
Mitigating Congestion Using Environment
Protective Dynamic Traffic Orchestration

Daniel Petrov, Rakan Alseghayer, Panos K. Chrysanthis
Department of Computer Science, University of Pittsburgh

{dpetrov,ralseghayer,panos}@cs.pitt.edu

Abstract—Traffic congestion has a significant negative impact
on the accelerating pace of daily human activities. Traffic jams
increase the transportation costs for goods and humans. They are
also amongst the leading factors for pollution in the atmosphere
and consequently increase health risks for the population. One
way to reduce the amount of emissions produced by vehicles
in traffic jams is to mitigate traffic congestion and promote
the usage of public transportation. In this paper, we propose
a solution that establishes on-demand, virtual bus lanes to
prioritize public transportation over other traffic and provide
detour guidelines for other drivers, while causing insignificant
detour penalties. Our solution leverages incremental window
aggregations to identify the busiest road segments, priority
scheduling, and Dijkstra shortest path algorithm to shape and de-
tour traffic. Our experimental evaluation shows the effectiveness
of our Environment Protective Traffic Orchestration (EPTrOn)
algorithm in identifying and alleviating traffic congestions.

Index Terms—traffic, traffic congestion, Dijkstra, virtual bus
lanes, internal combustion engine

I. INTRODUCTION

Most internal combustion engine vehicles (ICEVs) have

their engines idling when they are not in motion, i.e., when

they stop at traffic lights and crosswalks, or when they are

in traffic jams [3]. Furthermore, most public transit buses

are equipped with diesel engines. These engines not only

produce greenhouse gas emissions, but their exhaust contains

a significant amount of fine particulate matter (FPM), the

inhalation of which has a negative impact on human health. A

plethora of diseases are attributed to FPM—asthma and lung

cancer, to name a few.

Rapid proliferation of smart mobile devices that are

equipped with positioning sensors (e.g., GPS and Galileo), and

ubiquitous Internet connectivity, facilitated the growth of the

near real-time traffic analysis necessary for effective solutions

to traffic jams. Some cities already implement smart traffic

lights that adaptively steer the traffic in an effort to mitigate

congestion [1], [2]. However, studies show that the additional

infrastructure built does not solve the problem with traffic

jams. It only attracts new traffic and changes the scale of the

problem—the phenomenon of “induced traffic” [4]–[6]. This

suggests that we need a balanced solution that promotes the
use of public transportation while reducing idling of both cars
and buses.

In this paper, we propose such a balanced solution, called

Environment Protective Traffic Orchestration (EPTrOn). EP-
TrOn mitigates congestion by establishing bus lanes on de-

mand, which we coin virtual bus lanes, and shaping traffic

by controlling traffic lights and directing traffic using light-

boards at intersections. Our solution proactively ameliorates

the traffic ahead of buses in congested areas, and adaptively

detours cars away from the congested areas, while protecting

the interests of both public transportation and car riders.

Our Contributions in brief are:

• A method that identifies congested road segments by

analyzing trajectory data in real-time. It uses incremental

sliding window aggregations to calculate the average

speed of each vehicle, and an R+ tree to record their

positions in the road network, formalized using a seman-

tics enriched graph G(V, E, M). (Sec. II)

• A solution that creates dynamic virtual bus lanes and

provides guidelines for drivers about the least busy path

towards their destinations. Our solution does not require

drivers to disclose their destination, but is based on a

bi-objective shortest path algorithm that computes all the

detours to neighboring landmark points at each intersec-

tion that the drivers can follow. It further uses priority

scheduling of traffic lights to increase the length of green

lights for buses and cars in congested roads (Sec. III)

• An experimental evaluation of our EPTrOn solution using

a real dataset of the city of Beijing shows that EPTrOn
outperforms the baseline in terms of bus’ completion

time (by up to 590%), while causing small increases in

cars’ average detour distance (by up to 768 meters). The

former metric captures the bus on time performance and

bus users’ satisfaction, whereas the latter captures the car

detour penalty and car drivers’ and passengers’ potential

dissatisfaction. (Sec. V)

II. PRELIMINARIES

In this section, we introduce the notation used throughout

the paper, and our system model, and formulate our problem.

A. Notation

In order to formally define the problem of creating dynamic

bus lanes on demand, we adopted the following notation.

Definition 1: The road network of a city, including bus stops

and facilities, is represented by a semantically enriched graph

G = (V,E,M), whereby the intersections are the vertices in

V , the streets are the edges in E, and the semantic information

for each vertex and each edge are vectors in M .

A vector mi = (w, γ, sem1, sem2, sem3, ...),mi ∈M∧
i ∈ V �E, is of varying length with type specific parameters:

593

2019 20th IEEE International Conference on Mobile Data Management (MDM)

2375-0324/19/$31.00 ©2019 IEEE
DOI 10.1109/MDM.2019.00125

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from IEEE Xplore. Restrictions apply.

w is the weight of the edge/vertex, which represents how busy

the road/intersection is, and γ is the velocity threshold for an

edge, which defines when the edge is congested.

An example of edge semantics of the edge of 5th Avenue in
New York City, right in front of the Public Library is me5 =
{0.342, 8, 40.753486,−73.980888, 40.752184,−73.981843,
1, 5, 25, 1, 1, o}; the first two numbers are the weight w and

velocity threshold γ, followed by the latitude and longitude of

the northern end of the segment, and the same coordinates of

the southern end. The next value 1 means that the edge is

one way, 5 is the number of lanes, and 25 is the speed limit

in mph. The next two parameters denote the fact that there

are sidewalks on each side of the edge. The last parameter

o denotes the number of buses on that edge. An example of

vector semantics at the intersection of the NYC Public Library

is mv1324
= {0.2412, o, 40.753486, −73.980888, 4}; the

first element of the vector is the weight, followed by the

cumulative number of buses o that approach the intersection

on the edges connected to the vertex, and the coordinates of

the vertex, as well as the number of edges it connects.

For our definition, we use an undirected graph. It is clear

that a directed graph may be a more accurate model of the

road networks of different cities. However, the extension from

undirected to directed graph is trivial and the directed graph

model does not impact our approach to solving the problem.

The terms “edge” and “road segment” for e ∈ G will be

used interchangeably. Given the above definitions for the city

road network, we can formally define traffic congestion as:

Definition 2: A road segment is congested iff the average

speed of the vehicles, passing through it over a given epoch

of time e, is below a specified threshold of γ miles per hour.

Furthermore, we make a clear distinction between paths and

trajectories of vehicles in our model of the city road network.

Definition 3: A path p, from a starting point s ∈ G to

an end point t ∈ G, is a sequence of edges (road segments)

connecting the points (vertices) s and t in G. P is a subgraph

of G that consists of all paths p from s to t.
Definition 4: A trajectory of a vehicle is defined as a path

p in G, whereby each of its road segments is semantically en-

riched with one or more timestamps that show the moment(s)

in time when the vehicle was on that particular road segment.

Each trajectory has a directionality property (i.e., from s to t)
and diversion property that is defined as follows.

Definition 5: The diversion of a trajectory D is a set of

points di ∈ G that do not extend the trajectory by more than

a given threshold of τ miles when added to it.

The vehicle diversion controls a car’s rerouting by prevent-

ing it from diverting too far away from its initial trajectory.

The directionality of a trajectory is not changed if and only if

the rerouting morphs the trajectory within the set D.

The bus routes are also paths in the road network G. The

buses and their trajectories (i.e., locations of these buses) are

known in real time, as many cities worldwide now provide

this information in real time (e.g., Busgazer [7]).

Definition 6: A neighborhood is a subset G′ = (V ′, E′,M ′)
of G, whereby each two intersections v′1 and v′2 in V ′ are

Fig. 1. EPTrOn Solutions

connected with an edge e′ in E′ and all edges from E′ end

in vertices in V ′. Neighboring neighborhoods have edges in

common, connecting them, but not vertices in common.

The idea of the neighborhoods reflects the concept of

neighborhoods in cities and is inspired by the concept of

autonomous systems in computer networks routing.

B. System Model

We assume that internal combustion engine cars and buses

(ICEVs) are equipped with a mobile computing device that has

a global navigation satellite system and Internet connectivity

capabilities. These devices report the current location and the

speed of the vehicle periodically, but not its destination.

A (monitoring) system receives these measurements from

the n vehicles over an epoch of time e. Each data point is

a tuple tup(vehcID, ts, long, lat, a) consisting of a unique

vehicle identifier vehcID, timestamp ts, longitude lon, lat-

itude lat, and current speed a. The timestamp captures the

moment in time when the tuple was produced and is denoted

in global time. The type of vehicle can be derived from the

unique vehicle ID, i.e., car or bus. The consecutive tuples for

a given vehicle form its trajectory in the time epoch e.

In addition to the device that controls the traffic lights,

we assume that each intersection is equipped with a light-

board that is used to display information to drivers. Some

cities and highways already use such boards to provide traffic

and weather updates, and details about detours and points of

interest (POI).

C. Problem Formulation

Given a road network G(V,E,M), its current state as

captured by the semantics M , and the trajectories of the mass

transit vehicles, calculate paths p′ for the cars such that:

• they ameliorate the traffic in the way of public transporta-

tion vehicles at the next epoch of time e, and

• they do not change the directionality nor violate diversion

τ of the trajectories of the ICEVs.

The objective of our solution is to find a subset of paths

that reroute cars with minimal impact on their traveling

time/distance. The optimization criteria are the alleviation of

traffic in the way of buses and the mitigation of pollution.

III. EPTRON SOLUTION

Our solution is depicted in Fig. 1 and consists of three

integral components: a Monitoring System, which identifies

congested road segments, a Traffic Scheduler, which produces

the scheduling for traffic lights, and a Routing Directive

594

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Monitoring System
Input: G, R, C
Output: Q

Update the weights of all edges, based on the position of each car or bus
1: for each tup ∈ C do
2: R.CarNext + +(vehcIDtup, lontup, lattup) = ecurr

3: R.weprev− = 1
4: R.wecurr+ = 1
5: end for

Traverse the tree and place all vertices in Q
6: R.traverse(Q)
7: return R, Q

component, which calculates the optimal paths in each neigh-

borhood and produces directives/guidelines to drivers that are

shown on the light-boards. Each component is described next.

A. Monitoring System

The location data (tup) from cars and mass transit vehicles

(buses) is produced at high velocity. The real-time analytical

processing to identify congested road segments is performed

in micro-batches. A micro-batch C is a group of tuple tup
subsequences, tup ∈ C, over a set of data streams defined

by a timestamp interval I of length l. The inter-arrival time

of two consecutive micro-batches specifies the maximum

computational time for processing a micro-batch. The inter-

arrival time is the delay target, or deadline d, by which the

last result can be produced while analyzing a micro-batch.

The monitoring system receives and ingests all tuples tup
from both cars and mass transit vehicles within a micro-batch

Ccurr. It uses a two-dimensional hashing R, specifically R+

tree, and associates the position of the cars and buses with

the respective edges of G. It also uses incremental sliding

window aggregation techniques [8] to calculate the average

speed of each vehicle and the average speed of the vehicles

on each edge. Subsequently, it updates the weights w of all

edges and vertices in G and updates the semantic information

o about the number of buses that are located on each edge and

the cumulative number of buses that approach each vertex. It

also traverses the R+ tree and builds a priority queue Q that

contains the vertices, sorted in decreasing order of number of

buses and congested edges.

By the end of an interval, all tup ∈ Ccurr are processed

and the updated graph G and the priority queue Q are passed

to the next component, namely the Traffic Scheduler, which

schedules the traffic lights at each intersection. While the

traffic lights are scheduled, the next micro-batch Cnext is

generated and sent to the Monitoring System. The cumulative

length of d to process a micro-batch and the time needed to

schedule the traffic lights define the duration of the epoch e.

The monitoring system component is deployed on a per-

neighborhood basis. The computations are independent, and

they are trivially parallelizable. The pseudo code of the algo-

rithm is shown on Algorithm 1.

B. Traffic Scheduler

Similarly to the Monitoring System, this component is

deployed on a per-neighborhood basis and operates at two-

levels. At the top level, the global scheduler controls the order

Algorithm 2 Traffic Scheduler
Input: G, R, Q
Output: Traffic lights scheduling

Initialization:
1: Q = ∅, Q′ = ∅, ′′Q = ∅, ′′′Q = ∅, QIV = ∅, QV = ∅

Place vertices to queues
2: for each v ∈ Q do
3: if Congested(wv) AND qm ∈ Q then
4: Q′ = Q′ ∪ v
5: else
6: if Congested(wv) AND not(qm ∈ Q) ANDonBUsRoute(v)

then
7: Q′′ = Q′′ ∪ v
8: else
9: if Congested(wv) AND not(qm ∈

Q) ANDnot(onBUsRoute(v)) then
10: Q′′′ = Q′′′ ∪ v
11: else
12: if not(Congested(wv)) AND qm ∈ Q then
13: QIV = QIV ∪ v
14: else
15: QV = QV ∪ v
16: end if
17: end if
18: end if
19: end if
20: end for
21: for each Qtemop ∈ {Q′, Q′′, Q′′′, QIV , QV } do
22: for each v ∈ Qtemop do
23: runTrafficScheduling(v)
24: end for
25: end for
26: return

of processing at intersections within the current interval using

five priority queues. It initiates these queues by traversing the

priority queue Q received from the monitoring system, and

it distributes the vertices amongst five local priority queues,

Q′ to QV . Queue Q′ maintains the vertices that contain at

least one congested road segment with buses on them, Q′′

maintains the vertices that are ends of edges that are on bus

routes and are congested but do not currently have buses, Q′′′

is the priority queue that maintains the intersections that are

ends of at least one edge that is congested but is not on bus

routes, QIV has the vertices that connect segments that are on

bus routes but are not congested, and QV has the information

about other vertices (i.e., connecting edges that are not on

bus routes, not congested). The global scheduler only sends a

signal to the devices on the respective intersections to prepare

and run their own green and red light scheduling.

At each intersection, a local scheduler controls the green and

red light signal interval lengths. Our solution runs a priority

scheduling, whereby the edge with the highest priority is the

one with the highest number of buses on it. The interval length

of the green signal is for as long as cars and buses from

that edge can go through the intersection. Once the edge is

empty, or no vehicles can move because the edge is saturated

by a traffic jam, the next edge by number of buses at the

same intersection gets a green light signal. The operation gets

repeated until all edges get a green signal, or until the interval

is over. If no edges at the intersection have buses, the more

congested ones get a green light first. When two edges have

the same number of buses, their congestion is used as a tie-

breaker to schedule one before the other. The pseudo code for

the algorithm is presented on Algorithm 2.

595

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Routing Directive
Input: G, R
Output: Detour Guidance

Obtain information for detours
1: for each n ∈ N do
2: for each v ∈ n do
3: type = icev
4: Si

q = Dijkstra(G,M, type, v)
5: type = ev
6: Se

q = Dijkstra(G,M, type, v)
7: end for
8: end for
9: return

C. Routing Directive

This component operates in neighborhoods and uses the

well-studied Dijkstra shortest path algorithm [9] to calculate

the optimal detour routes of the cars. EPTrOn has a two-

fold gain by operating at the neighborhood level: (1) the

optimal routing can be calculated for each neighborhood

independently; and (2) the calculations for the optimal routing

are dependent on the number of vertices, and the notion of

neighborhood bounds this number to a small enough value that

makes calculations possible in real time. Hence, EPTrOn can

efficiently provide directives/guidance for the local drivers by

informing them of the optimal way to the next neighborhood

on the way to their ultimate destination. Furthermore, EPTrOn
achieves privacy by relying on local drivers who know what

neighborhoods of the city they have to go through in order to

reach their ultimate destination from their source/current loca-

tion without revealing their ultimate destination. The pseudo

code of the algorithm is shown in Algorithm 3.

IV. EXPERIMENTAL TESTBED

In this section, we present the experimental testbed that we

developed to evaluate our EPTrOn solution.

Algorithms: In our evaluation, we compare EPTrOn with

two other algorithms, Car biased and Naive. Car biased
is based on EPTrOn and it differs from it in prioritizing

vehicles routing. While our solution prioritizes buses over cars,

Car biased does the opposite. Naive is the standard approach

with the basic traffic lights and no dedicated bus lanes.

Dataset: The dataset we use is collected by Microsoft Asia

and covers the routes of more than 12000 taxis in Beijing. The

dataset contains more than 15 million data points and covers

more than 9 million kilometers (5.6 million miles) [11], [12].

Each tuple in the dataset contains the unique ID of the car

that generated the tuple, the timestamp when the tuple was

generated, as well as the geographical coordinates.

Moreover, we downloaded the map of the city of

Beijing from https://www.openstreetmap.com, and we con-

verted it into a graph of vertexes, using the OSMnx tool

(https://github.com/gboeing/osmnx). Each intersection is rep-

resented as a vertex, and the street that connects two intersec-

tions is represented as an edge. We used a subset of the city

that contains 2100 vertexes and 2600 edges.

From the meta-data, available on OpenStreetMap, we ex-

tracted the bus routes of the public transportation. Our graph

contained seventy four different routes.

Setup: We developed our testbed in C++ 11. It is based

on a fixed length time interval for scheduling all edges that

connect to the same intersection. A device at each intersection

schedules the green light length for each edge. We consider

all streets to be of the same width—one lane and that all

vehicles move unidirectionally. Assuming that the majority of

the intersections are on the crossing of two streets, the traffic

lights run the red and green cycle for at most four different

directions (i.e., when serial scheduling of each direction on

each street is scheduled). At each epoch, all directions of the

traffic on an intersection get scheduled. Typically, the total

time is 30 sec. We skip the time of yellow lights for simplicity.

We calculate that on average 60 cars (15 cars per edge in a 4-

edge vertex) can go through each intersection within an epoch

of time by approximating the average car speed at 20 mph at

the intersection, and the typical car size at 5 yards long.

Typically, cars average speed is 25mph and buses’ 15mph.

Some routes are served by more than one bus. Buses that serve

the same bus route are spaced ten minutes apart, or 1.5 miles.

The location of taxis is extracted from the dataset, and they

are placed at their respective locations. The rest of the cars are

distributed randomly based on the road network load factor.

As stated, cars are not required to disclose their destination.

In order to simulate traffic flow or drive behavior at each in-

tersection, the cars exhibit traffic distributions for the different

directions: West (left), NW, North (Straight), NE, East (right),

and no U-turns. For example, a uniform traffic distribution

where an equal percentage of cars go in all directions will be

{02, 02, 02, 02, 02}.
To mimic the situation whereby some bus stops are on the

side of the street to avoid blocking the traffic behind the buses

when they stop, we maintain a tunable parameter bus delay
(bd), that specifies how many epochs will pass before buses

can get back on the road after they stopped at a bus stop.

To specify bus priority in crossing an intersection during a

green light, we maintain a parameter the reserved space for
buses (bp) that marks how many bus spots will be reserved on

edges on the bus’ route.

Metrics: For our experimental evaluation, we collect two

different metrics in order to assess the bus on time performance

and the car detour penalty that quantify bus riders’ satisfaction

and car passengers dissatisfaction, respectively.

• Time Performance: the number of epochs it takes for all

buses to conclude their trips.

• Detour Penalty: the average detour distance taken by the

cars (in meters) to reach their ultimate destination.

V. EXPERIMENTAL RESULTS

We conducted four different experiments to study the sensi-

tivity of our algorithm to different tunable parameters, namely

the road network load factor, the amount of traffic violators,

the reserved space for buses, and the amount of time buses are

delayed by car drivers. Due to space limitations, we report the

results of the first two. We ran our experiments with 79 buses

in total. We ran the experiments on a 2 Intel CPUs server,

596

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. The percentage of bus trips completed in epochs for [0%, 90%]
traffic, EPTrOn, car biased, and naive approaches.

2.66GHz and 96GB, running CentOS 6.5., and using GCC

version 6.3.0 compiler.

Experiment 1 (Fig. 2): In our first experiment we study

the sensitivity of our algorithm to the amount of traffic (load

factor) on the streets. This experiment shows how the different

algorithms behave in rush hours as well as off-peak hours.

The amount of traffic is calculated as a percentage of the

spots for cars on all streets in the network. When we say that

the road network has 30% load, that means that the number of

cars, distributed on the streets, is 30% of the total amount of

car spots. The cars are distributed randomly and do not exceed

the capacity of each road segment.

We experimented with 4 different values: 0%, 30%, 60%,

and 90%. The traffic distribution based on directionality is

Gaussian: {0.1, 0.2, 0.4, 0.2, 0.1}, the reserved space for buses

is set to 1 (bp=1), and bus delay is set to 2 epochs (bd=2).

The results are shown in Fig. 2.

The results show no difference between the three algorithms

for 0% traffic, and that is expected. This is the case whereby

there are no cars on the streets and only buses. Similarly,

neither approach managed to complete even a single bus trip

when there is 90% traffic load. This is an indication that very

high street loads mean grid-lock for the public buses.

For both 30% and 60% traffic, the buses are “delayed” by

cars. Our EPTrOn solution outperforms both the car biased

and the baseline approaches by up to 590% for the load of

30% and by 384% for 60%.

The naive and the car biased approaches have a crossing

point for 60% traffic after 70% of the bus routes are completed.

This shows that the car biased approach speeds up the buses,

too, until a sufficient number of intersections get highly

congested and the advantage to the baseline is lost.

Experiment 2 (Figs. 3 & 4): In this experiment we study the

robustness of EPTrOn against the amount of traffic violators,

who ignore the detour directives and go in a direction different

than where they were directed to go by the light-boards.

Naturally, vehicles start their trips on small neighborhood

streets, go through several main streets, and end the trips on

small neighborhood streets. We assume that the predominant

distribution of destinations with respect to the source of each

car is a Gaussian distribution, whereby 40% of the cars go

west of their current location, 10% go south, 10% go north,

Fig. 3. The percentage of bus trips completed for Gaussian, uniform, center
and peripheral destination distribution, for EPTrOn and naive approaches.

Fig. 4. The average detour distance for ICEV cars, Gaussian, uniform, center
and peripheral destination distribution, EPTrOn and naive approaches.

20% go southwest and the other 20% go northwest, i.e.,

{0.1, 0.2, 0.4, 0.2, 0.1}. In this experiment, there are no spots

reserved (bp = 0) for buses.

We studied three different (violation) traffic distributions,

namely uniform, whereby an equal percentage of cars goes

in all five directions {0.2, 0.2, 0.2, 0.2, 0.2}, and the two

extremes: center focal point, whereby all the traffic focuses

in one direction {0.0, 0.0, 1.0, 0.0, 0.0} and peripheral focal
points {0.25, 0.25, 0.0, 0.25, 0.25}. Comparing these three dis-

tributions to the normal Gaussian distribution, the amount of

violators is 40%, 60%, and 80%, respectively. For example,

for the case of uniform distribution, 40% of the cars should

have a destination in the west, but it’s only 20%, who have it,

thus we have 20% violators in that direction only. The other

20% come from the drivers, whose destinations are north or

south. The amount of violators sums up to 40%.

The results of the experiment are shown in Fig. 3. The

results for EPTrOn are presented with solid lines, while

the Naive approach is depicted on dashed lines. Clearly, our

solution consistently outperforms the naive, despite the amount

of violators. In conclusion, EPTrOn is robust enough to

accommodate up to 80% violators.

We also report the average length of car detour. We mea-

sured the length of detours for all cars. The Naive approach

detour mimics the decisions drivers take when they get stuck in

traffic. Specifically, they detour and expect to get onto a less

busy road. When EPTrOn is used, the detour is defined by

the routing directives. The results are depicted on Fig. 4. The

difference between the detour penalty for Naive and EPTrOn
for Gaussian, uniform, center, and peripheral distributions is

597

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from IEEE Xplore. Restrictions apply.

1859, 539, 394, and 283 meters, respectively. Our solution

does not incur more than 768 meters detour penalty on average

(between the 4 distributions).

VI. RELATED WORK

The approach taken in [13] argues that graph weights, based

on a single factor, are inefficient when a traffic congestion

mitigation solution is provided. The work proposes edge

weights that incorporate the three main factors that influence

congestion mitigation, namely edge length, road conditions,

and average velocity of the vehicles on that edge. Our work

uses edge weights that are based on the number of vehicles on

it. We use this information further to select the most optimal

path, assessing the cumulative number of cars on each path.

Moreover, our solution proposes dynamic bus lanes that ensure

that mass transit vehicles are not slowed down by other traffic.

At the same time, the road network’s capacity is not decreased

by permanent bus lanes.

Another concept that our solution is built upon is bi-

objective optimal path selection. In [14] the proposed approach

differs from previous work as it does not rely on the affine

combination of the weights for distance and crime risk to

amalgamate hybrid weights. Instead, the work uses the concept

of skyline routes to identify a subset of paths that strike

a balance between distance and crime risk. A similar bi-

objective optimization problem is tackled in [15]. Our work

differs from [14], [15] in getting data online and providing

solutions based on the analysis of the data. Furthermore, our

system provides personalized solutions for multiple actors in

the traffic simultaneously rather than focusing on a single user.

Several algorithms have been proposed to update the opti-

mal route for a given vehicle in real time. In [16], [17] the

authors propose a scheme that balances the traffic on the road

network and thus mitigates traffic congestions. The scheme

relies on an ad-hoc network whereby vehicles share their ve-

locity with other vehicles and are clustered on a per-edge basis.

Furthermore, the weights of the different edges of the road

network graph are calculated taking into consideration average

vehicle velocity, fuel consumption, and vehicle density. Our

approach also uses car density as a metric, but it does not

assume that there is a navigation device in each car. The work

in [16], [17] does not address the prioritization of mass transit

vehicles either.

The focus on reducing emissions from mass transit vehicles

has been partially addressed in [18]. The work proposes a

system that annotates OSM road graphs with eco-weights that

are based on the amount of fuel consumed by buses. The idea

is extended into a framework named EkoMark 2.0 that eval-

uates environmental impact models that are used for defining

eco-weights. The framework uses 3D spatial network, GPS

trajectories, and actual fuel consumption data from a case-

study to evaluate the models. Our solution can be evaluated in

EkoMark 2.0, and we also dynamically assign eco-weights to

road segments. Moreover, our solution has the bi-objective of

creating on-demand virtual bus lanes and providing guidelines

for optimal paths to local drivers [19], [20].

VII. CONCLUSIONS

In this paper we presented our EPTrOn solution for the

on-demand, dynamic creation of virtual bus lanes in con-

gested urban environments. It follows a multi-fold approach,

whereby priority scheduling and optimal routing techniques

are interwoven to mitigate the pollution caused by internal

combustion engine vehicles by clearing the way of the biggest

polluters, namely the mass transit diesel-engined buses. Our

experimental evaluation shows that our approach increases the

throughput of the road network and outperforms the baseline

by more than 590% saved travel time on average, while

incurring no more than a 768 meters penalty.

Acknowledgments This work was supported, in part, by NSF

CBET award #1609120 and NIH award U01HL137159. This

paper does not represent the views of NSF or NIH.

REFERENCES

[1] L. A. D. of Transportation. The automated traffic surveillance and
controls (atsc) system. http://trafficinfo.lacity.org/about-atsac.php

[2] C. Signals. San jose connected vehicle pilot. [Online]. Available:
https://connectedsignals.com/sjstudy/

[3] M. Chiang, E. Lim, W. Lee, and A. T. Kwee, “Btci: A new framework
for identifying congestion cascades using bus trajectory data,” in IEEE
Big Data 2017, pp. 1133–1142.

[4] R. T. Milam, M. Birnbaum, C. Ganson, S. Handy, and J. Walters,
“Closing the induced vehicle travel gap between research and practice,”
Transportation Research Record, vol. 2653, no. 1, pp. 10–16, 2017.

[5] G. Duranton and M. A. Turner, “The fundamental law of road conges-
tion: Evidence from us cities,” American Economic Review, vol. 101,
no. 6, pp. 2616–52, 2011.

[6] H. Xu, J. Lin, and W. Yu, Smart Transportation Systems: Architecture,
Enabling Technologies, and Open Issues, 2017, pp. 23–49.

[7] J. Ouyang. Busgazer. [Online]. Available: busgazer.com
[8] A. U. Shein, P. K. Chrysanthis, and A. Labrinidis, “Slickdeque: High

throughput and low latency incremental sliding-window aggregation,” in
EDBT 2018, pp. 397–408.

[9] M. Thorup, “Undirected single-source shortest paths with positive
integer weights in linear time,” J.ACM, vol.46, no.3, pp.362–394, 1999.

[10] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
ser. ACM SIGMOD 1984, pp. 47–57.

[11] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with knowledge from
the physical world,” ser. ACM SIGKDD 2011, pp. 316–324.

[12] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang,
“T-drive: Driving directions based on taxi trajectories,” in ACM
SIGSPATIAL 2010, pp. 99–108.

[13] M. Wei and Y. Meng, “Research on the optimal route choice based on
improved dijkstra,” in IEEE WARTIA 2014, pp. 303–306.

[14] E. Galbrun, K. Pelechrinis, and E. Terzi, “Urban navigation beyond
shortest route: The case of safe paths,” Information Systems, vol. 57,
no. Supplement C, pp. 160 – 171, 2016.

[15] G. D. Nunzio, L. Thibault, and A. Sciarretta, “Bi-objective eco-routing
in large urban road networks,” in IEEE ITSC 2017, pp. 1–7.

[16] J. Lin, W. Yu, X. Yang, Q. Yang, X. Fu, and W. Zhao, “A real-
time en-route route guidance decision scheme for transportation-based
cyberphysical systems,” IEEE VTC 2017, vol. 66, no. 3, pp. 2551–2566.

[17] ——, “A novel dynamic en-route decision real-time route guidance
scheme in intelligent transportation systems,” in IEEE ICDCS 2015,
pp. 61–72.

[18] O. Andersen, C. S. Jensen, K. Torp, and B. Yang, “Ecotour: Reducing
the environmental footprint of vehicles using eco-routes,” in IEEE
MDM 2013, vol. 1, pp. 338–340.

[19] C. Guo, Y. Ma, B. Yang, C. S. Jensen, and M. Kaul, “Ecomark:
Evaluating models of vehicular environmental impact,” in ACM
SIGSPATIAL 2012, pp. 269–278.

[20] C. Guo, B. Yang, O. Andersen, C. S. Jensen, and K. Torp, “Ecomark
2.0: empowering eco-routing with vehicular environmental models and
actual vehicle fuel consumption data,” GeoInformatica, vol. 19, no. 3,
pp. 567–599, 2015.

598

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:17:13 UTC from IEEE Xplore. Restrictions apply.

