direction. Finally, the

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:19

third control parameter experiment in Figure 9 (right at each plot—variations of the lookahead
window w) show that GDA prefers small lookahead window w since this means that the m virtual
targets will be closer to the current location of u at each iteration and therefore it would be much
more easier for GDA to fix a wrong decision (i.e., selecting a popular destination that is far away
from the actual path that the user follows.)

6.7 Experiment 6: Real Prototype Evaluation

In the last experiment, we use our real prototype system on a Samsung Galaxy S3 (Android 4)
using an Exynos 4 Quad (GT-19300). Particularly, we follow 20 random routes of 15m long each in
the CS UCY campus and we measure the accuracy and energy consumption. The energy consump-
tion is measured using PowerTutor, which, according to [7] is 86% accurate. We utilize the same
parameter settings as in the previous experiments, i.e., dwell time K = 15, number of virtual tar-
gets m = 3, lookahead window w = 3, effective network threshold 8 = —40dBm and localization
method = WKNN. All messaging goes through the 802.11 Wi-Fi interface. Extensive simulation
over multiple smartphones was outside the scope of this work, even though we refer interested
readers to our prior work SmartLab [13] to assess the complex dimensions arising in testing ex-
tensively smartphone applications on multiple real smartphone devices.

With respect to average accuracy, the results are comparable to our previous results and dis-
cussions, since the accuracy varies between 3m and 10m. The energy consumption of our real
prototype can be considered reasonable since it consumes around 42.64] on average for 30 routes,
which means around 2] for each 15m-long indoor navigation or 0.06% of a fully charged battery
that is much less than the 1.09% (=35]) needed to request and download the Wikipedia mobile
site [24].

7 CONCLUSIONS AND FUTURE WORK

In this article, we study the problem of prefetching the most important IoT data blocks from an
IIN-SOA to a mobile device, without knowing its user’s destination during navigation. Our proposed
framework, named Grap (Graph Prefetching), structurally analyzes in an offline phase the building
topology graphs to identify important areas inside building complexes (e.g., malls, hotels, cam-
puses). The identified “hotspots” subsequently become virtual targets to an online heuristic graph
search algorithm we developed, named Graph-Distance A*-based (GDA). We tested our Grap frame-
work with real datasets from our production prototype IIN-SOA, which reached over 100,000 real
users, and found Grap to be impressively accurate while retaining high performance levels (i.e.,
CPU time, network capacity and energy consumption). Our prototype implementation validates
that our propositions are pragmatic and can easily make their way into future IIN-SOA.

In the future, we plan to investigate the trade-off between the CPU/network capacity and the ac-
curacy objectives in the context of multi-objective optimization. We also plan to extend our exper-
imental evaluation into domain-specific field studies (e.g., involving health/hospitals, education/
universities) but also deal with more realistic evaluation scenarios that would require the
adaptation of the physical infrastructure behind our experiments (e.g., varying number of APs,
incorporating UWB transceivers or beacons). Finally, we will also release our developed artifacts
as an open-source project.

REFERENCES

[1] A.Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash. 2015. Internet of things: A survey on enabling
technologies, protocols, and applications. IEEE Comm. Surv. Tutor. 17, 4 (2015), 2347-2376.

[2] L. Atzori, A. Iera, and G. Morabito. 2010. The internet of things: A survey. Comput. Netw. 54, 15 (2010), 2787-2805.

[3] C.Becker and F. Diirr. 2005. On location models for ubiquitous computing. Personal Ubiquitous Comput. 9, 1 (2005),
20-31.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

10:20 A. Konstantinidis et al.

(4]
(5]
(6]
(7]

(8]
(9]
(10]
(11]
(12]

(13]

[14]

[15]
[16]

(17]
(18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]
[26]
(27]
(28]

[29]

C. Bouras, A. Konidaris, and D. Kostoulas. 2004. Predictive prefetching on the web and its potential impact in the
wide area. World Wide Web 7, 2 (2004), 143-179.

S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual web search engine. In Proceedings of the Seventh
International Conference on World Wide Web 7 (WWW?7). Elsevier Science Publishers B. V., 107-117.

G. Chatzimiloudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-Yazti. 2012. Crowdsourcing with Smartphones.
IEEE Internet Comput. 16, 5 (2012), 36-44.

M. Dong and L. Zhong. 2011. Self-constructive high-rate system energy modeling for battery-powered mobile sys-
tems. In Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services (MobiSys’11).
ACM, 335-348.

L. Ghouti, T. Sheltami, and K. Alutaibi. 2013. Mobility prediction in mobile ad hoc networks using extreme learning
machines. Procedia Computer Science 19 (2013), 305-312.

B.D. Higgins, J. Flinn, T. J. Giuli, B. Noble, C. Peplin, and D. Watson. 2012. Informed mobile prefetching. In Proceedings
of the 10th International Conference on Mobile Systems, Applications, and Services (MobiSys’12). ACM, 155-168.

1-Y. Ko, H.-G. Ko, A.-J. Molina, and J.-H. Kwon. 2016. SoloT: Toward A user-centric IoT-based service framework.
ACM Trans. Internet Technol. 16, 2 (2016), 8:1-8:21.

A. Konstantinidis, G. Chatzimilioudis, D. Zeinalipour-Yazti, P. Mpeis, N. Pelekis, and Y. Theodoridis. 2015. Privacy-
preserving indoor localization on smartphones. IEEE Trans. Knowl. Data Eng. 27, 11 (2015), 3042-3055.

A. Konstantinidis, G. Nikolaides, G. Chatzimilioudis, G. Evagorou, D. Zeinalipour-Yazti, and P. K. Chrysanthis. 2015.
Radiomap prefetching for indoor navigation in intermittently connected Wi-Fi networks. In Proceedings of the 16th
IEEE International Conference on Mobile Data Management 1 (2015), 34-43.

G. Larkou, C. Costa, P. G. Andreou, A. Konstantinidis, and D. Zeinalipour-Yazti. 2013. Managing smartphone testbeds
with smartlab. In Proceedings of the 27th USENIX Conference on Large Installation System Administration (LISA’13).
USENIX Association, 115-132.

B.Li,J. Salter, A. G. Dempster, and C. Rizos. 2006. Indoor positioning techniques based on wireless lan. 1st International
Conference on Wireless Broadband and Ultra Wideband Communications, 13-16.

S.Li, L.-D. Xu, and S. Zhao. 2015. The internet of things: A survey. Inf. Syst. Front. 17, 2 (2015), 243-259.

T. M. Lim, C. K. Yeo, F. Lee, and Q. V. Le. 2009. Tmsp: Terminal mobility support protocol. IEEE Trans. Mobile Comput.
8, 6 (2009), 849-863.

H. Lu, C. Guo, B. Yang, and C. S. Jensen. 2016. Finding frequently visited indoor POIs using symbolic indoor tracking
data. In Proceedings of the 19th International Conference on Extending Database Technology (EDBT’16). 449-460.
Q.Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. 2002. Search and replication in unstructured peer-to-peer networks. In
Proceedings of the 16th International Conference on Supercomputing (ICS’02). ACM, 84-95.

D. Lymberopoulos, J. Liu, X. Yang, R. R. Choudhury, V. Handziski, and S. Sen. 2015. A realistic evaluation and com-
parison of indoor location technologies: Experiences and lessons learned. In Proceedings of the 14th International
Conference on Information Processing in Sensor Networks (IPSN’15). ACM, 178-189.

S. Papastavrou, G. Samaras, P. Evripidou, and P. K. Chrysanthis. 2006. A decade of dynamic web content: A structured
survey on past and present practices and future trends. IEEE Commun. Surv. Tutor. 8, 2 (2006), 52—60.

P. Prasithsangaree, P. Krishnamurthy, and P. Chrysanthis. 2002. On indoor position location with wireless LANs. In
Proceedings of the 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 2 (2002),
720-724.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki, E. H. Siegel, D. Steere, and C. Steere. 1990. Coda: A highly
available file system for a distributed workstation environment. IEEE Trans. Comput. 39 (1990), 447-459.

E. Shriver, C. Small, and K. A. Smith. 1999. Why does file system prefetching work? In Proceedings of the Annual
Conference on USENIX Annual Technical Conference (ATEC’99). USENIX Association, 6—6.

N. Thiagarajan, G. Aggarwal, A. Nicoara, D. Boneh, and J. P. Singh. 2012. Who killed my battery?: Analyzing mobile
browser energy consumption. In Proceedings of the 21st International Conference on World Wide Web (WWW’12).
ACM, 41-50.

O. Trullols-Cruces, M. Fiore, and J. Barcelo-Ordinas. 2012. Cooperative download in vehicular environments. IEEE
Trans. Mobile Comput. 11, 4 (2012), 663-678.

M. Végler, J. Schleicher, C. Inzinger, and S. Dustdar. 2016. A scalable framework for provisioning large-scale IoT
deployments. ACM Trans. Internet Technol. 16, 2 (2016).

Y. Xia and C. K. Yeo. 2014. Mobile internet access over intermittent network connectivity. J. Netw. Comput. Appl. 40
(2014), 126-138.

J. Xiao, Z. Zhou, Y. Yi, and L. M. Ni. 2016. A survey on wireless indoor localization from the device perspective. ACM
Comput. Surv. 49, 2 (2016), 25:1-25:31.

L.-D. Xu. 2011. Enterprise systems: State-of-the-art and future trends. IEEE Trans. Indu. Inf. 7, 4 (2011), 1551-3203.

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

loT Data Prefetching in Indoor Navigation SOAs 10:21

[30] L.Yao, Q. Z. Sheng, and S. Dustdar. 2015. Web-based management of the internet of things. IEEE Internet Comput. 19,
4 (2015), 60-67.

[31] D.Zeinalipour-Yazti, and C. Laoudias. 2017. The anatomy of the anyplace indoor navigation service. In ACM SIGSPA-
TIAL Special, Vol. 9, ACM Press, 3-10.

[32] D. Zeinalipour-Yazti, C. Laoudias, K. Georgiou, and G. Chatzimiloudis. 2017. Internet-based indoor navigation ser-
vices. IEEE Internet Comput. 21, 4 (2017), 54-63.

[33] Z.Zhang. 2006. Routing in intermittently connected mobile ad hoc networks and delay tolerant networks: overview
and challenges. IEEE Commun. Surv. Tutor. 8, 1 (2006), 24-37.

[34] Z. Zheng, P. Sinha, and S. Kumar. 2009. Alpha coverage: Bounding the interconnection gap for vehicular internet
access. In Proceedings of the IEEE INFOCOM. 2831-2835.

Received May 2017; revised November 2017; accepted December 2017

ACM Transactions on Internet Technology, Vol. 19, No. 1, Article 10. Publication date: November 2018.

