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Abstract

In this paper, we present two novel decaying operators for Telco Big Data (TBD), coined
TBD-DP and CTBD-DP that are founded on the notion of Data Postdiction. Unlike data
prediction, which aims to make a statement about the future value of some tuple, our for-
mulated data postdiction term, aims to make a statement about the past value of some tuple,
which does not exist anymore as it had to be deleted to free up disk space. TBD-DP relies
on existing Machine Learning (ML) algorithms to abstract TBD into compact models that
can be stored and queried when necessary. Our proposed TBD-DP operator has the follow-
ing two conceptual phases: (i) in an offline phase, it utilizes a LSTM-based hierarchical
ML algorithm to learn a tree of models (coined TBD-DP tree) over time and space; (ii) in
an online phase, it uses the TBD-DP tree to recover data within a certain accuracy. Addi-
tionally, we provide three decaying focus methods that can be plugged into the operators
we propose, namely: (i) FIFO-amnesia, which is based on the time that the tuple was cre-
ated; (ii) SPATTAL-amnesia, which is based on the cellular tower’s location related with the
tuple; and (iii) UNIFORM-amnesia, which picks randomly the tuples to be decayed. Simi-
larly, CTBD-DP enables the decaying of streaming data utilizing the TBD-DP tree to extend
and update the stored models. In our experimental setup, we measure the efficiency of the
proposed operator using a ~10GB anonymized real telco network trace. Our experimen-
tal results in Tensorflow over HDFS are extremely encouraging as they show that TBD-DP
saves an order of magnitude storage space while maintaining a high accuracy on the recov-
ered data. Our experiments also show that CTBD-DP improves the accuracy over streaming
data.
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1 Introduction

In recent years there has been considerable interest from telecommunication companies
(telcos) to extract concealed value from their network data. Consider for example a telco in
the city of Shenzhen, China, which serves 10 million users. Such a telco is shown to produce
5TB per day [39] (i.e., thousands to millions of records every second). Huang et al. [21]
break their 2.26TB per day Telco Big Data (TBD) down as follows: (i) Business Supporting
Systems (BSS) data, which is generated by the internal work-flows of a telco (e.g., billing,
support), accounting to a moderate of 24GB per day and; (ii) Operation Supporting Systems
(OSS) data, which is generated by the Radio and Core equipment of a telco, accounting to
2.2TB per day and occupying over 97% of the total volume.

Effectively storing and processing TBD workflows can unlock a wide spectrum of chal-
lenges, ranging from churn prediction of subscribers [21], city localization [40], 5G network
optimization / user-experience assessment [14, 22, 29] and road traffic mapping [15]. Even
though the acquisition of TBD is instrumental in the success of the above scenarios, Tel-
cos are reaching a point where the data they collect is more than what they could possibly
exploit. This has the following two implications: (i) it introduces a significant financial bur-
den on the operator to store the collected data locally. Notice that the deep storage of data in
public clouds, where economies-of-scale are available (e.g., AWS Glacier), is not an option
due to privacy reasons; and (ii) it imposes a high computational cost for accessing and pro-
cessing the collected data. For example, a petabyte Hadoop cluster, using between 125 and
250 nodes, costs ~1M USD [30] and a linear scan of 1PB would require almost 15 hours.
Additionally, in [26] it is shown that the amount of storage doubles every year and storage
media costs decline only at a rate of less than 1/5 per year. Finally, high-availability storage
mandates low-level data replication (e.g., in HDFS the default data replication is 3).

Consequently, we claim that the vision of infinitely storing all loT-generated velocity
data on fast high-availability or even deep storage will gradually become too costly and
impractical for many analytic-oriented processing scenarios.

To this end, data decaying [23, 24] (or data rotting) has recently been suggested as a pow-
erful concept to complement traditional data reduction techniques [4, 12], e.g., sampling,
aggregation (OLAP), dimensionality reduction (SVD, DFT), synopsis (sketches) and com-
pression. Data decaying refers to “the progressive loss of detail in information as data ages
with time”. In data decaying recent data retains complete resolution, which is practical for
operational scenarios that can continue to operate at full data resolution, while older data is
either compacted or discarded [14, 23, 24]. Additionally, the decaying cost can be amortized
over time, matching current trends in micro-batching (e.g., Apache Spark). Unfortunately,
data decaying currently relies on rather straightforward methodologies, such as rotational
decaying (i.e., FIFO) [24], or decaying based on specific queries [14] rather than the com-
plete dataset itself. Our aim in this work is to expand upon these developments to provide
more intelligent and generalized decaying operators.

In this paper, we revisit our novel decaying operator for Telco Big Data, coined TBD-
DP (Data Postdiction) [16] (see Fig. 1) and present a new data decaying operator that can
cope with streaming data, coined CTBD-DP. Unlike data prediction, which aims to make
a statement about the future value of some tuple in a TBD store, data postdiction aims
to make a statement about the past value of some tuple that does not exist anymore, as
it had to be deleted to free up space. TBD-DP relies on existing Machine Learning (ML)
algorithms to abstract TBD into compact models that can be stored and queried when nec-
essary. Our proposed TBD-DP operator has the following two conceptual phases: (i) in an
offline phase, it utilizes a LSTM-based hierarchical ML algorithm to learn a tree of models
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Fig.1 Data Prediction (top): aims to find the future value of some tuple. Data Postdiction (bottom): aims
to recover the past value of some tuple, which has been deleted to reduce the storage requirements, using a
ML model

(coined TBD-DP tree) over time and space; (ii) in an online phase, it uses the TBD-DP tree
to recover data with a certain accuracy. Additionally, CTBD-DP consumes newly generated
data streams that need to be decayed in batch mode by updating the existing TBD-DP tree,
on the fly. Particularly, CTBD-DP retrieves all the stored models based on the records in a
batch and updates the models through new ML iterations.

We claim that the LSTM model is capturing the essence of the past through its short
and long-term dependencies, similarly to how the brain retains both recent information and
important old information at a high resolution.

To understand the operational aspects of our proposed operators, consider Fig. 2,
where we show how incoming telco data signals are absorbed by the TBD architec-
ture and stored on high-availability and fast storage (i.e., D). This helps to carry out
operational tasks (e.g., alerting services and visual analytics) with full data resolution.
Subsequently, in the first phase of TBD-DP, we utilize a specialized Recurrent Neural Net-
work (RNN) composed of Long Short Term Memory (LSTM) units, which has the ability
to detect long-term correlations in activity data and the trained model has a small disk
space footprint [25]. This enables TBD-DP to utilize minimum storage capacity of the
decayed data by representing them with LSTM models on the disk media (D) and pro-
vide real-time postdictions with high accuracy in a subsequent recovery phase, which will
be initiated on-demand (i.e., whenever some high-level operator requests the given data
blocks).

This paper builds on our previous work in [16], in which we presented the preliminary
design and results of our TBD-DP operator. In this paper we propose several new improve-
ments, particularly a continuous data postdiction operator, coined CTBD-DP, as well as
several pluggable decaying focus functions. All our propositions are evaluated using real
telco data in a prototype architecture we have developed. The overall contributions of our
work are summarized as follows:

— We present a TBD decay operator that deploys the notion of data postdiction using
off-the-shelf LSTM-based prediction models.

—  We propose the DP-tree, which is a hierarchical index to organize the generated models
in a data structure to enable the efficient recovery of data when necessary.

— We propose CTBD-DP, which is a continuous decay operator that utilizes data
postdiction in order to process streaming data.

—  We propose the design and implementation of multiple decaying functions, namely
FIFO-amnesia, which is based on the timestamp that the tuple was created; SPATTAL-
amnesia, which is based on the cellular tower’s location and UNIFORM-amnesia,
which picks randomly the tuples that will be decayed.
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Fig.2 System Model: The TBD-DP operator works on the storage layer of a typical TBD stack and abstracts
the incoming data signals (D) into abstract models (md) that are organized in a tree data structure (B)

—  We measure the efficiency of the proposed operator using a ~10GB anonymized telco
network trace, showing that our operators can be a premise for efficient TBD analytics
in the future. We also summarize a prototype architecture and user interface we have
developed for the management of TBD.

The remainder of the paper is organized as follows: In Section 2, we classity the related
work into three categories. Section 3 formalizes our system model, assumptions and prob-
lem definition. In Section 4, we introduce the proposed TBD-DP operator and discuss its
two internal algorithms. In Section 5, we present the proposed CTBD-DP operator along
with Continuous Construction algorithm. Section 6 presents a complete prototype architec-
ture that integrates our operators. Section 7 presents our experimental methodology and the
results of our evaluation and Section 8 concludes the paper.

2 Related work

This section provides a concise coverage of related work in Telco Big Data, which appears
more extensively as an advanced seminar in [13]. It also briefly touches upon issues of data
reduction that are necessary to put into perspective the contributions of this work.

2.1 Telco big data (TBD) research

Telco research can be roughly classified into the following three categories: (i) real-time
analytics and detection; (ii) predicting user behavior; and (iii) privacy. There is also Telco
research that focus on applications that Telcos can use to improve their services and revenue.
Such kind of literature, however, is orthogonal to the topic of this article.

Real-time analytics and detection Zhang et al. [39] have developed OceanRT for man-
aging large spatiotemporal data, such as Telco OSS data, running on top of cloud
infrastructure. It contains a novel storage scheme that optimizes queries with joins and
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multi-dimensional selections. Yuan et al. [37] present OceanST that features: (i) an efficient
loading mechanism of ever-growing Telco MBB data; and (ii) new spatiotemporal index
structures to process exact and approximate spatiotemporal aggregate queries in order to
cope with the huge volume of MBB data. Iyer et al. [22] present CellIQ to optimize queries
such as “spatiotemporal traffic hotspots” and “handoff sequences with performance prob-
lems”. It represents the snapshots of cellular network data as graphs and leverages on the
spatial and temporal locality of cellular network data.

Braun et al. [9] developed a scalable distributed system that efficiently processes mixed
workloads to answer event stream and analytic queries over Telco data. Bouillet et al. [8]
proposed a system on top of IBM’s InfoSphere Streams middleware that analyzes 6 billion
CDRs per day in real-time. Abbasoglu et al. [1] present a system for maintaining call profiles
of customers in a streaming setting by applying distributed stream processing.

Experience, behavior and retention analytics Huang et al. [21] empirically demonstrate
that customer churn prediction performance can be significantly improved with telco big
data. Although BSS data have been utilized in churn prediction very well in the past decade,
the authors show how with a primitive Random Forest classifier telco big data can improve
churn prediction accuracy from 68% to 95%. Luo et al. [29] propose a framework to pre-
dict user behavior involving more than one million telco users. They represent users as
documents containing a collection of changing spatiotemporal “words” that express user
behavior. By extracting the users’ space-time access records from MBB data, they learn
user-specific compact topic features that they use for user activity level prediction.

Privacy Hu et al. [20] study Differential Privacy for data mining applications over telco big
data and show that for real-word industrial data mining systems the strong privacy guaran-
tees given by differential privacy are traded with a 15% to 30% loss of accuracy. Privacy and
confidentiality are critical for telcos’ reliability due to the highly sensitive attributes of user
data located in CDR, such as billing records, calling numbers, call duration, data sessions,
and trajectory information.

2.2 Compressing incremental archives

Domain-specific compression techniques are often adopted for compressing spatiotemporal
climate data [7], text document collections [35], scientific simulation floating point data [5,
28, 31, 33], and floating point data streams [10]. Moreover, several research studies [6, 18,
36] have utilized differential compression techniques for studying the trade-off between
compression ratio and decompression times for incremental archival data. None of these
prior research works, however, has been proposed for dealing with data decaying in Telco-
specific distributed systems.

2.3 Data synopsis

Sampling refers to the process of randomly selecting a subset of data elements from a rel-
atively large dataset. Sophisticated techniques, such as Bernoulli and Poisson sampling,
choose data elements using probabilities and statistics. Chaudhuri et al. [11] proposed strat-
ified sampling where the probability of the selection is biased. In order to encounter the
big data sampling issue, Zeng et al. [38] implemented G-OLA, which is a model that
generalizes online aggregation in order to support general OLAP queries utilizing delta
maintenance algorithms. Particularly, BlinkDB [3] allows users to choose the error bounds
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Table 1 Summary of notations

Notation Description

p.dp, D Ingestion period, data snapshot of one p, set of all dj,s

t,r Timestamp within an ingestion cycle, record at ¢

C,cp,cl; Set of all cell towers, Cell of record r, cluster of recordsi =1, ...,k
md;, MD LSTM model of cluster cl;, set of all models

f Decaying factor: percentage of data to be removed

df Decaying focus: ordering algorithm that the decay function will follow
b A batch of the data snapshots from the telco network

and the response time of query using dynamic sampling algorithms. SciBORQ [32] is a
framework that allows the user to choose the quality of the query result based on multiple
interesting data samples called impressions.

Several works have adapted the sampling processes to create synopsis of data in order
to achieve low response time for ad-hoc queries [32]. Data sketches [12] are compact data
structures that enable to efficiently estimate the count of occurences in massive data (con-
trary to Bloom filters, it encodes a potentially massive number of item types in a small
array). Additionally, Wei et al. proposed persistent sketches that can answer queries at any
prior time [34] and have the ability to merge in order to answer a generalization query [2].

3 System model and problem formulation

This section formalizes our system model, assumptions and problem. The main symbols
and their respective definitions are summarized in Table 1.

A typical Telco system, illustrated in Fig. 2, is composed of the Telco network, which is
responsible for providing telecommunication services, and a Telco data management sys-
tem, such as SPATE [14], which is responsible for the efficient analytical exploration of
Telco datasets. The data arrives at the data center in batches, called henceforth data snap-
shots noted by d, in the form of horizontally segmented files within an ingestion period p.
A snapshot d, contains multiple records r; created at a certain timestamp ¢. Each record r,
consists of a predefined set of attributes including the cell id ¢, that represents the spatial
information inherent within the Telco network. Particularly, each cell id ¢, corresponds to
a cell that covers a geographical cellular area that usually spans hundreds of meters or even
kilometers. Finally, the cells are spatially grouped into clusters cl;,i = i ...k for facilitat-
ing the postdiction process by creating a model md;,i =i ...k for each cl; as this will be
explained in the next section.

3.1 Problem formulation

Research goal Given a Telco setting, this work aims at achieving a pre-specified decaying
of TBD with minimum additional storage space capacity and being able to recover the
decayed data accurately and efficiently.

The efficiency of the proposed techniques to achieve the above goal is measured by the
following objectives:
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Fig. 3 TBD-DP operator overview

Definition 3.1 Storage Capacity (S) is the total storage space required for achieving
decaying of data based on a pre-specified decaying factor f.

Definition 3.2 Accuracy (NRMSE) is the percentage of the correctly recovered decayed
data. It is measured by the normalized root-mean-square error, which is the normalized
difference between the actual data (x1 ;) and the predicted data (x2 ;), where ¢ is a discrete
time point and Y4y, Ymin the maximum and minimum observed differences, formally:

1
\/; Yoo (e —x24)?

(Ymax = Ymin)

NRMSE =

4 The TBD-DP operator

In this section, we introduce the TBD-DP operator and discuss its two internal algorithms,
namely, the Construction (data model creation) and the Recovery (data recreation), which
capture its core functionality as illustrated in Fig. 3.

The Construction algorithm can be triggered either by the user, or automatically when
the total storage capacity reaches a certain level. In both cases, the data are initially clustered
based on spatial characteristics and then ordered based on temporal information. Finally,
postdiction models based on the LSTM machine learning approach are generated for each
cluster and the real data is decayed by f%. The Recovery algorithm utilizes the postdiction
models for retrieving the decayed data by adopting a proposed DP-tree based algorithm.

4.1 Construction algorithm

Algorithm 1 outlines the major steps of the construction algorithm. Initially, the decaying
factor f specifies the percentage of the whole dataset D that will be decayed, and con-
sequently the decayed subset D’ C D that will be utilized for generating the postdiction
models. In the spatial partitioning step (Step 1 - lines 11-14), k < |C| clusters are created
by using the cell tower locations. Particularly, each cluster c/;,i = 1, ..., k is represented
by a cell tower (in cases where k < |C| then the closest cell towers are merged using a KNN
approach until we finally generate k clusters). The clustering step has a two-fold contribu-
tion for the CTBD-PD operator: (i) it takes advantage of the spatio-temporal circularity of
the telco data at each cellular tower in order for the machine learning approach to create a
more biased and therefore more accurate models for each single cellular tower; the circu-
larity of the data is evident from our data analysis, since there is a similar pattern that is
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Fig.4 The conceptual steps of the proposed TBD-DP construction and recovery algorithm

repeated every some time for every cellular tower location. (ii) the clustering step will also
reduce the time needed for retrieving the decayed data at each single query, since the time
needed for locating the correct model and retrieve a number of decayed data associated to
one (or a group) cellular tower is much less than “postdicting” the whole dataset. Then the
M A P function associates all records r, € D’ with the previously created clusters by taking
into consideration their cell id ¢, attribute. By the end of this function execution, k clusters
of cell towers with their associate records will be created. Then all records of each cluster
are ordered based on their timestamp or their cell tower’s location or uniformly (i.e., time
originally generated) by using the ORDER function of the temporal ordering step (Step 2
- lines 15-17). This allows the neural network to be created correctly based on a continu-
ous time series using the FIFO-amnesia decay function as described in Section 4. Finally,
the learning step (Step 3 - lines 18-21) generates k postdiction models md; for each clus-
ter cl; by using a specialized Recurrent Neural Network (RNN) known as Long Short Term
Memory (LSTM) model [19].

Specifically, the LEARNING function generates, for each cluster at each iteration, an
LSTM model that relies on a structure called a memory cell, which is composed of four
main elements: an input gate, a neuron with a self-recurrent connection (a connection to
itself), a forget gate and an output gate. A memory cell is updated at every time-step by
using the following parameters and equations:

— X, is the input to the memory cell layer at time-step ¢
- W;, Wy, Wc and W, are weight matrices
—  bj, by, bc and b, are bias vectors

The forget gate layer:
fi=oWyg-[hi—1, %]+ by),
decides what information are going to be thrown away from the memory cells. The input
gate layer:
ir =s(Wi - [h—1, x] + D),
decides which values to be updated. The tanh layer decides what new information we are
going to store in the memory cells using:
Ci = tanh(We - Thi—1, x] + be).
Moreover, the update memory cells function:
Cr=fixC_1+1i X 6[5

used to forget the things decided to be forgotten earlier and scale the new candidate values
by a pre-specified state value.
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Algorithm 1 - TBD-DP Construction Algorithm.

Input: Dataset D, C set of cell towers, Number of clusters &, df decaying focus
Output: B: Set of models M D (DP-tree structure)
1: procedure ORDER(c/;, df)
2 switch df do
3 case FIFO > Sort records in clusters ¢ based on timestamp.
4 return SORTFrro(cli)
5: case SPATIAL > Sort records based on ¢, cell tower’s location.
6 return SORTsparraL(cly)
7 case UNIFORM > Sort records based on a uniform distribution.
8 return SORTynirorm(cli)
9: end procedure

> Step 0: Decaying Pre-processing
10: D' < fof D > Select f% of D to be decayed

> Step 1: Spatial Partitioning
11: Create k < |C| clusters cl; > Use cell towers locations
12: for all r, € D' do
13: cli < MAP(ry,clp))i=1,...k > Associate records to clusters
14: end for

> Step 2: Ordering
15: fori=1tok do
16: cli <~ ORDER(cl;, df) > Sort records in clusters
17: end for

> Step 3: Hierarchical Model
18: fori=1tok do

19: md; < LEARNING cl;) > Create an LSTM model for each cl;
20: Insert md; in B
21: end for

Finally, the update hidden cells function:
oy =0 Wy - [hy—1, %]+ bo)
and a sigmoid layer that decide what parts of the cell state to output,
h; = oy x tanh(C;).

The Construction algorithm outputs a set of postdiction models B in a DP-tree for
facilitating the recovery algorithm that follows. At the end of the Construction algorithm
execution, the D’ set of data is removed for saving storage space and it is conceptually
replaced by the final B set of postdiction models, where |B| << |D’|.

Decay principle of TBD-DP Decaying refers to the progressive loss of detail in information
as data ages with time until it has completely disappeared. Kersten refers to the existence
of data fungus in [23] with a decaying operator coined “Evict Grouped Individuals (EGI)”.
The given EGI operator performs biased random decaying, resembling the rotting process
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in nature (e.g., in fruits with fungus). In our previous work [14], we used the First-In-First-
Out (FIFO) data fungus, i.e., “Evict Oldest Individuals”, which retains full resolution for
recent data but abstracts older data into compact aggregation models. Both EGI and FIFO
do not retain full resolution for important instances that occurred in the past. Consequently,
data would have been rotted and purged either randomly or based on its timestamp. We call
this the long-term dependency problem. In this work, we chose a radically new decaying
technique that could be termed as LSTM data fungus, which is explicitly designed to avoid
the long-term dependency problem. Particularly, the TBD-DP operator replaces the data
with abstract LSTM models, which capture the essence of the past, i.e., both recent data and
important old data is retained at the highest possible resolution.

FIFO-amnesia decays data based on the time that tuples were ingested into the system
and it is the most natural decaying technique. This mimics the way that humans forget old
activities. In our case, this means that the older tuples can be more easily forgotten from the
system.

Example Consider the scenario in Fig. 4 in which there are 10 cell towers {A, ..., J}. First,
the Construction algorithm creates k = 5 clusters {c/y, ..., c/s} denoted with the solid line
that surrounds the cell towers in Step 1 of Fig. 4 (left). The MAP function associates the
records to a cluster based on the cell id ¢, (e.g., all records related to A and B are grouped into
cly). Then, the ORDER function sorts the records of each cluster based on their timestamp ¢
as shown in Step 2 of Fig. 4 (center). This will produce similar result of tuples to be decayed
denoted with gray color in Fig. 5 (left). Finally, for each cluster c/; a model md; is trained
and inserted into a DP-tree index using the cell ids as keys, as shown in Fig. 4 (right).

UNIFORM-amnesia decays data in a uniform random manner. During the decaying proce-
dure each tuple has the same probability to be decayed.

Example Consider the same scenario in which the Construction algorithm creates k = 5
clusters {cly, ..., cl5} and associates the records with the records to the cluster based on the
cell id ¢,. The only difference is that the ORDER function is based on a different decaying
focus. This will produce similar result of tuples to be decayed based on a uniform random
distribution, denoted with gray color in Fig. 5 (center).

SPATIAL-amnesia decays data based on the spatial attribute of each record (e.g., cell id).
This reflects the decay process as a data fungus or mold that is spread on the nearby areas
as described in [24].

Example Consider the same scenario with the 10 cell towers {A, ..., J} and the k = 5
clusters {cly, ..., cI5}. The only difference, in this case, is that the ORDER function is based
on a SPATIAL-amnesia decaying focus. This will produce similar result of tuples to be
decayed based on the cell tower location, denoted with gray color in Fig. 5 (right).

4.2 Recovery algorithm
Algorithm 2 outlines the Recovery algorithm that utilizes the DP-tree structure (B) of post-

diction models of Algorithm 1 for retrieving a selected subset from the decayed data, i.e.,
pD’ C D’. For doing this, the Recovery algorithm inputs the set of models B as well as
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Algorithm 2 - TBD-DP Recovery Algorithm.

Input: L: spatial input; R: temporal input; B:

ture

Output: Partial decayed dataset p D’

1:
2
3
4
5:
6
7
8
9

10:
11:

12: end procedure

> Step 1: Index Lookup
13: B <~ LOOKUP(L, B)

> Step 2: Recreate part of the Decayed Dataset using LSTM model
14: for allt € R do
pD' =

15:

return node

end if

switch £ do

case k < ko
return LOOKUP(k, po)

case ki <k < kiy1

16: end for

procedure LOOKUP(k, node)
if node is a leaf then

return LOOKUP(k, p;+1)

case kg <k
return LOOKUP(k, ps+1)

set of postdiction models in a DP-tree struc-

> The number of children is b.

> Each node has at mostd < b

> Select a subset of postdiction models

RECREATE(B',t) > Retrieve decayed data of specific time periods.

some spatiotemporal information L and R that will specify the amount of the decayed data
to be retrieved. For example, L can be a cellular tower’s location or a user’s location asso-
ciated to a cellular tower and R can be a range of timestamps, within which a number of
records were generated and stored in D’. In any case, L and R will be utilized by the DP-
tree LOOKUP function for deciding a subset of models B’ € B in line 13 that will be used
for creating the p D’ dataset in line 15.

Example Consider the scenario of Fig. 4 (Recovery Algorithm) where the data of cell tower
A (part of cl1) needs to be recovered for timestamps t1, ..., t4. LOOKUP retrieves the LSTM
model md; for cluster cl; created from all records related to cell towers A and B as shown
in Step 1 of the given figure. In Step 2, the Recovery algorithm recreates the values of cell

CellID |Counter|... | Value |Timestamp CellID |Counter|... | Value |Timestamp CellID |Counter|... | Value |Timestamp
B c4 v4 2 B c4 v4 2 A cl vl t1
A 2 v2 ] A 2 v2 2 A 2 v2 ©
A cl vl t1 A cl v5 3 B 3 v3 tl
B c3 v3 tl B c3 v3 t1 B c4 v 2
FIFO-Amnesia UNIFORM-Amnesia SPATIAL-Amnesia
Fig.5 Applying different decaying focuses (df) using the ORDER procedure
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Fig.6 CTBD-DP operator overview

tower A for each timestamp ¢ recovering in this way a part of the decayed data pD’ using
the selected LSTM model.

4.3 Performance analysis

The secondary focus of TBD-DP is the efficient decaying of data and consequently the
minimization of TBD storage space while maintaining a high accuracy during data recovery.

According to Definition 3.1 the total storage space S is equal to the actual data minus
the decayed data based on f, plus any additional storage required by the decaying approach
to achieve an optimal recreation of the decayed data. When there is no decaying f = 0%
then S = |D| + | B| (B could have been used for predicting future D values), which is the
size of the actual (raw) data D and the size of the set of prediction models B. In the case of
TBD-DP, S = |D| — |D’'| + | B|, which is the actual data size minus the size of the decayed
dataset |D'| = |D| x f% plus the size of a set of models B, where |D| >> |D’| + |B]|.
When f = 100% then all data are decayed and the required storage space of TBD-DP is
S = |B]. In the case of sampling, the storage space is equal to S = |D| — |V, which is
the actual data size minus a sample set V. = sampling(D’, s) generated by sampling the
decayed dataset D" with a pre-specified rate s. Note that |D| — |D’| + |B| << |D| — |V|
for a reasonable s that provides an NRMSE similar to TBD-DP.

According to Definition 3.2 the NRMSE measures the similarity of the decayed dataset
D’ and the recovered dataset p D’. Therefore, in cases where the decaying factor is f = 0%,
which corresponds to a low | D’| = 0 and no decaying is applied then NRMSE = 0 and when
f = 100%, which corresponds to a high |D’| = | D| and all data are discarded then NRMSE
>> 0. Moreover, it is reasonable to assume that in sampling, where a sample set V of the
decayed data D’ is permanently discarded with a sampling rate s then, its NRMSE (V, D’)
will be equal to the normalized difference between the sampled and the actual data. Finally,
the NRMSE of the proposed TBD-DP will be equal to the normalized difference between
the predicted data of the LSTM model and the actual data, i.e., NRMSE (pD’, D’).

5 The CTBD-DP operator

In this section, we introduce the proposed CTBD-DP operator and discuss the Continu-
ous Construction (data model creation) algorithm, which captures its core functionality as
illustrated in Fig. 6. The Recovery algorithm remains the same with the TBD-DP operator.
Algorithm 3 outlines the major steps of the continuous construction algorithm. Initially,
the decaying factor f specifies the percentage of the current batch b of the data stream
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that will be decayed, and consequently the decayed subset &' C b that will be utilized
for generating the postdiction models. In the spatial partitioning step (Step 1 - lines 4-7),
k < |C| clusters are created by using the cell tower locations. This allows us to construct or
update less models based on the network topology resulting to less computations. Then the
M A P function associates all records r, € b’ with the previously created clusters by taking
into consideration their cell id ¢, attribute. By the end of this function execution, k clusters
of cell towers with their associate records will be created. Then all records of each cluster
are ordered based on their timestamp or their cell tower’s location or uniformly (i.e., time
originally generated) by using the ORDER function of the temporal ordering step (Step 2).
This allows the neural network to be created correctly based on a continuous time series
using the FIFO-amnesia decay function as described in Section 4. Finally, the learning step
(Step 3 - lines 8-12) retrieves the previously k created models or generates k postdiction
models md; for each cluster c/; by using the Long Short Term Memory (LSTM) model.

Algorithm 3 - CTBD-DP continuous construction algorithm.

Input: B, b, C set of cell towers, Number of clusters k, df decaying focus
Output: B: Set of updated models M D (DP-tree structure)

1: procedure ORDER(c/;, df) > Algorithm 1: (ORDER - lines 1-9)
2: end procedure

> Step 0: Decaying Pre-processing

3: b’ < fofb > Select f% of batch b to be decayed
> Step 1: Spatial Partitioning
4: Create k < |C| clusters cl; > Use cell towers locations
5. for all r, € b’ do
6: cli < MAP(ry,clp))i=1,...k > Associate records to clusters
7: end for
> Step 2: Ordering > Algorithm 1: (Step 2 - lines 15-17)

> Step 3: Continuous learning & Hierarchical Model
8: fori=1tok do
: B <~ LOOKUP(L, B) > Retrieve a subset of postdiction models
10: md; < LEARNING (B, cl;) > Create or Update an LSTM model for each c/; in
b’
11: Insert/Update md; in B
12: end for

6 Prototype description

We have developed a complete prototype architecture that integrates TBD-DP as part of the
TBD Awareness project.! Our proposed architecture comprises of three layers (see Fig. 2),
namely Storage Layer, Indexing Layer and Application Layer.

The Storage layer passes newly arrived network snapshots through a lossless compres-
sion process storing the results on a replicated big data file system for availability and

ITBD Awareness, https:/tbd.cs.ucy.ac.cy/
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Fig. 7 The TBD-DP operator implemented inside the spatio-temporal SPATE architecture. The interface
enables users to carry out high resolution visual analytics, without consuming enormous amounts of storage.
The savings are quantified numerically with bar charts and visually with heatmaps

performance. This component is responsible for minimizing the required storage space
with minimal overhead on the query response time. The intuition is to use compres-
sion techniques that yield high compression ratios but at the same time guarantee small
decompression times. We particularly use GZIP compression that offers high compres-
sion/decompression speeds, with a high compression ratio and maximum compatibility with
I/O stream libraries in a typical big data ecosystem we use. Additionally, this layer uses
the TBD-DP operator in order to provide the decay methods for the next layer. The storage
layer is basically only responsible for the leaf pages of the SPATE index described in the
next layer.

The Indexing Layer uses a multi-resolution spatio-temporal index, which is incremented
on the rightmost path with every new data snapshot that arrives (i.e., every 30 minutes). In
addition, the component computes interesting event summaries, called “highlights”, from
data stored in children nodes and stores them at the parent node. For each data exploration
query, the internal node that covers the temporal window of the query is accessed, and its
highlights are used to answer the query.

The Application Layer implements the querying module and the data exploration inter-
faces, which receive the data exploration queries in visual or declarative mode and use
the index to combine the needed highlights and snapshots to answer the query. SPATE is
equipped with an easy-to-use map-based web interface layer that hides the complexity of
the system through a simple and elegant web interface (see Fig. 7).

7 Experimental methodology and evaluation

This section presents an experimental evaluation of our proposed operators. We start-out
with the experimental methodology and setup, followed by two experiments. Particularly,
in the first experiment, the performance of TBD-DP is compared against two baseline
approaches and two decaying-based approaches with respect to various metrics on a set
of anonymized datasets. The second experiment examines the influence of several control
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parameters on the performance of TBD-DP. The third experiment deals with the plug-
gable decaying focus methods while the fourth experiment deals with the evaluation of the
CTBD-DP operator.

7.1 Methodology

This section provides details regarding the algorithms, metrics and datasets used for
evaluating the performance of the proposed approach.

Testbed:  Our evaluation is carried out on the DMSL VCenter laaS datacenter, a private
cloud, which encompasses 5 IBM System x3550 M3 and HP Proliant DL 360 G7 rack-
ables featuring single socket (8 cores) or dual socket (16 cores) Intel(R) Xeon(R) CPU
E5620 @ 2.40GHz, respectively. These hosts have collectively 300GB of main memory,
16TB of RAID-5 storage on an IBM 3512 and are interconnected through a Gigabit net-
work. The datacenter is managed through a VMWare vCenter Server 5.1 that connects
to the respective VMWare ESXi 5.0.0 hosts. Computing Nodes: The computing cluster,
deployed over our VCenter laaS, comprises of 4 Ubuntu 16.04 server images, each fea-
turing 8GB of RAM with 2 virtual CPUs (@ 2.40GHz). The images utilize fast local
10K RPM RAID-5 LSILogic SCSI disks, formatted with VMFS 5.54 (1MB block size).
Each node uses Hadoop v2.5.2.

We utilize anonymized measurements from a real Telco operator that comprises of 1192
real cell towers (i.e., 3660 cells of 2G, 3G and LTE networks) distributed in an area of 5,896
km?. The cells are connected through a Gigabit network to a datacenter. Each cell tower
keeps several UMTS/GSM network logs for the performance of the tower and forwards
the information through the base station controller (BSC) or the radio network controller
(RNC) to be stored. There is a CDR server that generates call detail records (CDRs) for
incoming and outgoing calls in the enterprise. When a CDR is generated in the CDR server,
the management server and third-party application can use SFTP to obtain the CDR from
the CDR server. Then the Telco can query the CDRs for call/data information and check
outgoing call/data fees with the carrier.

Algorithms:  The proposed TBD-DP operator is compared with the following approaches:

— RAW: does not apply any decaying on the whole dataset.

— COMPRESSION: the decayed dataset is compressed with the GZIP library,
which has been shown in [14] to offer the best balance between compres-
sion/decompression speeds, compression ratios and compatibility with I/O stream
libraries.

— SAMPLING: a sampling method that picks every second item in the input stream,
yielding a 50% sample size.

— RANDOM: uniformly randomly select one record from the decayed dataset.

Note that RAW and RANDOM are the baseline approaches used to demonstrate the
trade-off between the storage capacity and the NRMSE objectives.

Datasets: We utilize an anonymized dataset of telco traces comprising of ~ 100M net-
work measurements records (NMS) and 3660 cells (CELL) coming from 2G, 3G and
LTE antennas. The data traffic is created from about 300K objects and has a total size
of ~10GB. We constructed 6 realistic datasets from real TBD obtained through SPATE
(depicted in Fig. 8): described in Section 7.1 based on the Key Performance Indicators
(KPIs) [27].
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Fig.8 Data distribution of an anonymized dataset of telco traces based on the counters

The

Calls (CS): the number of calls ended normally during snapshot d;.

Call Drops (CSD): the number of calls dropped during snapshot d;.

Handover Attempts (HA): the amount of handovers into or from the cells attempted
during a snapshot d;.

Handovers (HS): the number of successful handovers into or from the cells during
a snapshot d;.

Call Setup Attempts (CSA): the amount of call setup processes attempted during
snapshot d;.

Call Setups (CE): the amount of successful call setup processes during snapshot d;.

data distribution of the 6 realistic datasets, depicted in Fig. 8, clearly shows that there

is a repetitive pattern of values across the days of each KPI. Consequently, the CTBD-DP
could be very efficient through the continuous learning in terms of accuracy.

Metrics:  We evaluate the performance of TBD-DP using the metrics defined in
Section 3.1 in all experiments:

Storage Capacity (S): measures the total space that data and the DP-tree index
occupy together, as a percentage of storage required by the RAW method (no
decaying, no compression).

Normalized Root Mean Square Error (VRMSE): measures the error of the recov-
ered data D’ using the NRMSE formula provided at the end of Section 3. A lower
NRMSE value indicates a higher accuracy in the recovered data.

Parameters:  In all experiments the simulation parameters were configured as follows: (i)
decay factor f = 50% (indicating the percentage on which we execute the LSTM); (ii)
the ML model is LSTM and the number of neurons 16 x 16. The influence of each of

thos

e parameters on the proposed approach is investigated individually in Experiment 2

by fixing the rest of the parameters accordingly.

7.2 Experiment 1: performance evaluation

In the

first experiment, we evaluate the performance of the proposed TBD-DP operator

against all four algorithms and over all datasets introduced in Section 7.1, with respect to
space capacity (as a percentage to the RAW data) and accuracy (in terms of NRMSE on the
decayed set of data).
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SPACE: Disk space for the whole real dataset ACCURACY: NRMSE for the whole real dataset
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Fig. 9 Performance Evaluation: TBD-DP evaluation in terms of storage capacity S as a percentage to the
RAW data (left) and accuracy in terms of NRMSE on the decayed set of data (right) in all datasets

Figure 9 clearly demonstrates the trade-off between the space capacity S and the NRMSE
objectives on the results of the baseline approaches, since RAW (no decaying) approach
obtained the worst possible S = 100% of the whole dataset, and the lowest error NRMSE
= 0. In contrast, the RANDOM (almost all data are decayed) approach obtained the best
possible S = 50% of the whole dataset and the worst NRMSE =~ 100 on the decayed
dataset, for a decaying factor f = 50%. The results of the three other approaches appear in
between the results of the two baseline approaches. The proposed TBD-DP operator, how-
ever, provides around 25% and 50% better space capacity S compared to COMPRESSION
and SAMPLING approaches, respectively. This is due to the fact that the additional space
required by the set of LSTM models is much less than the sample set of SAMPLING and
the compressed decayed dataset of COMPRESSION.

In terms of NRMSE, the TBD-DP outperforms the SAMPLING approach by 50%, on
average, in all datasets. The COMPRESSION approach provides an optimal NRMSE = 0,
since it does not apply any prediction on the decayed data, but recovers them via decom-
pression, when requested. The COMPRESSION approach however, can not be customized
to achieve an even lower disk space occupancy. On the other hand, the TBD-DP can be con-
figured, through its f parameter, to achieve a space occupancy that will fit the space budget
of the application. This particular parameter will be investigated in the next experiment.

Figure 10 shows the total time for TBD-DP to complete the whole process including post-
diction. The postdiction process takes much less time with respect to the learning process
due to the LSTM network chain. The preprocessing step takes the majority of the required
processing time due to network and disk 10.

7.3 Experiment 2: control experiments

In Experiment 2, we examine the influence of several control parameters on the performance
of the proposed TBD-DP in terms of S and NRMSE. Specifically, we vary the decay factor
(f), the ML models and the number of neurons on LSTM.

Figure 11 shows how the decaying factor f, and consequently the amount of data that
will be decayed and represented by LSTM models, affect the S and NRMSE of the pro-
posed TBD-DP operator. The results show that the storage capacity required by the TBD-DP
decreases as the decaying factor increases, which is reasonable due to the fact that the high-
est f is, the more data need to be decayed and therefore more disk space will be released.
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Fig. 10 Performance Evaluation: TBD-DP evaluation in terms of time percentage for the decayed set of data
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Fig. 13 Control Experiment - Number of neurons in LSTM: examining the storage capacity S and NRMSE
of the proposed TBD-DP approach while varying the number of neurons in the LSTM

The accuracy of the proposed TBD-DP, however, is not influenced, since NRMSE remains
almost the same for all decaying factors, in most datasets. This shows the scalability and
generalizability of the proposed approach, which is not influenced from the increase on
the decaying dataset size. It is also important to note that the variations on the NRMSE
obtained by TBD-DP between the datasets is mainly due to the different characteristics of
each dataset.

Figure 12 examines the performance of the TBD-DP operator in terms of S and NRMSE
when combined with three different ML models, namely, the traditional Recurrent Neural
Network (RNN), the Gated Recurrent Unit (GRU) [17] and the Long Short Term Memory
(LSTM) that is finally adopted by the proposed approach. The results show that TBD-DP
maintains a similar storage capacity for different learning models, with a slight increase
(about 1%) when the LSTM model is used. In terms of NRMSE, however, the TBD-
DP+LSTM combination clearly outperforms the other two combinations providing around
75% less error, on average.

Finally, Fig. 13 examines how the number of neurons of the LSTM model influ-
ences the TBD-DP’s performance. The results support our previous observations on the
scalability and generalizability of the proposed TBD-DP approach. The increase on the
number of neurons slightly influences the TBD-DP in terms of storage capacity, since
the required space slightly increases. This is reasonable since the increase on the num-
ber of neurons results in “bigger” models that require more disk space to be stored.
The additional required space, however, is almost negligible compared to the disk space
needed to store the actual data before decaying. In terms of NRMSE, the increase on
the number of neurons does not influence the performance of the TBD-DP operator,
since NRMSE remains almost the same while varying this control parameter in almost all
datasets.

7.4 Experiment 3: decaying focus experiments

In this experiment, the three decay focus methods are compared. Here it is important to
revisit that: i) FIFO-amnesia decays f data based on the timestamp of the ingested tuples;
ii) UNIFORM-amnesia decays f data based on a uniform random distribution. During the
decaying procedure each tuple has the same probability to be decayed; and iii) SPATIAL-
amnesia decays f data based on the spatial attribute of each record (e.g., cell id).
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TBD-DP: NRMSE for varying the decaying focus of TBD-DP
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Fig. 14 Performance Evaluation: TBD-DP evaluation in terms of NRMSE varying the decaying focus for the
decayed set of data in all datasets

Figure 14 shows that decay focus df methods can improve the accuracy affecting the
NRMSE. The SPATTAL-amnesia outperforms the FIFO-amnesia and UNIFORM-amnesia
significantly. The results show that SPATTAL-amnesia has four times better accuracy than
the other methods due to the fact that all the measurements were taken through the same
telecommunication network and had similar characteristics. This confirm our initial hypoth-
esis that we can improve the accuracy of our proposed TBD-DP operator using various
decaying focus methods for domain-specific applications.

CTBD-DP: NRMSE for 3 consecutive batches
(f=50%, neurons=16x16, model=LSTM)
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Fig. 15 Performance Evaluation: CTBD-DP evaluation in terms of NRMSE for three batches (by, by, b3) for
all datasets
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7.5 Experiment 4: CTBD-DP experiments

We have divided the datasets into three consecutive batches (b1, b, b3) to evaluate the per-
formance of our proposed CTBD-DP operator in a data streaming scenario where data arrive
in batches. We chose to keep the FIFO-amnesia decaying focus method, as well as the same
decay factor, number of neurons and model as in Experiment 1.

Figure 15 shows that the continuous learning can improve the accuracy by decreasing the
NRMSE. The results show that NRMSE for b3 is five time lower than b{. As new batches
are arriving in a streaming fashion, the retrieved model is re-trained allowing the accuracy
to be improved. This is reasonable since the distribution of TBD has a repetitive pattern,
as illustrated in Fig. 8. It is also important to note that the variations on the final NRMSE
obtained by CTBD-DP between the datasets is mainly due to the different characteristics of
each dataset. Specifically, CE and CSA have a significant variation on the NRMSE obtain
on b with respect to b3.

8 Conclusions

In this paper, we present two novel decaying operators for Telco Big Data (TBD), coined
TBD-DP and CTBD-DP. TBD-DP relies on existing ML algorithms to abstract TBD into
compact models that can be stored and queried when necessary. Our proposed TBD-DP
operator has the following two conceptual phases: (i) in an offline phase, it utilizes a LSTM-
based hierarchical ML algorithm to learn a tree of models (coined TBD-DP tree) over time
and space; (ii) in an online phase, it uses the TBD-DP tree to recover data within a cer-
tain accuracy. CTBD-DP copes with TBD streams allowing the continuous decaying by
utilizing the ability to restore the store models and continue the learning procedure. In our
experimental setup, we measure the efficiency of the proposed operator using a ~10GB
anonymized real telco network trace and our experimental results in Tensorflow over HDFS
are extremely encouraging as they show that TBD-DP saves an order of magnitude storage
space while maintaining a high accuracy on the recovered data. Additionally, CTBD-DP is
improving the accuracy as new batches are progressed keeping the storage space constant.

In the future, we aim to generalize data decaying operators beyond TBD into new
domains (e.g., signals from other type of IoT). This task might give space to new ML algo-
rithms. Additionally, we aim to theoretically derive the accuracy/efficiency bounds of our
data postdiction framework. Finally, we plan to carry out an extensive experimental study
that will focus solely on decaying of big data.
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