Check for
Updates

Utility-based Scheduling for Public Displays with Live Content

Kristi Bushman
University of Pittsburgh
Pittsburgh, PA
k.bushman@pitt.edu

ABSTRACT

The pervasiveness of public displays is prompting an increased
need for “fresh” content to be shown, that is highly engaging and
useful to passerbys. As such, live or time-sensitive content is often
shown in conjunction with “traditional” static content, which cre-
ates scheduling challenges. In this work, we propose a utility-based
framework and a novel scheduling algorithm for handling live and
non-live content on public displays. We also experimentally evalu-
ate our proposed algorithm against a number of alternatives under
a variety of workloads.

CCS CONCEPTS

« Human-centered computing — Human computer interac-
tion (HCI).

KEYWORDS

pervasive displays, scheduling algorithm, utility function, deadlines

ACM Reference Format:

Kristi Bushman and Alexandros Labrinidis. 2019. Utility-based Scheduling
for Public Displays with Live Content. In Proceedings of the 8th ACM In-
ternational Symposium on Pervasive Displays (PerDis °19), June 12-14, 2019,
Palermo, Italy. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3321335.3324940

1 INTRODUCTION

Pervasive display networks are becoming a regular fixture of ev-
eryday city life [3]. Although the majority of such displays are still
showing mostly static content, e.g., advertisements, the push and
the demand for data-rich content is very high. Data-rich content
is often live (e.g., real-time transit information?) or time-sensitive
(e.g., weather forecasts). One way to address the idiosyncrasies
of live/real-time content is to assign deadlines to it, i.e., a specific
time point by which the content item should be displayed in order
to have maximum positive “value” to passerbys. Of course, such
deadline-driven content should coexist with content that does not
have such specific timing requirements.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PerDis ’19, June 12—14, 2019, Palermo, Italy

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6751-6/19/06...$15.00
https://doi.org/10.1145/3321335.3324940

Alexandros Labrinidis
University of Pittsburgh
Pittsburgh, PA
labrinid@cs.pitt.edu

1.1 Motivating Example

Our motivating example is a public display at a bus stop that shows
various content items that include real-time bus arrival information,
real-time traffic information, up to the minute weather information,
the Twitter feed of the bus company, and advertisements. The
motivation behind these content choices is to make the display
“interesting,” so that it does not get ignored like banner ads on web
sites. Along those lines, we envision different content items being
shown at separate times on the display, instead of trying to squeeze
too many things in a single screen at the same time.

Given this setup, we want to determine the best schedule to show
the various content items. Clearly, the different types of content
have different “value” to the people at the bus stop and that value
changes over time. For example, it is absolutely crucial that infor-
mation about a bus arrival be shown shortly before the bus arrives
(30 seconds - 1 minute) and definitely not after the bus leaves the
bus stop. The exact arrival time of the bus (i.e., the “deadline”) is
often not the originally scheduled time, since it is affected by cur-
rent traffic conditions, and therefore not known well in advance.
Additionally, different content types (e.g., Twitter feeds) do not
have such strict timing constraints, but must also be shown.

1.2 Limitations of the State of the Art

There are a plethora of scheduling algorithms [1, 6, 8, 15], including
several algorithms specifically designed for determining the timing
of content shown on public displays [3-5, 11-14, 17, 18]. We classify
these algorithms into two categories, procedural and declarative,
borrowing terminology from programming languages.

Procedural scheduling algorithms require the display owner
to specify the exact schedule ahead of time. That could be either the
exact times to show each content item or an order of the different
content items (with durations for each) that is played in a constant
loop or for specific time periods?. For content that has deadlines,
the display owner would need to manually schedule it ahead of
time, something that would clearly be a problem when the deadline
is not known far in advance.

Declarative scheduling algorithms require the display owner
to specify some notion of importance or rules for the different
content items and it would then be up to the scheduling algorithm
to determine the exact timings. These can be further subdivided into
two classes, based on whether the scheduling algorithm decides
the full schedule ahead of time [16] or each item just in time [11].

The state of the art in this space is the work by Mikusz et al [11]
using lottery scheduling. The lottery scheduling algorithm allocates
tickets to content items based on some scheduling policy, then
randomly draws a ticket to decide which item to show. A change in

Uhttps://transitscreen.com
Zhttps://screen.cloud

https://doi.org/10.1145/3321335.3324940
https://doi.org/10.1145/3321335.3324940
https://doi.org/10.1145/3321335.3324940
https://transitscreen.com
https://screen.cloud
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3321335.3324940&domain=pdf&date_stamp=2019-06-12

PerDis ’19, June 12-14, 2019, Palermo, Italy

scheduling priorities can be reflected by changing the allocation of
lottery tickets. Although this technique is very flexible, it will not
work well when the timing of when to show an item is absolutely
crucial to its value to viewers, as is the case with our motivating
example. Specifically, the algorithm has no notion of the future, so
it is unable to recognize when it should hold off on showing an
item in order to be more valuable. Additionally, the random nature
of the algorithm opens up the possibility of missed deadlines.

1.3 Requirements of an Ideal Scheduling
Algorithm

Given the motivating example described earlier, we would like to
have a scheduling algorithm with the following characteristics:

e Can handle scheduling constraints (e.g., what time of the
day to show specific content).

o Can deal with content items being added to or deleted from
the list of available content (even without significant advance
notice).

e Can handle content that is deadline-driven, but also content
that is not.

e Can consider the different “value” content has to passerbys
and use it to prioritize scheduling decisions.

To the best of our knowledge, there is no scheduling algorithm that
addresses all the above characteristics.

1.4 Contributions of this Work

We make the following contributions:

(1) We highlight the need for deadline-driven scheduling of
content for public displays.

(2) We design a content scheduler architecture to address the
needs of deadline-driven and non deadline-driven content
(Section 2).

(3) We propose a utility function framework to capture the in-
herent “value” for the different content items (Section 3).

(4) We develop a novel scheduling algorithm (Lookahead Algo-
rithm) that tries to minimize missed deadlines while maxi-
mizing the overall utility (Section 4).

(5) We experimentally evaluate the proposed scheduling algo-
rithm against multiple alternatives under a variety of work-
loads (Sections 5, 6).

2 SCHEDULER ARCHITECTURE

We envision a public display scheduler that consists of three compo-
nents: (a) a content library, (b) a filterer, and (c) a content scheduler.
The content library stores information about the content items.
Content items can be added to or removed from the library at any
time. This can be done through a user interface or programmati-
cally through an API. Content items submitted to the library must
include: content info (image, video, web URL, etc.), duration, valid
days and times, and a utility function. The filterer component pulls
content from the library and removes invalid items before passing
them to the scheduler. A content item is invalid if the current time
is not within valid times specified for the item. Finally, the content
scheduler then decides which item to show out of the content items
that were passed to it by the filterer.

Bushman and Labrinidis

3 PROPOSED UTILITY FUNCTION
FRAMEWORK

Utility functions (UF) are used in many disciplines in order to
express value over time. UFs that express the value of job completion
over time have been used for scheduling tasks in real-time operating
systems [7], database systems [9], and HPC systems [10].

In our framework, each content item has an associated utility
function which represents the viewer-perceived value of showing
the item over time. Content items can be partitioned into two
categories: (a) anytime content (AC) and (b) deadline-driven
content (DC). We believe that any type of content can fit into this
framework, and this framework will allow us to represent many
common scheduling constraints.

An anytime content item has no inherent value tied to a specific
time of day. However, it may increase in value to viewers if not
shown for some period of time. An example of an AC item is a
weather application. The weather is valuable to viewers at any time
of day, however, it is not valuable to show the weather twice in
one minute, as major updates to the forecast are unlikely. Other
examples of AC items include news applications, Twitter feeds,
and advertisements. Scheduling algorithms that cycle through a
pre-determined playlist are only able to show AC items. There is
no constraint on the number of times an AC item should be shown.

A deadline-driven content item is tied to a very specific time of
day, which may not be known far in advance. Often, these content
items will be related to live events, making the timing of when to
show the item critical. DC items should only be shown once. An
example of a DC item is an alert that says "Bus Arriving Now".
Ideally, this item would be shown 30 seconds before the bus arrives.
Showing this item too early or too late would cause confusion and
provide no value to viewers. Other examples of DC items include
emergency alerts, event reminders, and live video streams.

Note that the value of an AC item can be tied to a specific time
of day, however, this will likely be a longer time frame for which
the content is valid. For example, an advertisement for a breakfast
cafe may only be valid between 7am and 11am. However, within
that time frame, the advertisement can be shown multiple times
and the value of showing the advertisement is dependent on the
time since the advertisement was last shown.

The utility function of an AC item is a non-decreasing function,
where the x-axis units are time offsets relative to the time when
the content item was last shown. The y-axis units are the user-
perceived value of showing the item. Immediately after an AC item
is shown, the value of its utility function goes back to the value at
time offset zero. The utility function of a DC item must increase
from zero at some time (¢) and return to zero at its deadline (¢).
The x-axis units for a DC utility function are absolute times of day.
The y-axis units are user-perceived value. For both AC and DC
items, the utility acquired by showing the item at a certain time is
represented by the integral of the UF over the duration (d) that the
content is shown.

4 LOOKAHEAD SCHEDULING ALGORITHM

In this section, we propose an algorithm called the Lookahead
algorithm (LA) for scheduling content on public displays using our
utility function framework. The goal of this algorithm is to decide

Utility-based Scheduling for Public Displays with Live Content

which content item to show next in order to maximize both the
total utility of content shown and the number of DC items that are
shown before their deadlines.

When deciding which content item to show next, at time t,,, we
construct a lookahead window of size w (seconds). The lookahead
window is a period of time where we will construct a hypothetical
schedule of what is likely to be shown in the near future. This
window helps inform our decision of which content item to show
at time t,,. When constructing this hypothetical schedule, we only
consider DC UF’s that contain some value within the window. We
will decide whether to show an AC item after construction of the
hypothetical schedule is completed.

For all DC content within the window, we calculate the slack
of the utility function (Eq. 1). Our definition of slack was inspired
by the notion of slack in operating systems>. Slack measures how
many time slots are available for scheduling the content item while
also receiving utility value. Larger slack means there are more
options for when to schedule that item. We place DC items on the
hypothetical schedule in order of increasing slack (i.e. DC items
with the least slack are placed first). Each content item is placed at
the time where its acquired utility (integral of the UF) is maximized
given that it does not conflict with any item already on the schedule.
If there are multiple time slots that tie for the highest acquired utility,
the content is placed in the earliest of those time slots. A content
item is not placed on the hypothetical schedule if it cannot acquire
any utility.
lq ma; (tn ts))

Once all valid DC items have been placed on the hypothetical
schedule, we look at the very beginning of the hypothetical schedule.
If there is a content item placed on the hypothetical schedule at the
very beginning, that is the content item that will be shown at time
tn. Otherwise, we calculate the gap of time from the beginning of
the hypothetical schedule to the first DC item on the hypothetical
schedule. Out of the AC items with a duration that would fit in
this gap, the item with the highest utility density (Eq. 2) [7] for its
duration is the item that will be shown at time t,,.

slack =

th+d UF

tn
T @

This decision process is executed within the last second of show-
ing the current content so that the decision of what to show next
is based on the most current knowledge of upcoming content. For
every decision made, a new lookahead window is completely re-
constructed. Although content items are likely to be placed in the
same time slot on the hypothetical schedule for many iterations
of the decision process, recalculating the hypothetical schedule
with every iteration allows the algorithm to be responsive to new
content, while still using available knowledge to inform the current
decision.

density =

5 EXPERIMENTAL SETUP

5.1 Evaluation Environment

We implemented a simulator program in Python to evaluate differ-
ent scheduling algorithms; it was executed on a Dell machine with
an Intel Core i7 3.4 GHz processor and 32 GB of RAM.

PerDis 19, June 12-14, 2019, Palermo, Italy

5.2 Algorithms Evaluated

We evaluated the performance of seven different algorithms:

EDF Earliest Deadline First: For any DC item that would ac-
quire some utility if shown next, show the content item with
the earliest deadline. If there are no such DC items, show
the AC item with the highest utility density.

G Greedy: Choose the content item with the highest utility
density (as specified in Eq. 1).
LA Lookahead: As described in Section 4. A lookahead window
of 5 minutes was used in our evaluation.

LOT Lottery: Lottery scheduling with a static allocation of tickets
based on the maximum height of an item’s utility function
(UF). Randomly draw a ticket to decide what to show next.

LOT-UF Lottery with Utility Functions: Lottery scheduling with

dynamic allocation of tickets based on the current height
of the item’s UF. Randomly draw a ticket to decide what to
show next.
RAND Random: Out of all content items that would acquire some
utility if shown next, randomly select which item to show.
RR Round Robin: Show all content items in a circular order,
skipping a content item if it would not acquire any utility.

5.3 Workload Generation

We generated workloads for our evaluation using template utility
functions. These template functions were designed to be simple
functions with tunable parameters that allow for the generation of
different workloads. The following experiments use these template
utility functions, however, the lookahead algorithm does not depend
on these templates. In practice, the UF for a content item can be
any shape that adheres to the constraints listed in section 3.

The template function for an AC item is defined by the four
parameters shown in Figure 1a. It should be noted that the x-axis
tracks the time passed since the content item was last shown. The
intuition behind this utility function is that a content item will
have a value of startHeight immediately after being shown. This
value will be close to zero because seeing the same content item
twice within a short period of time is not useful to viewers. When
the content item has not been shown for startWidth seconds, the
value of showing the content item begins to increase. After another
slopeWidth seconds, the utility function reaches its maximum pos-
sible value: endHeight. This value is indicative of the content item’s
overall usefulness to viewers. At the start of the simulation, the
utility function of each AC item is seeded with a random time since
last shown between 0 and 600 seconds.

The template function for a DC item is defined by the five param-
eters shown in Figure 1b. The intuition behind this utility function
is that a DC item has a deadline after which, showing the item is no
longer useful to viewers. The content item is useful to viewers up to
width seconds before the deadline. However, showing this content
item would be most valuable to viewers for a period of peakWidth
seconds ending at peakEnd. The value of the utility function for
this period of maximum value is peakHeight. After this period of
maximum value, the value of the utility function begins to decrease
back to zero.

Shttps://www.wikipedia.org/wiki/Least_slack_time_scheduling

https://www.wikipedia.org/wiki/Least_slack_time_scheduling

PerDis ’19, June 12-14, 2019, Palermo, Italy

slopeWidth
100
%0
80
70
60
Z
£ 50
> a0 endHeight
30 startWidth
20 {_A_\
10
} startHeight
0

0 100 200 300 400 500 600 700 800 900 1000
Time since item last shown

(a) AC template utility function

Bushman and Labrinidis

80 peakEnd
70 peakWidth
_ 60 S —
= s0
5
40
30 peakHeight

0 50 100 150 200 250
Time

width

deadline

(b) DC template utility function

Figure 1: Template utility functions and parameters that enable content generation for different workloads

Medium Notice

®LOT-UF
RRO®®LOT

Long Notice
[} LAG 5x10°
5x10°
EDF
Fol 2 ax0°
S 4x10° @®LOT-UF =
2 LOT 2
o o 6
2 3100 i @ 310 ®RAND
= ®RAND =
g g
6
< 208 < 20
]]
3 8
= =
P aos = 1aos
0 0
0 20 40 60 80 100 0 20

Deadlines met (%)

Deadlines met (%)

Short Notice
GO LA 5x108 GO LA®
EDF EDF
2 axoe OLOT-UF
5 RR@®LOT
B a0 ®RAND
S
o
5
< 2x10°
I
°
F 1x106
0
60 80 100 0 20 40 60 80 100

Deadlines met (%)

Figure 2: Total acquired utility and percent of DC deadlines met for running scheduling algorithms on workloads with different
notice times. Long notice (left), medium notice (middle), and short notice (right). The notice time refers to how far in advance

the content item is added to the scheduler library.

We generated a baseline workload that is realistic for the moti-
vating example. Our workload consists of 15 AC items and 288 DC
items with deadlines over the course of a 24 hour period (approx. 1
DC item added to the scheduler library every 5 min). The time when
a content item is added to the scheduler library is its awareTime.
At this time the content item will start being considered by the
scheduler in its decisions. In the baseline workload, all AC items
are included in the scheduler library from the beginning of the
simulation. DC items are added to the scheduler library at some
time before their deadlines. The parameters used for the utility func-
tions in the baseline workload were randomly generated within the
ranges shown in Table 1. In our experiments, we change certain
parameters of the baseline workload to evaluate the performance
of the lookahead algorithm across a variety of workloads.

5.4 Evaluation Metrics

To evaluate the performance of the scheduling algorithms, we con-
sider two metrics: (a) total acquired utility and (b) percentage of
deadlines met. Total acquired utility is the sum of the utility ac-
quired by each content item that is shown over the course of the
24 hour period. The percentage of deadlines met is the percent of
DC items that are shown and complete their full duration before
their deadline. An algorithm that effectively integrates live content
into the schedule would have a high total acquired utility and meet

Table 1: Range of parameter values for utility functions of
the baseline workload. For each content item, the value of
the parameters of the UF are chosen from a uniform distri-
bution that spans the range listed in the table. Times and
durations are shown in seconds.

UF parameter Baseline Range
duration (5, 60)
deadline (t;) | (1, 86400)

DC width (duration, duration * 8)
awareTime | (t; — width — 300, t; — width)
peakWidth | (0, width)
peakEnd (tg — width + peakWidth, t;)
peakHeight | (70, 100)
duration (5, 60)
awareTime 0
startWidth | (0, 600)

AC | slopeWidth | (0, 600)
endHeight (40, 80)
startHeight | (0, endHeight)

close to 100% of the deadlines. For the lookahead algorithm, we
also evaluate the execution time, which is the average amount of
time it takes to make a decision for which content item to show.

Utility-based Scheduling for Public Displays with Live Content

AC taller than DC

DC taller than AC

PerDis 19, June 12-14, 2019, Palermo, Italy

3x10°
7x106 EDFoMd
LOT-UF /
Zoar{ @ orRr LA Z
= =
= ®LoT E RR®
2 5x10° S 2x10°{ RAND®
o o
£ e ®RAND £
o o
¥ ¥
< 3x10° <
= B 1x10°
O 2x10° O
= =
1x10°
0 0
0 20 40 60 80 100 0 20

Same Height
o - Ge A
EDF
LOT-UF EDF 2 4o | LOT-UF@@RR
Lot E eLoT
= ®RAND
8 3x10'
=l
o
g
<C 2x10°
©
°
L 1x10°
)
60 80 100 0 20 40 60 80 100

Deadlines met (%)

40

Deadlines met (%)

Deadlines met (%)

Figure 3: Total acquired utility and percent of DC deadlines met for running scheduling algorithms on workloads with different
height UF’s. AC taller than DC (left), DC taller than AC (middle), and AC same height as DC (right). The max height of a utility
function is indicative of the overall importance of the content item to the viewer.

6 EXPERIMENTAL RESULTS
6.1 Notice time (Figure 2)

Notice time refers to the amount of time before the beginning of
the utility function that a DC item is added to the scheduler library.
When a content item has a longer notice time, the scheduler has
more opportunity to schedule other content around it in a manner
that maximizes the total utility. We evaluated the LA algorithm
using workloads with long, medium, and short notice times. From
the baseline workload, the range of DC awareTime was changed
to (deadline — width — 300, deadline — width — 240), (deadline —
width — 180, deadline — width — 120), and (deadline — width — 60,
deadline — width) respectively. For all three workloads, the LA
algorithm outperforms the other algorithms. Even with short notice
times, the LA algorithm is able to meet 96% of deadlines and acquire
more utility than all of the other algorithms evaluated.

6.2 Heights of AC vs DC (Figure 3)

The maximum height of the UF is an indicator of the general im-
portance of the content item. We evaluated the LA algorithm using
workloads where the heights of DC utility functions were taller,
shorter, and the same height as the AC utility functions. From
the baseline workload, the range of peakHeight for DC items was
changed to (80, 100), (20, 40), and (50, 70) respectively. The range
of endHeight for AC functions was changed to (20, 40), (80, 100),
and (50, 70) respectively. When DC functions are taller than AC
functions, the LA algorithm outperforms the other algorithms in
terms of both acquired utility and deadlines met. When AC func-
tions are taller than DC functions, the greedy algorithm acquires
7% more utility than the LA algorithm. However, it does so by not
scheduling any DC items, thus meeting 99% fewer deadlines than
the LA algorithm. Because the LA algorithm acquires very high
utility and also integrates almost all of the live content into the
schedule, it is the best performing algorithm for this workload too.

6.3 Number of DC items (Figures 4, 5)

The number of DC items is an indication of the scheduling difficulty.
The more DC items there are, the more likely it is that there are
overlapping UF’s. When utility functions overlap, it is more difficult
to create a schedule such that all items meet their deadlines and
acquire high utility. We evaluated the LA algorithm using workloads

with low, medium, high, and very high numbers of DC items. From
the baseline workload, the number of DC items was changed to
288, 576, 864, and 1440 respectively. For all four workloads, the LA
algorithm is able to acquire high utility while meeting deadlines.

6.4 Number of AC items (Figure 6)

We evaluated the LA algorithm using workloads with low (15),
medium (30), and high (45) numbers of AC items. While the greedy,
random, round robin, and lottery algorithms struggle to meet dead-
lines as the number of AC items increase, the LA algorithm is able
to meet over 99% of the deadlines with all three workloads.

6.5 Lookahead window size (Table 2)

We evaluated the LA algorithm on the baseline workload using
different lookahead window sizes. The optimal window size is
dependent on the workload. The lookahead window should be
at least as long as the longest duration content item. However,
a slightly larger window allows the algorithm to consider more
information when making a decision. The execution time of the
algorithm increases linearly with the size of the window. The utility
acquired by the algorithm increases logarithmically with the size
of the window.

Table 2: Performance of the lookahead algorithm with dif-
ferent window sizes.

Window Execution % Deadlines Total Acquired
Size (sec) Time (ms) Met Utility
60 0.591 99.31% 4,434,015
90 0.817 98.61% 4,534,079
120 1.148 99.31% 4,614,187
150 1.634 98.96% 4,648,108
180 1.883 99.65% 4,651,114

7 DISCUSSION

Our experiments showed that the lookahead algorithm performs
very well when time-based utility is the primary scheduling require-
ment. However, real-world public displays may have additional
requirements that need to be considered. The filterer component of
our architecture could be expanded to handle more requirements,

PerDis ’19, June 12-14, 2019, Palermo, Italy

Low Number of DC Medium Number of DC

60000 60000

50000 50000
40000 40000

30000

Frequency
w
8
8
8
Frequency

20000 20000

10000 10000

1 2 3 4 5

1 2 3 4 5 6 7 8
Number of concurrent DC functions

6 7 8
Number of concurrent DC functions

Bushman and Labrinidis

High Number of DC Very High Number of DC

60000 60000

50000 50000

40000 40000

Frequency
w
8
8
8
S
Frequency
8
g
8
3

20000 20000

10000 10000

0 0

4 5 6 7 8 4 5 7 8
Number of concurrent DC functions Number of concurrent DC functions

Figure 4: Distribution of the number of overlapping DC items over the 24 hour period (i.e. 2 means at a given second, there are
two DC functions that have non-zero value). Distributions are shown for workloads with a low number of DC content (left),
medium number (center left), high number (center right), and very high number (right).

Low Number of DC Medium Number of DC

Gce LA 5x10° GO LA®
4x10°

2 g EDF| 2 EDF
z LT 2 g oworr
2 00 2 RR® 0T
1] ORAND 3 3x10¢ @RAND
S S
S 2x10° S
< & 2108
B B
)2 1x10° 'S 1x106

[o

20 40 60 80 100 20 40 60 80 100

Deadlines met (%) Deadlines met (%)

High Number of DC

Very High Number of DC
G®

5x106 L.A 6x10° LA®
Ge
> ax10° 2 5x10°
=he ®LOT-UF o Z ®LOT-UF .
2 eLoT 3 a0t RR® Lot
&) 3x10° E
£ RAND®®RR £ ORAND
gznoﬁ 5
< < 200
] s
© a0 £ 10
o o
20 40 60 80 100 20 40 60 80 100

Deadlines met (%) Deadlines met (%)

Figure 5: Utility acquired and deadlines met for running algorithms on workloads with the overlap distributions shown in
Figure 4. Workloads with high numbers of DC items are more difficult to schedule because more utility functions overlap,
making it more difficult to find an ordering of content that is optimal for all content items.

Low Number of AC

Medium Number of AC

High Number of AC

Ge LA
4x10° EDF| 5x10° ®RR
2 RRE®LOT-UF z OLOT-UF
S ®LoT 5 4x10° @LoT
3x10°
K] RAND® K] ORAND
35 5 3x10°
g 26108 g
< <
= — 2x10°
T T
° °
= 1x10° [l
1x10°
0 0
0 20 40 60 80 100 0 20

Deadlines met (%)

Deadlines met (%)

[] LA c® LA
6x10°
EDF RR EDF
2 s5x108 LOT-UF
£ eLor
=} ®RAND
o 4x10°
e
3 3x10°
3]
<
T 2x10°
=
2
1x10°
0
60 80 100 0 20 40 60 80 100

Deadlines met (%)

Figure 6: Total acquired utility and percent of DC deadlines met for running scheduling algorithms on workloads with different
numbers of AC items. Small number (left), medium number (middle), and high number (right).

such as “Do not show B immediately after A”. However, there are
other requirements that our framework is currently unable to han-
dle, such as “Show B immediately after A” or “Show A five times
per day”. Given prior usage studies, it is not clear that such features
would be really useful to end-users [2].

One of the key challenges in using our proposed framework
is coming up with utility functions for each content item. Rather
than drawing or parameterizing the utility function, it may be more
user-friendly to have a list of predetermined UF’s to select from. It
is ultimately up to display owners to design a utility function that
they believe is representative of the value that the content item
provides, but providing some simple "defaults” will go a long way
in terms of usability.

8 CONCLUSIONS

Live content on public displays can provide immense value to
passerbys. However, scheduling such content (together with static
content) creates a number of challenges and, to the best of our
knowledge, is not possible with current scheduling frameworks.
In this work, we proposed the utility function framework and a
novel lookahead algorithm that provide a mechanism for sched-
uling both live and static content items onto public displays. Our
experiments showed that the algorithm is very effective in integrat-
ing live content (i.e., exhibiting very low rates of missed deadlines),
while providing high utility to viewers.

ACKNOWLEDGMENTS

This work is part of the PittSmartLiving project which is supported
by NSF award CNS-1739413.

Utility-based Scheduling for Public Displays with Live Content

REFERENCES

[1] Robert K. Abbott and Hector Garcia-Molina. 1992. Scheduling Real-time Trans-

[2

3

[

=

actions: A Performance Evaluation. ACM Trans. Database Syst. 17, 3 (Sept. 1992),
513-560. https://doi.org/10.1145/132271.132276

Sarah Clinch, Nigel Davies, Adrian Friday, and Christos Efstratiou. 2011. Reflec-
tions on the Long-term Use of an Experimental Digital Signage System. In Proceed-
ings of the 13th International Conference on Ubiquitous Computing (UbiComp ’11).
ACM, New York, NY, USA, 133-142. https://doi.org/10.1145/2030112.2030132
Nigel Davies, Sarah Clinch, and Florian Alt. 2014. Pervasive Displays: Understand-
ing the Future of Digital Signage. Synthesis Lectures on Mobile and Pervasive Com-
puting 8 (04 2014), 1-128. https://doi.org/10.2200/S00558ED1V01Y201312MPC011
I Elhart, M. Langheinrich, N. Davies, and R. José. 2013. Key challenges in
application and content scheduling for Open Pervasive Display Networks. In
2013 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops). 393-396. https://doi.org/10.1109/PerComW.
2013.6529524

Ivan Elhart, Marc Langheinrich, Nemanja Memarovic, and Tommi Heikkinen.
2014. Scheduling Interactive and Concurrently Running Applications in Pervasive
Display Networks. In Proceedings of The International Symposium on Pervasive
Displays (PerDis ’14). ACM, New York, NY, USA, Article 104, 6 pages. https:
//doi.org/10.1145/2611009.2611039

Jayant R. Haritsa, Miron Livny, and Michael J. Carey. 1991. Earliest Deadline
Scheduling for Real-Time Database Systems. In Proceedings of the Real-Time Sys-
tems Symposium - 1991, San Antonio, Texas, USA, December 1991. IEEE Computer
Society, 232-242. https://doi.org/10.1109/REAL.1991.160378

E. Douglas Jensen, C. Douglas Locke, and Hideyuki Tokuda. 1985. A Time-Driven
Scheduling Model for Real-Time Operating Systems. In RTSS.

Kyoung-Don Kang, Sang Hyuk Son, and John A. Stankovic. 2004. Managing
Deadline Miss Ratio and Sensor Data Freshness in Real-Time Databases. IEEE
Trans. Knowl. Data Eng. 16, 10 (2004), 1200-1216. https://doi.org/10.1109/TKDE.
2004.61

Alexandros Labrinidis, Huiming Qu, and Jie Xu. 2007. Quality Contracts for
Real-Time Enterprises. In Lecture Notes in Computer Science 4365: Post Proceedings
of First International Workshop on Business Intelligence for the Real Time Enterprise.

[10

[11

[12

(13

[14

[15

[17

[18

PerDis 19, June 12-14, 2019, Palermo, Italy

pp. 143-156. BIRTE’06 was held in conjunction with the VLDB’06 Conference,
Seoul, Korea, Sept. 2006.

Cynthia B. Lee and Allan E. Snavely. 2007. Precise and Realistic Utility Functions
for User-centric Performance Analysis of Schedulers. In Proceedings of the 16th
International Symposium on High Performance Distributed Computing (HPDC "07).
ACM, New York, NY, USA, 107-116. https://doi.org/10.1145/1272366.1272381
Mateusz Mikusz, Sarah Clinch, and Nigel Davies. 2015. Are You Feeling Lucky?:
Lottery-based Scheduling for Public Displays. In Proceedings of the 4th Interna-
tional Symposium on Pervasive Displays (PerDis '15). ACM, New York, NY, USA,
123-129. https://doi.org/10.1145/2757710.2757721

Jorg Miiller, Juliane Exeler, Markus Buzeck, and Antonio Kriiger. 2009. Reflec-
tiveSigns: Digital Signs That Adapt to Audience Attention. In Proceedings of the
7th International Conference on Pervasive Computing (Pervasive "09). Springer-
Verlag, Berlin, Heidelberg, 17-24. https://doi.org/10.1007/978-3-642-01516-8_3
Fernando Ribeiro and Rui Jose. 2010. Autonomous and Context-Aware Scheduling
for Public Displays Using Place-Based Tag Clouds, Vol. 72. 131-138. https:
//doi.org/10.1007/978-3-642-13268-1_16

Fernando Reinaldo Silva Garcia Ribeiro and Rui José. 2009. Timeliness for Dy-
namic Source Selection in Situated Public Displays. In WEBIST.

Mohamed A. Sharaf, Shenoda Guirguis, Alexandros Labrinidis, Kirk Pruhs, and
Panos K. Chrysanthis. 2008. ASETS: A Self-Managing Transaction Scheduler. In
Proc. of 3rd International Workshop on Self-Managing Database Systems. pp. 56-62.
held in conjunction with the 24th International Conference on Data Engineering
(ICDE 2008), DOI:10.1109/ICDEW.2008.4498285.

Oliver Storz, Adrian Friday, and Nigel Davies. 2006. Supporting content schedul-
ing on situated public displays. Computers and Graphics 30, 5 (2006), 681-691.
https://doi.org/10.1016/j.cag.2006.07.002

Yukinobu Taniguchi. 2018. [Invited Paper] Content Scheduling and Adaptation
for Networked and Context-Aware Digital Signage: A Literature Survey. ITE
Transactions on Media Technology and Applications 6, 1 (2018), 18-29. https:
//doi.org/10.3169/mta.6.18

Yukinobu Taniguchi, Hiroyuki Arai, Ken Tsutsuguchi, and Akihito Akutsu. 2014.
Content-Schedule Optimization of Digital Signage Taking Account of Location
Characteristics.

https://doi.org/10.1145/132271.132276
https://doi.org/10.1145/2030112.2030132
https://doi.org/10.2200/S00558ED1V01Y201312MPC011
https://doi.org/10.1109/PerComW.2013.6529524
https://doi.org/10.1109/PerComW.2013.6529524
https://doi.org/10.1145/2611009.2611039
https://doi.org/10.1145/2611009.2611039
https://doi.org/10.1109/REAL.1991.160378
https://doi.org/10.1109/TKDE.2004.61
https://doi.org/10.1109/TKDE.2004.61
https://doi.org/10.1145/1272366.1272381
https://doi.org/10.1145/2757710.2757721
https://doi.org/10.1007/978-3-642-01516-8_3
https://doi.org/10.1007/978-3-642-13268-1_16
https://doi.org/10.1007/978-3-642-13268-1_16
https://doi.org/10.1016/j.cag.2006.07.002
https://doi.org/10.3169/mta.6.18
https://doi.org/10.3169/mta.6.18

	Abstract
	1 Introduction
	1.1 Motivating Example
	1.2 Limitations of the State of the Art
	1.3 Requirements of an Ideal Scheduling Algorithm
	1.4 Contributions of this Work

	2 Scheduler Architecture
	3 Proposed Utility Function Framework
	4 Lookahead Scheduling Algorithm
	5 Experimental Setup
	5.1 Evaluation Environment
	5.2 Algorithms Evaluated
	5.3 Workload Generation
	5.4 Evaluation Metrics

	6 Experimental Results
	6.1 Notice time (Figure 2)
	6.2 Heights of AC vs DC (Figure 3)
	6.3 Number of DC items (Figures 4, 5)
	6.4 Number of AC items (Figure 6)
	6.5 Lookahead window size (Table 2)

	7 Discussion
	8 Conclusions
	Acknowledgments
	References

