2019 20th IEEE International Conference on Mobile Data Management (MDM)

Mitigating Congestion Using Environment
Protective Dynamic Traffic Orchestration

Daniel Petrov, Rakan Alseghayer, Panos K. Chrysanthis
Department of Computer Science, University of Pittsburgh
{dpetrov,ralseghayer,panos } @cs.pitt.edu

Abstract—Traffic congestion has a significant negative impact
on the accelerating pace of daily human activities. Traffic jams
increase the transportation costs for goods and humans. They are
also amongst the leading factors for pollution in the atmosphere
and consequently increase health risks for the population. One
way to reduce the amount of emissions produced by vehicles
in traffic jams is to mitigate traffic congestion and promote
the usage of public transportation. In this paper, we propose
a solution that establishes on-demand, virtual bus lanes to
prioritize public transportation over other traffic and provide
detour guidelines for other drivers, while causing insignificant
detour penalties. Our solution leverages incremental window
aggregations to identify the busiest road segments, priority
scheduling, and Dijkstra shortest path algorithm to shape and de-
tour traffic. Our experimental evaluation shows the effectiveness
of our Environment Protective Traffic Orchestration (EPTrOn)
algorithm in identifying and alleviating traffic congestions.

Index Terms—traffic, traffic congestion, Dijkstra, virtual bus
lanes, internal combustion engine

I. INTRODUCTION

Most internal combustion engine vehicles (ICEVs) have
their engines idling when they are not in motion, i.e., when
they stop at traffic lights and crosswalks, or when they are
in traffic jams [3]. Furthermore, most public transit buses
are equipped with diesel engines. These engines not only
produce greenhouse gas emissions, but their exhaust contains
a significant amount of fine particulate matter (FPM), the
inhalation of which has a negative impact on human health. A
plethora of diseases are attributed to FPM—asthma and lung
cancer, to name a few.

Rapid proliferation of smart mobile devices that are
equipped with positioning sensors (e.g., GPS and Galileo), and
ubiquitous Internet connectivity, facilitated the growth of the
near real-time traffic analysis necessary for effective solutions
to traffic jams. Some cities already implement smart traffic
lights that adaptively steer the traffic in an effort to mitigate
congestion [1], [2]. However, studies show that the additional
infrastructure built does not solve the problem with traffic
jams. It only attracts new traffic and changes the scale of the
problem—the phenomenon of “induced traffic” [4]-[6]. This
suggests that we need a balanced solution that promotes the
use of public transportation while reducing idling of both cars
and buses.

In this paper, we propose such a balanced solution, called
Environment Protective Traffic Orchestration (EPTrOn). EP-
TrOn mitigates congestion by establishing bus lanes on de-
mand, which we coin virtual bus lanes, and shaping traffic

by controlling traffic lights and directing traffic using light-
boards at intersections. Our solution proactively ameliorates
the traffic ahead of buses in congested areas, and adaptively
detours cars away from the congested areas, while protecting
the interests of both public transportation and car riders.

Our Contributions in brief are:

e A method that identifies congested road segments by
analyzing trajectory data in real-time. It uses incremental
sliding window aggregations to calculate the average
speed of each vehicle, and an R™ tree to record their
positions in the road network, formalized using a seman-
tics enriched graph G(V, E, M). (Sec. II)

o A solution that creates dynamic virtual bus lanes and
provides guidelines for drivers about the least busy path
towards their destinations. Our solution does not require
drivers to disclose their destination, but is based on a
bi-objective shortest path algorithm that computes all the
detours to neighboring landmark points at each intersec-
tion that the drivers can follow. It further uses priority
scheduling of traffic lights to increase the length of green
lights for buses and cars in congested roads (Sec. III)

o An experimental evaluation of our EPTrOn solution using
a real dataset of the city of Beijing shows that EPTrOn
outperforms the baseline in terms of bus’ completion
time (by up to 590%), while causing small increases in
cars’ average detour distance (by up to 768 meters). The
former metric captures the bus on time performance and
bus users’ satisfaction, whereas the latter captures the car
detour penalty and car drivers’ and passengers’ potential
dissatisfaction. (Sec. V)

II. PRELIMINARIES

In this section, we introduce the notation used throughout
the paper, and our system model, and formulate our problem.

A. Notation

In order to formally define the problem of creating dynamic
bus lanes on demand, we adopted the following notation.

Definition 1: The road network of a city, including bus stops
and facilities, is represented by a semantically enriched graph
G = (V,E, M), whereby the intersections are the vertices in
V, the streets are the edges in F, and the semantic information
for each vertex and each edge are vectors in M.

A vector m; = (w, 7y, semy, sema, sems, ...),m; € MA
1 € VU E, is of varying length with type specific parameters:

2375-0324/19/$31.00 ©2019 IEEE
DOI 10.1109/MDM.2019.00125

593

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from |IEEE Xplore. Restrictions apply.

w is the weight of the edge/vertex, which represents how busy
the road/intersection is, and + is the velocity threshold for an
edge, which defines when the edge is congested.

An example of edge semantics of the edge of 5th Avenue in
New York City, right in front of the Public Library is m., =
{0.342, 8, 40.753486, —73.980888, 40.752184, —73.981843,
1, 5, 25, 1, 1, o}; the first two numbers are the weight w and
velocity threshold +, followed by the latitude and longitude of
the northern end of the segment, and the same coordinates of
the southern end. The next value 1 means that the edge is
one way, 5 is the number of lanes, and 25 is the speed limit
in mph. The next two parameters denote the fact that there
are sidewalks on each side of the edge. The last parameter
o denotes the number of buses on that edge. An example of
vector semantics at the intersection of the NYC Public Library
is My, = {0.2412, o, 40.753486, —73.980888, 4}; the
first element of the vector is the weight, followed by the
cumulative number of buses o that approach the intersection
on the edges connected to the vertex, and the coordinates of
the vertex, as well as the number of edges it connects.

For our definition, we use an undirected graph. It is clear
that a directed graph may be a more accurate model of the
road networks of different cities. However, the extension from
undirected to directed graph is trivial and the directed graph
model does not impact our approach to solving the problem.

The terms “edge” and “road segment” for e € G will be
used interchangeably. Given the above definitions for the city
road network, we can formally define traffic congestion as:

Definition 2: A road segment is congested iff the average
speed of the vehicles, passing through it over a given epoch
of time e, is below a specified threshold of v miles per hour.

Furthermore, we make a clear distinction between paths and
trajectories of vehicles in our model of the city road network.

Definition 3: A path p, from a starting point s € G to
an end point ¢t € G, is a sequence of edges (road segments)
connecting the points (vertices) s and ¢t in G. P is a subgraph
of G that consists of all paths p from s to ¢.

Definition 4: A trajectory of a vehicle is defined as a path
p in G, whereby each of its road segments is semantically en-
riched with one or more timestamps that show the moment(s)
in time when the vehicle was on that particular road segment.
Each trajectory has a directionality property (i.e., from s to t)
and diversion property that is defined as follows.

Definition 5: The diversion of a trajectory D is a set of
points d; € G that do not extend the trajectory by more than
a given threshold of 7 miles when added to it.

The vehicle diversion controls a car’s rerouting by prevent-
ing it from diverting too far away from its initial trajectory.
The directionality of a trajectory is not changed if and only if
the rerouting morphs the trajectory within the set D.

The bus routes are also paths in the road network G. The
buses and their trajectories (i.e., locations of these buses) are
known in real time, as many cities worldwide now provide
this information in real time (e.g., Busgazer [7]).

Definition 6: A neighborhood is a subset G’ = (V' E', M)
of G, whereby each two intersections v{ and v} in V' are

594

Traffic Scheduler

Monitoring
System

Vehicles
positions

Routing Directive

Fig. 1. EPTrOn Solutions

connected with an edge ¢’ in E’ and all edges from E’ end
in vertices in V’. Neighboring neighborhoods have edges in
common, connecting them, but not vertices in common.

The idea of the neighborhoods reflects the concept of
neighborhoods in cities and is inspired by the concept of
autonomous systems in computer networks routing.

B. System Model

We assume that internal combustion engine cars and buses
(ICEVs) are equipped with a mobile computing device that has
a global navigation satellite system and Internet connectivity
capabilities. These devices report the current location and the
speed of the vehicle periodically, but not its destination.

A (monitoring) system receives these measurements from
the n vehicles over an epoch of time e. Each data point is
a tuple tup(vehclD,ts,long,lat,a) consisting of a unique
vehicle identifier vehcl D, timestamp ts, longitude lon, lat-
itude lat, and current speed a. The timestamp captures the
moment in time when the tuple was produced and is denoted
in global time. The type of vehicle can be derived from the
unique vehicle ID, i.e., car or bus. The consecutive tuples for
a given vehicle form its trajectory in the time epoch e.

In addition to the device that controls the traffic lights,
we assume that each intersection is equipped with a light-
board that is used to display information to drivers. Some
cities and highways already use such boards to provide traffic
and weather updates, and details about detours and points of
interest (POI).

C. Problem Formulation

Given a road network G(V,E,M), its current state as
captured by the semantics M, and the trajectories of the mass
transit vehicles, calculate paths p’ for the cars such that:
they ameliorate the traffic in the way of public transporta-
tion vehicles at the next epoch of time e, and
they do not change the directionality nor violate diversion
7 of the trajectories of the ICEVs.

The objective of our solution is to find a subset of paths
that reroute cars with minimal impact on their traveling
time/distance. The optimization criteria are the alleviation of
traffic in the way of buses and the mitigation of pollution.

ITII. EPTRON SOLUTION

Our solution is depicted in Fig. 1 and consists of three
integral components: a Monitoring System, which identifies
congested road segments, a Traffic Scheduler, which produces
the scheduling for traffic lights, and a Routing Directive

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 1 Monitoring System

Algorithm 2 Traffic Scheduler

Input: G, R, C
Output: Q

Update the weights of all edges, based on the position of each car or bus
1: for each tup € C do

R.CarNext + +(vehcIDyyp, loniup, latiup) = €curr
R.u}cprw— =1
Rwegypr+ =1

: end for

Traverse the tree and place all vertices in Q
. R.traverse(Q)
:return R, Q

component, which calculates the optimal paths in each neigh-
borhood and produces directives/guidelines to drivers that are
shown on the light-boards. Each component is described next.

A. Monitoring System

The location data (tup) from cars and mass transit vehicles
(buses) is produced at high velocity. The real-time analytical
processing to identify congested road segments is performed
in micro-batches. A micro-batch C' is a group of tuple tup
subsequences, tup € C, over a set of data streams defined
by a timestamp interval I of length [. The inter-arrival time
of two consecutive micro-batches specifies the maximum
computational time for processing a micro-batch. The inter-
arrival time is the delay target, or deadline d, by which the
last result can be produced while analyzing a micro-batch.

The monitoring system receives and ingests all tuples tup
from both cars and mass transit vehicles within a micro-batch
Clyrr- It uses a two-dimensional hashing R, specifically RT
tree, and associates the position of the cars and buses with
the respective edges of G. It also uses incremental sliding
window aggregation techniques [8] to calculate the average
speed of each vehicle and the average speed of the vehicles
on each edge. Subsequently, it updates the weights w of all
edges and vertices in G and updates the semantic information
o about the number of buses that are located on each edge and
the cumulative number of buses that approach each vertex. It
also traverses the RT tree and builds a priority queue @ that
contains the vertices, sorted in decreasing order of number of
buses and congested edges.

By the end of an interval, all tup € C,y,.- are processed
and the updated graph G and the priority queue () are passed
to the next component, namely the Traffic Scheduler, which
schedules the traffic lights at each intersection. While the
traffic lights are scheduled, the next micro-batch C,c.; is
generated and sent to the Monitoring System. The cumulative
length of d to process a micro-batch and the time needed to
schedule the traffic lights define the duration of the epoch e.

The monitoring system component is deployed on a per-
neighborhood basis. The computations are independent, and
they are trivially parallelizable. The pseudo code of the algo-
rithm is shown on Algorithm 1.

B. Traffic Scheduler

Similarly to the Monitoring System, this component is
deployed on a per-neighborhood basis and operates at two-
levels. At the top level, the global scheduler controls the order

595

Input: G, R, Q
Output: T'raf fic lights scheduling
Initialization:

11Q:V],Q/:ﬂ,”Q:@,”/Q:Q),QIV:Q),QV:V)
Place vertices to queues
2: for each v € Q do
3: if Congested(w,) AND q,, € Q then
4: Q =Q uw
5: else
6: if Congested(w,) AND not(qm € Q) ANDonBUsRoute(v)
then
7 Q// — Q// Uwv
8: else
9: if Congested(w,) AND not(qm €
Q) AN Dnot(onBU sRoute(v)) then
10: Q/// — Q/// Uw
11: else
12: if notg/C'ongested(wu)) AND ¢, € Q then
13: QY =Q"V uw
14: else
15: QV =QY uw
16: end if
17: end if
18: end if
19: endif
20: end for
21: for each Qtemop € {Q', Q”, Q. Q"V, QV} do
22: for each v € Qiemop do
23: runTraf ficScheduling(v)
24: end for
25: end for
26: return

of processing at intersections within the current interval using
five priority queues. It initiates these queues by traversing the
priority queue () received from the monitoring system, and
it distributes the vertices amongst five local priority queues,
Q' to QV. Queue ' maintains the vertices that contain at
least one congested road segment with buses on them, Q"
maintains the vertices that are ends of edges that are on bus
routes and are congested but do not currently have buses, Q"
is the priority queue that maintains the intersections that are
ends of at least one edge that is congested but is not on bus
routes, Q'Y has the vertices that connect segments that are on
bus routes but are not congested, and QV has the information
about other vertices (i.e., connecting edges that are not on
bus routes, not congested). The global scheduler only sends a
signal to the devices on the respective intersections to prepare
and run their own green and red light scheduling.

At each intersection, a local scheduler controls the green and
red light signal interval lengths. Our solution runs a priority
scheduling, whereby the edge with the highest priority is the
one with the highest number of buses on it. The interval length
of the green signal is for as long as cars and buses from
that edge can go through the intersection. Once the edge is
empty, or no vehicles can move because the edge is saturated
by a traffic jam, the next edge by number of buses at the
same intersection gets a green light signal. The operation gets
repeated until all edges get a green signal, or until the interval
is over. If no edges at the intersection have buses, the more
congested ones get a green light first. When two edges have
the same number of buses, their congestion is used as a tie-
breaker to schedule one before the other. The pseudo code for
the algorithm is presented on Algorithm 2.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from |IEEE Xplore. Restrictions apply.

Algorithm 3 Routing Directive

Input: G, R
OQutput: Detour Guidance
Obtain information for detours
1: for each n € N do
for each v € n do
type = icev
S, = Dijkstra(G, M, type, v)
type = ev
Sq = Dijkstra(G, M, type, v)
end for
end for
return

VRN RDN

C. Routing Directive

This component operates in neighborhoods and uses the
well-studied Dijkstra shortest path algorithm [9] to calculate
the optimal detour routes of the cars. EPTrOn has a two-
fold gain by operating at the neighborhood level: (1) the
optimal routing can be calculated for each neighborhood
independently; and (2) the calculations for the optimal routing
are dependent on the number of vertices, and the notion of
neighborhood bounds this number to a small enough value that
makes calculations possible in real time. Hence, EPTrOn can
efficiently provide directives/guidance for the local drivers by
informing them of the optimal way to the next neighborhood
on the way to their ultimate destination. Furthermore, EPTrOn
achieves privacy by relying on local drivers who know what
neighborhoods of the city they have to go through in order to
reach their ultimate destination from their source/current loca-
tion without revealing their ultimate destination. The pseudo
code of the algorithm is shown in Algorithm 3.

IV. EXPERIMENTAL TESTBED

In this section, we present the experimental testbed that we
developed to evaluate our EPTrOn solution.

Algorithms: In our evaluation, we compare EPTrOn with
two other algorithms, Car biased and Naive. Car biased
is based on EPTrOn and it differs from it in prioritizing
vehicles routing. While our solution prioritizes buses over cars,
Car biased does the opposite. Naive is the standard approach
with the basic traffic lights and no dedicated bus lanes.

Dataset: The dataset we use is collected by Microsoft Asia
and covers the routes of more than 12000 taxis in Beijing. The
dataset contains more than 15 million data points and covers
more than 9 million kilometers (5.6 million miles) [11], [12].
Each tuple in the dataset contains the unique ID of the car
that generated the tuple, the timestamp when the tuple was
generated, as well as the geographical coordinates.

Moreover, we downloaded the map of the city of
Beijing from https://www.openstreetmap.com, and we con-
verted it into a graph of vertexes, using the OSMnx tool
(https://github.com/gboeing/osmnx). Each intersection is rep-
resented as a vertex, and the street that connects two intersec-
tions is represented as an edge. We used a subset of the city
that contains 2100 vertexes and 2600 edges.

From the meta-data, available on OpenStreetMap, we ex-
tracted the bus routes of the public transportation. Our graph
contained seventy four different routes.

596

Setup: We developed our testbed in C++ 11. It is based
on a fixed length time interval for scheduling all edges that
connect to the same intersection. A device at each intersection
schedules the green light length for each edge. We consider
all streets to be of the same width—one lane and that all
vehicles move unidirectionally. Assuming that the majority of
the intersections are on the crossing of two streets, the traffic
lights run the red and green cycle for at most four different
directions (i.e., when serial scheduling of each direction on
each street is scheduled). At each epoch, all directions of the
traffic on an intersection get scheduled. Typically, the total
time is 30 sec. We skip the time of yellow lights for simplicity.

We calculate that on average 60 cars (15 cars per edge in a 4-
edge vertex) can go through each intersection within an epoch
of time by approximating the average car speed at 20 mph at
the intersection, and the typical car size at 5 yards long.

Typically, cars average speed is 25 mph and buses’ 15 mph.
Some routes are served by more than one bus. Buses that serve
the same bus route are spaced ten minutes apart, or 1.5 miles.
The location of taxis is extracted from the dataset, and they
are placed at their respective locations. The rest of the cars are
distributed randomly based on the road network load factor.

As stated, cars are not required to disclose their destination.
In order to simulate traffic flow or drive behavior at each in-
tersection, the cars exhibit traffic distributions for the different
directions: West (left), NW, North (Straight), NE, East (right),
and no U-turns. For example, a uniform traffic distribution
where an equal percentage of cars go in all directions will be
{02, 02, 02, 02, 02}.

To mimic the situation whereby some bus stops are on the
side of the street to avoid blocking the traffic behind the buses
when they stop, we maintain a tunable parameter bus delay
(bd), that specifies how many epochs will pass before buses
can get back on the road after they stopped at a bus stop.

To specify bus priority in crossing an intersection during a
green light, we maintain a parameter the reserved space for
buses (bp) that marks how many bus spots will be reserved on
edges on the bus’ route.

Metrics: For our experimental evaluation, we collect two
different metrics in order to assess the bus on time performance
and the car detour penalty that quantify bus riders’ satisfaction
and car passengers dissatisfaction, respectively.

o Time Performance: the number of epochs it takes for all
buses to conclude their trips.

o Detour Penalty: the average detour distance taken by the
cars (in meters) to reach their ultimate destination.

V. EXPERIMENTAL RESULTS

We conducted four different experiments to study the sensi-
tivity of our algorithm to different tunable parameters, namely
the road network load factor, the amount of traffic violators,
the reserved space for buses, and the amount of time buses are
delayed by car drivers. Due to space limitations, we report the
results of the first two. We ran our experiments with 79 buses
in total. We ran the experiments on a 2 Intel CPUs server,

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from |IEEE Xplore. Restrictions apply.

——EPTrOn 60%
- —CarBias 60%
Naive 60%

EPTrOn 90%
CarBias 90%
Naive 90%

——EPTION 0%
- - CarBias 0%
.- Naive 0%

——EPTrOn 30%
CarBias 30%
Naive 30%

mmmmmmmmmmmmmmmmmmmm

Fig. 2. The percentage of bus trips completed in epochs for [0%, 90%)]
traffic, EPTrOn, car biased, and naive approaches.

2.66GHz and 96GB, running CentOS 6.5., and using GCC
version 6.3.0 compiler.

Experiment 1 (Fig. 2): In our first experiment we study
the sensitivity of our algorithm to the amount of traffic (load
factor) on the streets. This experiment shows how the different
algorithms behave in rush hours as well as off-peak hours.

The amount of traffic is calculated as a percentage of the
spots for cars on all streets in the network. When we say that
the road network has 30% load, that means that the number of
cars, distributed on the streets, is 30% of the total amount of
car spots. The cars are distributed randomly and do not exceed
the capacity of each road segment.

We experimented with 4 different values: 0%, 30%, 60%,
and 90%. The traffic distribution based on directionality is
Gaussian: {0.1,0.2,0.4,0.2,0.1}, the reserved space for buses
is set to 1 (bp=1), and bus delay is set to 2 epochs (bd=2).
The results are shown in Fig. 2.

The results show no difference between the three algorithms
for 0% traffic, and that is expected. This is the case whereby
there are no cars on the streets and only buses. Similarly,
neither approach managed to complete even a single bus trip
when there is 90% traffic load. This is an indication that very
high street loads mean grid-lock for the public buses.

For both 30% and 60% traffic, the buses are “delayed” by
cars. Our EPTrOn solution outperforms both the car biased
and the baseline approaches by up to 590% for the load of
30% and by 384% for 60%.

The naive and the car biased approaches have a crossing
point for 60% traffic after 70% of the bus routes are completed.
This shows that the car biased approach speeds up the buses,
too, until a sufficient number of intersections get highly
congested and the advantage to the baseline is lost.

Experiment 2 (Figs. 3 & 4): In this experiment we study the
robustness of EPTrOn against the amount of traffic violators,
who ignore the detour directives and go in a direction different
than where they were directed to go by the light-boards.
Naturally, vehicles start their trips on small neighborhood
streets, go through several main streets, and end the trips on
small neighborhood streets. We assume that the predominant
distribution of destinations with respect to the source of each
car is a Gaussian distribution, whereby 40% of the cars go
west of their current location, 10% go south, 10% go north,

597

——EPTrOn normal ——EPTrOn uniform ——EPTrOn center EPTOn periph

~ = Naive normal - = Naive uniform ~ = Naive center Naive periph

Fig. 3. The percentage of bus trips completed for Gaussian, uniform, center
and peripheral destination distribution, for EPTrOn and naive approaches.

7000
6000
5000
4000
3000
2000
1000

0

®EPTrOn m Naive

Meters

periph

Gaussian uniform center

Destination Distribution

Fig. 4. The average detour distance for ICEV cars, Gaussian, uniform, center
and peripheral destination distribution, EPTrOn and naive approaches.

20% go southwest and the other 20% go northwest, i.e.,
{0.1,0.2,0.4,0.2,0.1}. In this experiment, there are no spots
reserved (bp = 0) for buses.

We studied three different (violation) traffic distributions,
namely uniform, whereby an equal percentage of cars goes
in all five directions {0.2,0.2,0.2,0.2,0.2}, and the two
extremes: center focal point, whereby all the traffic focuses
in one direction {0.0,0.0,1.0,0.0,0.0} and peripheral focal
points {0.25,0.25, 0.0, 0.25,0.25}. Comparing these three dis-
tributions to the normal Gaussian distribution, the amount of
violators is 40%, 60%, and 80%, respectively. For example,
for the case of uniform distribution, 40% of the cars should
have a destination in the west, but it’s only 20%, who have it,
thus we have 20% violators in that direction only. The other
20% come from the drivers, whose destinations are north or
south. The amount of violators sums up to 40%.

The results of the experiment are shown in Fig. 3. The
results for EPTrOn are presented with solid lines, while
the Naive approach is depicted on dashed lines. Clearly, our
solution consistently outperforms the naive, despite the amount
of violators. In conclusion, FPTrOn is robust enough to
accommodate up to 80% violators.

We also report the average length of car detour. We mea-
sured the length of detours for all cars. The Naive approach
detour mimics the decisions drivers take when they get stuck in
traffic. Specifically, they detour and expect to get onto a less
busy road. When EPTrOn is used, the detour is defined by
the routing directives. The results are depicted on Fig. 4. The
difference between the detour penalty for Naive and EPTrOn
for Gaussian, uniform, center, and peripheral distributions is

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from |IEEE Xplore. Restrictions apply.

1859, 539, 394, and 283 meters, respectively. Our solution
does not incur more than 768 meters detour penalty on average
(between the 4 distributions).

VI. RELATED WORK

The approach taken in [13] argues that graph weights, based
on a single factor, are inefficient when a traffic congestion
mitigation solution is provided. The work proposes edge
weights that incorporate the three main factors that influence
congestion mitigation, namely edge length, road conditions,
and average velocity of the vehicles on that edge. Our work
uses edge weights that are based on the number of vehicles on
it. We use this information further to select the most optimal
path, assessing the cumulative number of cars on each path.
Moreover, our solution proposes dynamic bus lanes that ensure
that mass transit vehicles are not slowed down by other traffic.
At the same time, the road network’s capacity is not decreased
by permanent bus lanes.

Another concept that our solution is built upon is bi-
objective optimal path selection. In [14] the proposed approach
differs from previous work as it does not rely on the affine
combination of the weights for distance and crime risk to
amalgamate hybrid weights. Instead, the work uses the concept
of skyline routes to identify a subset of paths that strike
a balance between distance and crime risk. A similar bi-
objective optimization problem is tackled in [15]. Our work
differs from [14], [15] in getting data online and providing
solutions based on the analysis of the data. Furthermore, our
system provides personalized solutions for multiple actors in
the traffic simultaneously rather than focusing on a single user.

Several algorithms have been proposed to update the opti-
mal route for a given vehicle in real time. In [16], [17] the
authors propose a scheme that balances the traffic on the road
network and thus mitigates traffic congestions. The scheme
relies on an ad-hoc network whereby vehicles share their ve-
locity with other vehicles and are clustered on a per-edge basis.
Furthermore, the weights of the different edges of the road
network graph are calculated taking into consideration average
vehicle velocity, fuel consumption, and vehicle density. Our
approach also uses car density as a metric, but it does not
assume that there is a navigation device in each car. The work
in [16], [17] does not address the prioritization of mass transit
vehicles either.

The focus on reducing emissions from mass transit vehicles
has been partially addressed in [18]. The work proposes a
system that annotates OSM road graphs with eco-weights that
are based on the amount of fuel consumed by buses. The idea
is extended into a framework named EkoM ark 2.0 that eval-
uates environmental impact models that are used for defining
eco-weights. The framework uses 3D spatial network, GPS
trajectories, and actual fuel consumption data from a case-
study to evaluate the models. Our solution can be evaluated in
FEkoMark 2.0, and we also dynamically assign eco-weights to
road segments. Moreover, our solution has the bi-objective of
creating on-demand virtual bus lanes and providing guidelines
for optimal paths to local drivers [19], [20].

598

VII. CONCLUSIONS

In this paper we presented our EPTrOn solution for the
on-demand, dynamic creation of virtual bus lanes in con-
gested urban environments. It follows a multi-fold approach,
whereby priority scheduling and optimal routing techniques
are interwoven to mitigate the pollution caused by internal
combustion engine vehicles by clearing the way of the biggest
polluters, namely the mass transit diesel-engined buses. Our
experimental evaluation shows that our approach increases the
throughput of the road network and outperforms the baseline
by more than 590% saved travel time on average, while
incurring no more than a 768 meters penalty.

Acknowledgments This work was supported, in part, by NSF
CBET award #1609120 and NIH award UO1HL137159. This
paper does not represent the views of NSF or NIH.

REFERENCES
(1
(2]

L. A. D. of Transportation. The automated traffic surveillance and
controls (atsc) system. http://trafficinfo.lacity.org/about-atsac.php

C. Signals. San jose connected vehicle pilot. [Online]. Available:
https://connectedsignals.com/sjstudy/

M. Chiang, E. Lim, W. Lee, and A. T. Kwee, “Btci: A new framework
for identifying congestion cascades using bus trajectory data,” in /[EEE
Big Data 2017, pp. 1133-1142.

R. T. Milam, M. Birnbaum, C. Ganson, S. Handy, and J. Walters,
“Closing the induced vehicle travel gap between research and practice,”
Transportation Research Record, vol. 2653, no. 1, pp. 10-16, 2017.

G. Duranton and M. A. Turner, “The fundamental law of road conges-
tion: Evidence from us cities,” American Economic Review, vol. 101,
no. 6, pp. 2616-52, 2011.

H. Xu, J. Lin, and W. Yu, Smart Transportation Systems: Architecture,
Enabling Technologies, and Open Issues, 2017, pp. 23-49.

J. Ouyang. Busgazer. [Online]. Available: busgazer.com

A. U. Shein, P. K. Chrysanthis, and A. Labrinidis, “Slickdeque: High
throughput and low latency incremental sliding-window aggregation,” in
EDBT 2018, pp. 397-408.

M. Thorup, “Undirected single-source shortest paths with positive
integer weights in linear time,” JACM, vol.46, no.3, pp.362-394, 1999.
A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
ser. ACM SIGMOD 1984, pp. 47-57.

J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from
the physical world,” ser. ACM SIGKDD 2011, pp. 316-324.

J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: Driving directions based on taxi trajectories,” in ACM
SIGSPATIAL 2010, pp. 99-108.

M. Wei and Y. Meng, “Research on the optimal route choice based on
improved dijkstra,” in JEEE WARTIA 2014, pp. 303-306.

E. Galbrun, K. Pelechrinis, and E. Terzi, “Urban navigation beyond
shortest route: The case of safe paths,” Information Systems, vol. 57,
no. Supplement C, pp. 160 — 171, 2016.

G. D. Nunzio, L. Thibault, and A. Sciarretta, “Bi-objective eco-routing
in large urban road networks,” in /IEEE ITSC 2017, pp. 1-7.

J. Lin, W. Yu, X. Yang, Q. Yang, X. Fu, and W. Zhao, “A real-
time en-route route guidance decision scheme for transportation-based
cyberphysical systems,” IEEE VIC 2017, vol. 66, no. 3, pp. 2551-2566.
——, “A novel dynamic en-route decision real-time route guidance
scheme in intelligent transportation systems,” in IEEE ICDCS 2015,
pp. 61-72.

O. Andersen, C. S. Jensen, K. Torp, and B. Yang, “Ecotour: Reducing
the environmental footprint of vehicles using eco-routes,” in IEEE
MDM 2013, vol. 1, pp. 338-340.

C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul, “Ecomark:
Evaluating models of vehicular environmental impact,” in ACM
SIGSPATIAL 2012, pp. 269-278.

C. Guo, B. Yang, O. Andersen, C. S. Jensen, and K. Torp, “Ecomark
2.0: empowering eco-routing with vehicular environmental models and
actual vehicle fuel consumption data,” Geolnformatica, vol. 19, no. 3,
pp. 567-599, 2015.

[7]
[8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from |IEEE Xplore. Restrictions apply.

