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Abstract

The abundance of measurable, personalized data has the potential to transform clinical
decision making. Next generation sequencing technologies allow researchers to measure genes,
proteins, and metabolites at the cellular level in individuals. Wearable and imaging data enable
monitoring of clinical phenotypes and environmental factors. Since interventions can rarely
be performed on human subjects, much of these data sources are observational. For modeling
systems to have impact, causal knowledge must be inferred from these multi-scale observational
data sources. In this paper, we propose an interpretable, causal, graphical modelling paradigm
for multi-modal, observational data. Our paradigm builds upon existing domain knowledge to
improve accuracy and interpretability, enabling knowledge discovery.

1 Introduction

Chronic disease are complex phenomena usually caused by the interaction of molecular and phys-
iological factors with epidemiological and environmental factors. Technology has now advanced
to a point where researchers can measure many of these factors. Next generation sequencing has
enabled granular measurements of molecular data from individuals [24]. Advances in biomedical
imaging technologies have provided a visual view of cellular phenotypes. Connected, wearable tech-
nology (e.g. smartphones, Fitbit, etc.) have enabled continuous monitoring of environmental and
physiological signals [7]. Together, these data types give researchers the potential to 1) understand
the fundamental causes of disease, 2) prioritize promising hypotheses, and 3) personalize medical
treatments to individuals. The major challenge in this objective is the lack of effective multi-modal
modelling techniques to understand complex interactions between these signals [8]. Machine learn-
ing (ML) is a popular tool for prediction in biomedical settings. However, ML is not suitable for
these goals because ML models are not constrained to be interpretable by humans [21]. Further,
ML models cannot infer causality from observational data [22]. Utilizing observational data alone
to make causal predictions has been gaining popularity [16] 9] [1]; however, these models still have
computational limitations and lack demonstrated successes [23, [15], [14].

Significance The scientific method is an iterative process to create knowledge consisting of: 1)
Hypothesis formation from established knowledge, 2) Hypothesis testing through experimental
intervention, and 3) Hypothesis evaluation from experimental data. Our vision is to automate
hypothesis generation without targeted experiments. We aim to address the question: Can simply
observing a system lead to useful causal predictions? To this end, we are developing a pipeline
to integrate multi-modal observational data with domain knowledge to output causal predictions.
With these, experiments can be prioritized and performed. This pipeline would be general enough to
apply to any system, and understanding the causes of an outcome leads to actionable policy.
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Figure 1: Our complete modeling pipeline. The pipeline takes multi-modal data as input (currently -omics
and clinical data) and filters this data to fewer features that can be modeled. This data is merged with
domain knowledge to learn an undirected graphical model (piMGM [12]). Finally, the undirected model is
converted to a causal graph that identifies latent confounding (MGM-FCI-MAX Section

Realizing Our Vision The first step in our vision is an efficient modeling pipeline to build upon
domain knowledge with new observational data. The output is a network model of associations
and experimental predictions. Our current pipeline (Figure is built upon a class of models called
Probabilistic Graphical Models (PGM’s) [10]. PGM’s are an unsupervised learning technique that
model the joint distribution of variables as a graph where nodes are variables, and edges are
conditional dependencies between variables. Directed edges correspond to causal relationships. We
chose PGM’s due to their inherent interpretability. Graphical representations of biological processes
are common, which gives domain experts an intuitive understanding of their data. In addition, it
is easy to query the graph to find causal relationships of interest.

Our complete pipeline consists of three components: 1) A feature selection algorithm to select
relevant and diverse features while constructing meaningful aggregations of related features, 2)
An algorithm to incorporate and evaluate known relationships to learn an undirected graphical
model, and 3) A causal discovery algorithm to identify causal directions while accounting for latent
confounding. Our pipeline is being implemented in an interactive web tool called Causal-MGM.
This tool allows users to deploy our causal discovery methods on their observational data.

Contributions In this work, we present our causal modeling pipeline. Specifically,

e We discuss MGM-FCI-MAX [15]; a causal discovery algorithm to learn causal relationships
in data with latent confounding (Section 2)

e We present an application of MGM-FCI-MAX to the early detection of lung cancer from
low-dose CT scans and smoking factors [16] (Section 3)
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2  Owur Modeling Pipeline

Our modeling pipeline is based off of mized graphical models [11},20], which we discuss first and then
discuss our method for learning causal models from multi-modal data with latent variables.

2.1 Mixed Graphical Models (MGM)

A PGM is a model that represents the joint distribution of variables as a graph which can be factored
into local conditional distributions [I0]. Originally, these models were only suitable for homogeneous
data. Recently, MGM’s have been proposed which model both categorical and continuous data in
a single graph [111 6] 3]. Based upon superior empirical performance, we chose to utilize the MGM
learning algorithm from Lee and Hastie. Next, we briefly summarize the model they propose.

They parameterize the joint distribution of p continuous and ¢ categorical variables (Equation .
Here, B, represents the linear interaction between continuous variables s and t. p,; is a vector
of parameters relating categorical variable j to continuous variable s, with one parameter for
each category of j. Finally, ¢,; is a matrix representing the interactions between the categories of
categorical variables r and j. This model generalizes two popular graphical models: the multivariate
Gaussian for continuous data, and the pairwise Markov Random Field for categorical data.
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Lee and Hastie optimize the parameters by minimizing the negative log-pseudolikelihood (T(@))[Q]
In this model, the conditional distributions are 1) multivariate Gaussian for continuous variables
with a mean given by a linear regression on the other variables and 2) Multinomial distribution for
discrete variables with probabilities given by a multi-class logistic regression on the other variables.
To prevent overfitting, they include sparsity penalties (Equation . In our work, we use separate
sparsity parameters (A) for each edge type (CC = Continuous-Continuous, CD = Continuous-
Discrete, and DD = Discrete-Discrete), because this has shown better performance [20].
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2.2 Latent Variable Causal Discovery

This section assumes knowledge of the causal discovery literature. Here we give a brief review, but
for a thorough understanding of these concepts we refer the reader to [22], 14} 23].

2.2.1 Prior Work

The state of the art algorithm for learning causal relations from observational data with latent
confounding had been the Fast-Causal Inference (FCI) algorithm. Several modifications of the
algorithm have been proposed to improve FCI [I8| [4, [5]; however, none are efficient and accurate
enough for most applications. Integrated biomedical data poses another problem of mixed data.
Causal discovery from mixed data requires a suitable independence test which have been explored
[19], but not when data has latent confounding.

2.2.2 MGM-FCI-MAX
A crucial step of FCI is the ability to determine a separating set for each pair of variables because
this determines orientations. In the original FCI algorithm, the separating set used is the smallest
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Figure 2: Illustration of collider orientation process. The ground truth causal graph is given in
(a). MGM would learn the graph in (b). In order to delete the edge, A — B (orange edge), an
appropriate separating set S must be found such that A is independent of B given S. The MAX
strategy would test all subsets of {C, D, E} and find that {D, E'} (green nodes) is the best choice,
thereby orienting the collider B — C' — A

one, because this is first identified by the algorithm. Though this is the most efficient search
strategy, in practice, FCI’s causal orientations tend to be inaccurate.

To mitigate this problem, we proposed the MAX search (Figure 2)) [15]. To test whether a triple
A — C — B should be oriented as a collider, the algorithm performs conditional independence tests
using all subsets of the neighbors of A and C as conditioning sets. The MAX strategy chooses the
subset Sysax as the true separating set according to Equation 3] where pval(A, B, S) is the p-value
of the conditional independence test of A and B given S.

Suax =  argmax  pval(4,C,S) (3)
SCAdj(A)UAd(C)

The intuition for this strategy stems from the fact that when A is dependent on B given S, we expect
the p-value distribution to be skewed towards 0. On the contrary, when A is independent of B given
S, we expect p-values to be uniformly distributed (null hypothesis). Thus, the maximum p-value
is more likely to come from a true separating set where A and B are conditionally independent.
After choosing the separating set, Syrax, we orient A—C' — B as a collider if C' ¢ Sprax, otherwise
it is a collider. We refer to FCI with the MAX search technique as FCI-MAX. The limitation is
that MAX requires the search to perform more conditional independence tests. For scalability, we
first utilize the MGM algorithm to quickly learn the undirected graph. Then we use FCI-MAX to
identify the causal relationships. Altogether we refer to this process as MGM-FCI-MAX.

3 Application: Early Detection of Lung Cancer

Low-dose computed tomography (LDCT) has become the standard method to screen for lung cancer
[25]. Although, LDCT identifies nodules in 24% of the high-risk population, 96% of these nodules
are benign. These result in extra costs through follow-up scans, invasive biopsies, etc. Many lung
cancer prediction models have been developed; some of which use clinical characteristics to identify
patients for screening [26]. More recently, models use CT scan features to predict probability of
cancer [13]. In this section, we discuss the effectiveness of our causal model algorithm: MGM-FCI-
MAX to identify a causal model of lung cancer and accurately predict lung cancer probability.

Data Source Our data is from a community-based research cohort called the Pittsburgh Lung
Screening Study (PLuSS) [27]. This cohort consists of 3,642 current and former smokers who
received a baseline and one year follow-up LDCT. A subset of PLuSS participants received biennial
LDCT scans, yearly spirometry measurements and blood draws for 10 years. We used a randomly
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Figure 3: a) Partial causal model learned by MGM-FCI-MAX. Three features were causally linked
to cancer: number of nodules, blood vessels around the nodule, and years since the patient quit
smoking. Directed arrows are causal relations and bidirected arrows are latent confounders. b)
Cross-validation comparison against top lung cancer prediction models. MGM-FCI-MAX had the
highest AUC in classifying indeterminate lung nodules. This figure has been adapted from [16]

selected cohort of 50 subjects with cancer and 50 subjects with benign nodules as a training set.
The data consisted of 33 features from the CT scan, smoking history, and demographics.

Results Figure [3h presents part of our causal model. The model identifies three variables causally
connected to cancer: blood vessels near the nodule is a cause of cancer (positively correlated),
number of nodules, and years since the patient quit smoking are results of cancer (both negatively
correlated). To validate, we used 10-fold cross validation. The entire model building process was run
on each fold, and these three features were causes and effects of cancer in eight of ten folds.

Figure presents the results of our cross-validation experiment. Our model performs the best in
terms of area under the ROC curve. These results are statistically significant against all models
except for the Bach model and the full Brock model which use eight and five features, respectively.
For further validation, we applied our model to an independent cohort of 132 patients. We found
that our model had higher prediction accuracy, but these results were not statistically significant
against the two Brock models. The major use case of our model is preventing unnecessary follow-up
tests for patients with a low probability of cancer. On the independent validation cohort, we found
that a probability cutoff of 30% will accurately screen 28% of benign patients without missing a
cancer case. This could drastically reduce health care costs without any risk to patients.

4 Discussion

The vision we proposed was an automated pipeline for hypothesis generation by only observing a
system. Here, we presented a first step via our modeling pipeline. The pipeline takes integrated, ob-
servational data from several sources and outputs a model of the causal interactions in the data. The
pipeline has three parts: 1) Feature selection and aggregation using domain knowledge, 2) Learning
undirected graphical model structure with domain knowledge, 3) Learning causal associations from
the undirected structure. We are testing our pipeline on applications to 1) breast cancer patient
stratification and 2) understanding response to a prophylactic cancer vaccine, and have success-
fully applied the computational methods to diverse research problems [I7, [16l 12]. Our completed
pipeline is being implemented in a web server called CausalMGM (http://causalmgm.org/).
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For future work, we aim to apply our completed pipeline to diverse data. Here we have focused upon
the integration of transcriptomic and clinical variables; however, it is prudent to see if our method-
ology can handle environmental and epidemiological factors. Integrating these sources effectively
will present interesting modeling problems. First, time-series data requires a causal framework to
ensure causality moves forward in time. Next, context-specificity must be modeled, as causal rela-
tionships may only occur in certain situations (contexts). Finally, the interpretability of graphical
models for knowledge discovery requires features (nodes) to be interpretable. A critical challenge
is constructing human understandable features or aggregations of features from diverse sources
(images, text, wearable sensor readings, etc.) in an automated or semi-automated way.
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