
Leveraging Data-Analysis Session Logs for
Efficient, Personalized, Interactive

View Recommendation

Xiaozhong Zhang, Xiaoyu Ge and Panos K. Chrysanthis
Department of Computer Science, University of Pittsburgh

{xiaozhong, xiaoyu, panos}@cs.pitt.edu

Abstract—View recommendation has been recently adopted
to assist data analysts in better understanding the data. In
order to recommend useful views, existing view recommendation
approaches propose a variety of utility functions, each suitable for
a different usage scenario. However, as the “interestingness” of a
recommended view is user-dependent, no single utility function
can represent users’ preferences and intentions in all cases. With
the richly available choices for utility functions, identifying the
most appropriate ones along with their tunable parameters re-
mains a challenge even for expert users. To help identify the most
appropriate utility function, existing works have made attempts
in two different directions, 1) providing generic recommendations
of utility functions by learning offline from historical logs, and
2) providing personalized recommendations of utility functions
by learning from the interactions with each particular user. Both
proposed approaches exhibit clear advantages and disadvantages.
In this work, to benefit from both approaches, we device a novel
hybrid interactive view recommendation solution, namely Holis-
ticViewSeeker (HVS), that effectively combines the offline learning
with the online interactive learning to provide personalized view
recommendation. Our experimental evaluations conducted on
real-world data show that HVS outperforms both state-of-the-art
online and offline approaches by a significant margin in multiple
respects.

I. INTRODUCTION

A. Motivation
Visual data analysis tools such as Tableau [2] and Voyager

[29]. have been extensively utilized in facilitating knowledge
workers (e.g., scientists, researchers, and data analysts) in
exploring and making insightful discoveries (e.g., structure,
patterns, and causal relationships) on large and complex
datasets obtained from various data sources. However, the
effectiveness of these tools depends heavily on the expertise
and experience of the user. Consequently, producing a visual-
ization that captures interesting trends/patterns is a non-trivial
issue. Consider, for example, a view comparing the player 3-
point attempt rate (3PAr) of a selected NBA team with that
of all teams in the league (Figure 1), which may explain why
the selected team on the left (black) outperformed the league
average on the right (gridded) and won a championship [5],
[6]. In this figure, the 3-point attempt rate is a measure attribute
that contains measurable value and can be aggregated (e.g.,
sum, max, min), and the minutes played (MP) is a dimension
attribute, which is the attribute on which the measure attribute
(i.e., 3PAr) are viewed.

Particularly, Figure 1 shows that for all NBA players [1],
the 3PAr decreases as they play more games throughout the

Fig. 1: Example of a view providing an insight about the
performance of Golden State Warriors (black) VS. all NBA
teams (gridded).

Fig. 2: View on the 3PAr of all players in the 2015 NBA.

season. As it was observed in [5], [6], this is perfectly under-
standable since the fatigue incurred from playing more games
can affect their fitness and reduce their 3PAr. Interestingly,
for the Golden State Warriors (GSW) players (black), that
pattern is very different from that general pattern. As Figure 1
shows, the 3PAr performance of GSW players was not affected
by the time spent on the field. In fact, their 3PAr is almost
four times that of the players in the other teams during the
last third of the season. This indicates the high fitness and
consistency of the GSW players that distinguishes them from
the other players in the league. It might also indicate a good
play strategy in distributing 3-point attempts throughout the
season. Both can shed some light on understanding GSW’s

110

2019 IEEE 5th International Conference on Collaboration and Internet Computing (CIC)

978-1-7281-6737-4/19/$31.00 ©2019 IEEE
DOI 10.1109/CIC48465.2019.00022
Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

championship win. In contrast of Figure 1, the view on all
NBA players in Figure 2 hardly reveals any useful insights. As
illustrated in the above example, to obtain useful insights, the
analyst needs to constantly examine the relationships among
various attributes and consider various aggregate functions
before reaching interesting discoveries [5]. Typically, such an
approach is ad-hoc, labor-intensive, and not scalable, espe-
cially for high-dimensional datasets.

To address this challenge, several methods for recommend-
ing visualizations have recently been proposed (e.g., [28],
[14], [13], [5], [6], [19], [17]). These methods automatically
generate all possible views of data, and recommend the top-
k interesting views, according to some utility function (e.g.,
deviations [28], usability [5], diversity [11]) that measures
the interestingness of data. Even though each utility function
might be suitable for certain scenarios, identifying the most
appropriate ones and their tunable parameters for a given user
and exploration task remains a challenge even for expert users.

B. The Problem

Recent works [30], [20] have proposed techniques to train
a predictive model that recommends the most appropriate
utility function for different exploration tasks. These pre-
dictive models are learned in two different ways. One way
to construct these predictive models is by learning from a
large collection of multi-user historical session logs that are
commonly available in data analytic platforms [20]. Such an
offline learning method would produce a generic predictive
model. A second way to construct these predictive models is
by learning from the interactions between the machine and
each specific user, which leads to a personalized predictive
model. We denote the former as offline learning approach
and the latter as online learning approach. Clearly, the offline
learned predictive model demands less user effort during the
exploration. However, as the objective of the data exploration
is dynamic and will change according to the dataset, task and
the user that is performing the task, thus, provides a recom-
mendation solely based on offline learned models often fail to
match the user’s true intention. On the other hand, the online
learned predictive model requires more user effort during the
exploration, but it provides a personalized recommendation
that accurately reflects the user’s real intent. Thus, the specific
challenge our paper addresses is bridging the gap between
these two approaches for personalized view recommendation.

C. Our Solution

Motivated by the need to support personalized visualization
recommendation, while minimizing user effort, we propose
a novel hybrid interactive view recommendation solution,
namely HolisticViewSeeker (HVS) for efficient exploration of
large, high-dimensional datasets that combines the advantage
of both offline and online learning approaches. HVS focuses
on the interactive view recommendation while using the offline
learned predictive model to boost the online learning process
and in turn, reduce user effort.

The main idea of HVS involves two stages, 1) an offline
processing stage and 2) an online interaction stage. During
the offline processing stage, HVS performs an analysis of the

historical exploration session logs and identify unique patterns
or characteristics in the interactive data analysis (IDA) ses-
sions. Specifically, we train a predictive model to recommend
the utility function (i.e., measure) that best reflects the user’s
intention at a given point during a user’s exploration. Since this
recommended utility function is learned based on the historical
session logs that consist of multiple users, it most likely does
not reflect the preference of one individual user. Therefore,
during the online interaction stage, we use the recommended
utility function obtained from the previous stage as a “good”
starting point and utilize subsequent user interactions to refine
the recommendation as well as the predictive model towards
each user’s specific needs.

We define a user interaction as a sequence of actions, where
the system first selects a view from all potential views that can
be generated at a given point of a user’s exploration session,
and then the user provides simple numeric feedback (e.g.,
80%) that reflects their confidence in the relevance of the
selected view with respect to the exploration. Subsequently,
HVS learns and identifies the most appropriate utility function
based on user feedback on all selected views.

To verify the effectiveness of our proposed solution, we
implemented a testbed and experimentally evaluated HVS
using real-world datasets obtained from [20]. Our evaluation
results have confirmed HVS’ effectiveness. When compared
to the state-of-the-art offline learning approach, HVS is able
to reach 100% accuracy in all test cases, in contrast, the
offline learning approach only achieves around 63% to 69%.
Furthermore, when compared to the state-of-the-art online
learning approach, HVS reduced overall the user effort by up
to 42%. As modern data analysis platforms are well optimized
for efficiency, the user effort is becoming the dominating factor
in determining the productivity of ad-hoc data analysis tasks,
a 42% reduction in user’s effort can, therefore, be translate to
a 72% improvement in the overall productivity of the analysis
tasks given a fixed number of working hours.

D. Summary of Contribution
The key contributions of this paper are the following:

1) Designing a novel view recommendation solution,
coined HolisticViewSeeker (HVS), that efficiently and
effectively identifies the user’s “ideal” utility function,
and in turn, recommends the most appropriate set of
views, tailored for each user and exploration task.

2) Proposing a wisely defined learning problem that en-
ables the combination of the offline and online learning
approach to minimize the user effort required for pro-
ducing personalized view recommendations.

3) Implementing a testbed of our proposed HVS solution,
and showing the effectiveness and efficiency of our
proposed approach on real-world datasets using six
combinations of offline/online machine learners.

Outline The rest of the paper is structured as follows. Section
II defines formally our problem. Section III presents our pro-
posed approach. Section IV and V describe our experimental
testbed and results, respectively. Section VI discusses related
work, and Section VII concludes the paper.

111

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: A target view and its corresponding reference view.

II. BACKGROUND

In this section, we present the necessary background details
of our work. We first discuss how views can be constructed
through SQL queries, and then explain how the interestingness
of a view may be captured through a pre-defined utility
function. Afterward, we present the problem of Interactive
View Recommendation.

A. Views & Data Visualization

To begin, we start by describing a view (i.e., histogram
or bar chart) in the context of structural databases. A view
vi essentially represents an SQL query with a group-by
clause over a database D. Under the typical multi-dimensional
data models, data can be modeled as a set of dimension
attributes A = {a1, a2, a3, ...} and a set of measure attributes
M = {m1,m2,m3, ...}. The measure attributes (e.g., number
of items sold) is the set of attributes that contain measurable
value and can be aggregated. The dimensional attributes (e.g.,
brand, year, color, size) is the set of attributes on which
measure attributes are viewed. To formulate an SQL query
with a group-by clause, we need to have a set of aggregation
functions F = {f1, f2, f3, ...}. Thus, we can represent each
view vi as a triple (a,m, f), such that one dimension attribute
a is used to group the data, then the values of the measure
attribute m in each group are aggregated using function f .

As illustrated in Figure 3, a standard approach for measuring
the interestingness of a view vi is to create a reference view
vRi and a target view vTi . The reference view vRi visualizes
the results of grouping the data in the whole database D by
a, and then aggregating the values in m with f , whereas the
target view vTi represents a view with the same set of triple
(a,m, f) applied to a subset of the data DQ that is produced
by a given user query Q. Consequently, the View Space (VS),
i.e., the total number of possible views is:

V S = 2× |A| × |M | × |F | (1)

Clearly, VS can be large, especially with high-dimensional
data. In order to recommend the set of k most interesting views
from a large number of target views, utility scores are required
to rank all the target views. To compute such utility scores,
existing literature has proposed a large number of utility

Fig. 4: Precision comparison of eight utility measures [30]:
Kullback-Leibler divergence (KL), Earth Mover Distance
(EMD), L1 distance (L1), L2 distance (L2), Maximum de-
viation in any individual bin (MaxDiff), usability, accuracy,
and p-value.

functions; some commonly used ones include deviation [28],
accuracy [5], usability [5], and diversity [11]. Furthermore,
these methods also contain their own parameters, and any of
these methods can further be combined linearly with other
methods to form composite utility functions, thus leading
to enormous search space for the utility functions. Figure 4
(obtained from [30]) compares 8 different utility functions
with an ideal utility function that captures the user’s intent.
Clearly, as shown in this figure, when an inappropriate utility
function is used, the recommend view can deviate greatly from
the views that are truly preferred by the user, thus significantly
hinders the usability of the recommended views.

In general, a typical view recommendation problem can be
defined as follows:

Definition 1: (View Recommendation Problem) Given a dat-
abase D, a user-specified query Q, a set of results R produced
by Q, a utility function u(), and the size of the preferred
view recommendations k. Find the top-k views v1, v2, ..., vk
constructed from R that have the highest utilities according to
u() among all possible views.

B. Interactive View Recommendation

The above definition of a typical view recommendation
problem assumes that the utility function is given. In this
section, we will formalize the problem of interactive view rec-
ommendation, which is the problem that lies in the epicenter
of this work. The interactive view recommendation assumes
that the composition of the utility function is not given but is
discovered.

Definition 2: (Interactive View Recommendation Problem)
Consider a d-dimensional database D. Further, consider a user-
specified query Q, a set of results R produced by Q, a set
of n possible utility functions U = {u1, u2, ..., un}, and the
size of the preferred view recommendations k. The goal is to
interactively find the utility function u∗(), which produces a
set of k views V ∗ = {v∗1 , v∗2 , ..., v∗k}, constructed from R and
most accurately captures the user’s preference. Such that u∗()
can be any arbitrary combination of the utility functions in U .

112

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

Clearly, interactive view recommendation is a more chal-
lenging problem given that it has a much higher search space
complexity compared to traditional view recommendation, as
it combines the traditional View Space (Eq. 1) with the search
space of the components of the utility functions.

InteractiveV S = V S × |u1()| × · · · × |un()| (2)

where ui() is a utility function, i = 1, .., n.
That is, in the context of our problem, we are expanding

the representation of a view vi from a triple in the form of
(a,m, f) to a tuple in the form of (a,m, f, u1(), ..., un()), and
central to our solution is discovering the ideal utility function
u∗() interactively through user feedback, specifically:

u∗() = β1u1() + · · ·+ βnun() (3)

where βi is the weights assigned to the corresponding possible
utility function ui, i = 1, ..., n. It can be seen from this
equation that u∗() can be any linear combination of the
individual utility functions. For instance, u∗() can be mapped
to a single utility function ui, in this case βi = 1, and
all other β = 0; or u∗() can be a combination of multiple
utility functions, where a set of corresponding β of the utility
functions in u∗() sum to 1 and the remaining β are set to 0.

Since our objective is to predict the user’s most preferred
utility function u∗() with high precision, we can measure
precision by the distance between the top-k views V p, rec-
ommended by our solution using the predicted utility function
up(), and those top-k views V ∗ produced by the ideal utility
function u∗(). Particularly, a utility function up(), which
selects top-k views closer to V ∗, is considered to be more
preferred than a utility function up′

(), which selects top-k
views farther away from V ∗.

Definition 3: (Interactive View Recommendation Problem)
Find the solution of the View Utility Function Selection prob-
lem, such as the computational delay between each subsequent
interaction (feedback) with the user is within a time constraint
tl.

In each interaction between the system and the user, the
user is presented with a set of M views and expected to
provide feedback on the interestingness of each view. The
feedback should reflect the user’s belief with respect to the
interestingness of each view, which would be a number rang-
ing from 0-1, with 0 being the less interesting and 1 being the
most interesting. Utilizing feedback, the system would provide
better recommendations of views in the subsequent iterations.
Furthermore, to enable fluent user interaction, the response
time between each subsequent iteration must be within the
time constraint tl, which is typically below one second.

III. THE HOLISTICVIEWSEEKER

In this section, we formally present our proposed Holis-
ticViewSeeker (HVS) for interactive view recommendation.
Our solution operates in two stages: 1) offline processing stage
and 2) online interaction stage. In the offline processing stage,
we train an offline learner that utilizes an interactive data
analysis log to recommend the utility function up

r for each
distinct result r contained in the interactive data analysis logs.
In the online interaction stage, the online learner uses the

Fig. 5: An Example of an IDA Session Tree

utility function up
r recommended by the offline learner to

initialize its estimation of the ideal utility function u∗
r for the

current result r and continues refining up
r by interacting with

the current user.

A. Interactive Data Analysis Log
An Interactive Data Analysis (IDA) session log [20] records

and organizes interactive data analysis actions during an ex-
ploration session. An IDA session initiates when a dataset D is
loaded into an analysis system. Subsequently, during an IDA
session, the user would perform a series of actions (e.g., filter,
group, sort, project) a1, a2, .., an and then examine each one
of them to refine the search space gradually. We denote the
result of an acton at, performed at time t as rt.

Initially, each session starts with result r0, which represents
the initial state (i.e., root state) of the dataset before any
action is performed. Furthermore, during an IDA session, the
user can backtrack to any previous result and then take an
alternative path from that result, thus building the log in a
tree-like structure. In light of this workflow pattern, we model
each IDA session as an ordered tree, denoted as T , where each
result ri represents a node of T , and each performed action ai
represents an edge of T . Figure 5 illustrates an example of an
analysis session tree. Here in the tree, directed edges represent
actions a1 (group be “food type”), 12 (group by “price”), and
a3 (filter by “price> 3”), and the nodes r1 - r3 represent their
corresponding results. The root node, r0, represents the initial
state of the dataset before any action was invoked.

B. Offline Processing Stage
In this stage, our goal is to train a utility function prediction

model, which takes in a result r and makes the prediction up
r

of the utility function. In order to train the model, we need
first to perform two tasks. The first task is to generate a feature
vector vr for each result r that represents what the user sees
at each step. The second task is to obtain the ground truth
(i.e., the ideal utility function u∗

r) for each result r from the
interactive data analysis log, which will be used as the label
for each vr.

Result Representation For the first task, we need to form a
feature vector vr to represent what the user sees at the current

113

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Representation for Record and Aggregation Table

result r. Usually, in an interactive data analysis session s, there
are two kinds of tables that are shown to the user: record
tables and aggregation tables. A record table RTr contains raw
data records that are produced by the collection of all filtering
actions on the path between the current result r and the root
result r0. If there are no such filtering actions, then the record
table contains essentially the r0. An aggregation table ATr

contains aggregated values that are generated by applying the
collection of grouping actions on the path between the current
result r, and the root result r0 on the corresponding record
table RTr.

In order to produce the feature vector that represents the
record table, the simplest way is to use the record table as
the representation directly. However, the drawback of such an
approach is apparent. First, the record table might contain
a large number of data records, so the size of the feature
would become very large. Using such a large representation
will most likely slow down the model training and inference,
which is not suited for the scenario of interactive data analysis
where fast machine response is desired. Second, using such a
large representation might not even be feasible under various
resource restrictions.

In light of the above observation, we opt for using meta-
data of the records to form the representation of the record
table. After comparing a variety of candidate measures, we
land on three measures that capture different characteristics
of the records in the record table. The first measure is the
entropy of the data, which measures the amount of information
contained in the data. The second measure is the number of
unique values in the data, which measures the value diversity
of the data. The third measure is the number of null values in
the data, which captures local patterns that are present in the
attributes. We calculate the three measures for each attribute
(i.e, column) of the current record table RTr and concatenate
them to form the feature representation vrt for RTr.

Example 1: Consider the record table in Figure 6. The
record table has three attributes A, B and C, and its
vector representation vrt has 9 dimensions. They are entropy,
unique value ratio and null value ratio of the three attributes,
respectively. �

Aside from the record table, the user might also be presented
with an aggregation table ATr of the current result r. Again,
using the aggregation table itself as the representation might
not be feasible, because the aggregation table can also be
very large, especially for group-by attributes that have a large

number of unique values. Therefore, we again turn to meta-
data to represent the aggregation table.

We designed two vectors vatα and vatβ to describe different
aspects of the table and concatenate them to form the repre-
sentation vat of the aggregation table. The first vector vatα
records the group-by attributes. To represent the group-by at-
tributes, we set the length of vatα to be equal to the arity of the
record table and set the bit to 1 if the corresponding attribute
is a group-by attribute. The second vector vatβ describes the
characteristics of the aggregated values for the aggregation
functions in the aggregation table. Specifically, it records the
number of groups, group size variance as well as variance for
COUNT function and entropy for other aggregation functions
for each attribute. We explain the vector representation of an
aggregation table in the following example.

Example 2: Continuing with the previous example (Example
1) in Figure 6, assume that the aggregation table vat is
generated using the query:

SELECT A, COUNT(B), AVG(C)
FROM RECORD TABLE
GROUP BY A;

The vector representation of vat is formed from the con-
catenation of vectors vatα and vatβ as defined above.

The vector representation vatα will have 3 dimensions with
values of (1, 0, 0) because only attribute A is used in the
GROUP BY clause.

The vector representation vatβ will have 5 dimensions. The
1st and 2nd dimensions are number of groups and group
size variance. The 3rd dimension is 0 because there is no
aggregation for attribute A. The last two dimensions are
variance of COUNT(B) and entropy of AVG(C) across the
groups. �

In order to get the vector representation of a result vr, we
concatenate the vectors vatα and vatβ to form the vector repre-
sentation of vat (as in Example 2), which is then concatenated
with vrt (as in Example 1).

Ideal Utility Function Representation In the second task,
we need to find the ideal utility function u∗

r corresponding
to the current result r.

Recall that, in our study, an ideal utility function u∗ is a
linear combination of a set of individual utility measures (e.g.,
diversity, concentration, usability) {u1, u2, ..., un} in the form
of u∗ = β1u1 + · · ·+ βnun (Eq. 3).

Therefore, finding the ideal utility function u∗ is equal to
finding the optimal weights {β1, β2, ..., βn} of u∗. Here, we
rely on the interactive data analysis log to help us find these
optimal weights by analyzing the subsequent actions of each
result ri in an analysis session. Without loss of generality
and for simplicity, we first look at the scenario when only
one subsequent action ai+1 exits. In the cases when ai+1 is
a grouping action, then the result of ai+1 will actually be a
view. Since the user chose this view among all possible views,
we assume that this view should have a high value according
to the ideal utility function u∗ in the user’s mind. To give a
more concrete explanation, if the chosen view v1 has a high
value in one individual utility measure u1 and low values in
all other ui’s, and a non-chosen view v2 has a similar high

114

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 The Online Interaction Stage

Require: The raw data set DR, a subset DQ specified by a query
and a initial view utility estimation up

r

Ensure: A fine-turned and personalized view utility estimation up
r

1: Unlabeled view set U ← generateV iews(DQ, DR)
2: L← ∅
3: QS ← initialize query selector
4: loop
5: Choose one x from U using QS
6: Solicit user’s label on x
7: L← L ∪ {x}
8: U ← U − {x}
9: up

r ← refine up
r using L

10: QS ← refine QS using L
11: T ← recommend top views using up

r

12: if the user is satisfied with T or the user wants to stop then
13: Break
14: end if
15: end loop
16: Return the most recent up

r

value in u2 and low values in all other ui’s, then v1 should
be ranked higher than v2 based on the u∗ in the user’s mind.

The above example gives us an important hint about how
to discover the weights {β1, β2, ..., βn} of u∗. That is, the
weights should put more emphasis on the utility measures that
have high values for the chosen view v and put less emphasis
on the utility measures that have low values for v.

A surprisingly simple way to discover such weights for
u∗, that complies to the above rules, is to set the weights
{β1, β2, ..., βn} to be equal to the values of the individual
utility measures {u1, u2, ..., un} for the chosen view v. As
we will show later in the experiments (in Section V), this
approach is simple yet effective, and therefore, we adopted it
in our study. In the cases when multiple subsequent actions
exist for the current result r, we use the average values of the
utility measures as the weights.

One thing to note is that different individual utility mea-
sures {u1, u2, ..., un} might have different distributions and
scales, which negatively affects the effectiveness of the weight-
discovery approach above. So, we adopt a two-stage normal-
ization approach to alleviate the issue. We first use the Box-
Cox transformation [3] to transform the distributions of the
ui’s into normal shapes. Then we use 0− 1 scaling to ensure
that all distributions have a similar scale.

Offline Model Learning After generating the feature vec-
tors for the results r’s and the corresponding ideal utility
functions u∗

r’s (i.e., the weights {β1, β2, ..., βn}) as the labels,
we are able to train the offline model. HVS can adopt a variety
of regression models, such as K-Nearest Neighbor and Support
Vector Regressor, as its offline model to make the prediction
up

r. During the model training, the regression model learns
the weight prediction up

r based on all the features and the
corresponding labels of the training results r. Later, during
the inference, the model uses regression to predict the weights
(i.e., {β1, β2, ..., βn} of up

r) for the current results r, to be
used as the initial weights of the online model.

To summarize, the goal of the offline processing stage is to
train an offline model that takes the representation of a result
r and returns a predicted utility function up

r, such that views

that are ranked higher by the ideal utility function u∗
r should

also be ranked higher by up
r. We make the prediction up

r for
the result r using a utility function that is close to the utility
functions of other results that are similar to r. By doing so,
we are leveraging the interactive data analysis log to help the
offline model generate a good estimation of the u∗

r for the
current result r. This estimated utility function up

r will be
used to initialize the learning in the online interaction stage,
which will be introduced in the next section.

C. Online Interaction Stage
During an exploration session, the online interaction stage

has the user in the loop and uses user feedback on example
views to refine the online model’s estimation of the ideal utility
function for the current result r. The online interaction stage
takes an iterative form. In each iteration, there are four major
steps as illustrated in Algorithm 1:

1) (Line 5) The model selects a view based on the current
view utility estimation up

r (i.e., estimation of u∗
r)

among all possible views that can be generated by
current result r.

2) (Line 6) The model solicits user feedback on the ex-
ample view. The feedback takes the form of a number
from 0 to 1 that approximates the user’s confidence in
the relevance of this view with respect to the user’s
exploration.

3) (Line 7-10) The model refines up
r based on the newly

labeled view.
4) (Line 11-14) The model provides a ranking of all possi-

ble views based on the refined up
r. If the user is satisfied

with the list, then the system returns the list as the final
recommendation. Otherwise, the system continues to the
next iteration.

Below we will elaborate the workflow of the online interaction
stage and the above four major steps in more details.

Online Interaction Stage Workflow: Before we start the first
iteration, we perform an initialization method generateView,
which takes both the original data set DR and a subset DQ ⊂
DR as input. Based on the inputs, generateView would first
generate the vector representation of the current result r in the
same way as we did in the offline stage. Later, generateView
generates the individual utility measures {u1, u2, ..., un} for
all the possible views that can be generated from the current
result r through all combinations of dimension attributes A,
aggregation functions F , and measure attributes M . Then each
ui will be normalized in the same way as the normalization
performed in the offline stage.

We now introduce in detail each step of the online interac-
tion stage.

In Step 1, the online model selects example views for
user feedback based on the current up

r, which is initialized
through the offline processing stage. Clearly, the selection of
the example views has a large influence on the learning speed
of the online model. Thus, in our study, we adopt the active
search approach [8] to serve as the query selector QS for the
selection of the example views. According to active search, the
views that have the highest utility according to up

r are selected
as examples and are presented to the user for feedback. We

115

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Testbed Parameters

Total number of records 23, 369
Dimension attribute count 11
Measure attribute count 1
Aggregation function count 5
Possible view count for each result r 55
Individual utility measure count 4
Offline model K-Nearest Neighbor
Online model Linear Regressor
Performance measurement Top-k precision
Baseline Models Offline, Online
Recommend view count (k) 5,6,7,8,9,10
Training set ratio 0.1,0.2,0.3,0.4
Runs for each configuration 5

adopt an active search based on two assumptions: i) The user
is usually more concerned about the correct rankings of the
views with higher utility than the views with lower utility. This
assumption urges us to be more accurate in the estimation
of u∗

rfor high-utility views; and ii) The u∗
r combines the

individual utility measures {u1, u2, ..., un} linearly.

In Step 2, the user simply provides a numeric score that
reflects their confidence on the relevance of this presented
example with respect to the exploration.

In Step 3, the model refines up
r using the acquired feed-

back. HVS can adopt a variety of regression models as its
online model. In our study, we use Linear Regression and
Multi-layer Perceptron Regression models as examples for the
online predictive model. After weights have been initialized,
during the fine-tuning stage, the weights of the online predic-
tive model will be updated with an iterative learning method
such as stochastic gradient descent.

In Step 4, we generate view recommendations based on the
current up

r. Specifically, we apply up
r on the individual utility

measures of each possible view and rank the views based on
the utility scores. The output of the online interaction stage is
a list of recommended views that suites the user’s intention.

IV. EXPERIMENTAL TESTBED

In this section, we describe the settings and evaluation
metrics of our experiments.

A. Experiment Setup

We implemented our HVS and two state-of-the-arts base-
lines [20] and [30] in python. Our experiments were performed
on a Linux server with 32 Intel R© Xeon R© CPU E5-2650 v2
cores and 96GB RAM. A summary of the main settings of
our experiments is shown in Table I.

Dataset The dataset we used in our study is the REACT-
IDA dataset[22], a benchmark dataset that contains real user
analysis sessions for cybersecurity logs. The dataset contains
454 sessions with 2459 actions and 2913 corresponding re-
sults. There are 11 dimension attributes and one measure
attribute. We used five aggregation functions: count, sum,
average, max, and min. Therefore, there are totally 55 possible
views for each result r.

We removed non-grouping actions from the dataset because
the u∗

r cannot be calculated without aggregated values. We
also skipped the actions that start from the initial result r0,

TABLE II: Individual Utility Measures

Measure Formula Reference

Diversity (D)
∑m

j=1 p
2
j [25]

Concentration (C) 1 +H(
pj+q

2
)− log2 m−H(pj)

2
[11]

Outlier Score (O) See [15] [15]

Usability (U) 1− min(logm,c)
c

[24]

TABLE III: Average number of IUF (for each result r)

TR = 0.1 TR = 0.2 TR = 0.3 TR = 0.4
1.83 1.80 1.75 1.78

to focus on the utility function prediction after the user has
submitted at least one query.

Machine Learning Models The main evaluation of HVS
uses K-Nearest Neighbor Regressor (KNN) as its offline model
and Linear Regressor (LR) as its online model in order to
match the models used in the state-of-the-art works ([30],
[20]), which are used as benchmarks in our experiments.
We implemented both models according to the descriptions
and recommendations of their corresponding publications (i.e.,
[30] and [20]).

Additionally, we experimented with Support Vector Regres-
sor and Multi-layer Perceptron Regressor as HVS’s offline
model, and Multi-layer Perceptron Regressor as HVS’s online
model, to verify the ability of HVS in accommodating different
machine learning models.

Simulated Ideal Utility Function (IUF) In our experi-
ments, we simulate ideal utility functions with four different
individual utility measures (i.e., ui’s), which describe different
characteristics of the views.

Diversity (D) measures the degree of differences in the data
values. Concentration (C) ranks higher the views with similar
data in values. Outlier Score (O) will be high if a small group
of data has a value that is different from the majority of
the data. Usability (U) describes how easily a view can be
perceived and understood by the user.

The definition of the ui’s are shown in Table II. The m is
the number of group-by bins, pj is the normalized frequency
for each bin, q is the average value among all pj’s, and H(·)
is the entropy function.

According to Eq. 3, the simulated ideal utility function
(i.e., u∗

r) is a composite function containing all the individual
utility measures with corresponding weights derived from the
data analysis log:

u∗
r() = β1 ·D + β2 · C + β3 ·O + β4 · U (4)

Table III shows the average number of distinct u∗
r for each

result r in the test data with respect to four different training
set ratios (i.e., TR, ratio of training set size over dataset size).
For each r there are more than one u∗

r, which means that the
cybersecurity dataset is sufficient to test HVS’s effectiveness,
because using only the up

r discovered in the offline stage will
not be adequate for predicting the correct u∗

r and refining
utility function in the online stage will be necessary.

User Simulation We simulated the user feedback in the
following way. For each example view v that is generated on

116

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

certain result r, the simulated user applies the ideal utility
function u∗

r on the individual utility measures of v to form a
utility score as the user feedback.

B. Evaluation Metrics
We evaluated the performance of our solution with respect

to recommendation precision (effectiveness) and efficiency.

Effectiveness: We define the precision as the size of the
intersection between the top-k views recommended by up

r

and the top-k views recommended by u∗
r. For the two sets of

top-k views V p and V ∗ produced by up
rand u∗

r, respectively,
the precision is calculated as:

|V p ∩ V ∗|
k

(5)

where ∩ is the intersection operator and | · | is the cardinality
operator.

Efficiency: Three components are included in the runtime
comparison. The first part is the model training time in the
offline stage, which applies to both the Offline model and
HVS. The second part is the system response time in the online
stage, which applies to the HVS and the Online model. The
last part is the user inspection time, which applies to the HVS
and the Online model. We adopt the method introduced in [27]
for the calculation of the user inspection time.

Experiments: We compared all models involved in the
experiments for different top-k view recommendations with
k equals to 5, 6, 7, 8, 9, and 10. For each configuration, we
conducted five runs and reported the average performance in
the experiment results section. Since interactive data analysis
is a data exploration problem, we assume that the training data
will only constitute a small portion of the total space of all
possible exploration behaviors. Therefore, in our experiment,
we set the training set size ratio to be 10%, 20%, 30%, and
40% of the dataset size and used the remaining data for testing.

V. EXPERIMENTAL RESULTS

We compare HVS using KNN/LR Offline/Online models
with both state-of-the-arts online model [30] and offline model
[20], as stated above. The offline model [20] directly uses
the weight initialization from the offline stage to make view
recommendation, whereas the online model [30] interacts with
the user without having the weight initialization from the
offline stage.

Offline vs. HVS The comparison between Offline and HVS
is directly based on recommendation precision. The precision
for HVS is measured after the model learning has converged.

The comparison results are shown in Figures 7-10. The
Offline model achieves an average precision of 63%, 66%,
67% and 69% across all top-k’s for training set ratio of 0.1
- 0.4 respectively, while the HVS achieves 100% precision
for all training ratios. From Figures 11-14, we can see that
the HVS achieves the 100% precision by acquiring a very
small amount of additional user labels. The above observation
indicates that up

r from the offline stage cannot capture the
interest of the current user well, and an online interaction stage
with marginal user effort can improve the recommendation
precision significantly.

TABLE IV: Labeled View Count (Different Train Set Ratio)

Model TR = 0.1 TR = 0.2 TR = 0.3 TR = 0.4
Online 4.8 4.8 4.8 4.8
HVS 3.1 3.0 3.2 2.8

TABLE V: Labeled View Count (Different top k)

Model k = 5 k = 6 k = 7 k = 8
Online 4.5 4.4 5.2 4.0
HVS 3.1 2.7 3.1 2.2

Online vs. HVS The comparison between Online and HVS
is based on the number of labeled views required by both
systems to reach a recommendation precision of 100%.

The comparison results are shown in Figures 11-14. Across
all top-k’s, on average, the HVS requires only 64%, 62%,
66%, 58% labeled views compared to the Online model to
achieve a 100% precision for training set ratio of 0.1 - 0.4
respectively. This observation shows that using the up

r from
the offline stage for model initialization in the online stage
can significantly reduce the user labeling effort in the online
stage. The actual number of labeled views for the two models
are shown in Table IV and V.

Another interesting observation is that the training set ratio
also slightly affects the recommendation precision of the
models. The precision of the Offline model increases with
increasing the training set ratio. This is quite understandable.
With more training data, the estimated up

r from the offline
stage will better represent common u∗

r from different users.
Thus the up

r will be more likely to capture the u∗
r of the

current user.

Similarly, the precision of the HVS also increases with
increasing the training set ratio (i.e., the model requires fewer
user labels to reach a 100% precision). The same reason as
above goes here. Since with increased training set ratio, the
up

r will be more likely to capture the u∗
r of the current user.

It is natural that the user effort required in the subsequent
online stage will be reduced.

Figures 15-18 show the runtime comparison between the
Online model and HVS. We show only the Online model
and HVS because we are more interested in the runtime of
the online stage, which is more crucial for interactive data
exploration. Note also that the time taken to perceive a view
differs based on the complexity of the view and the proficiency
of the user, for illustration purposed we based this experiment
on the assumption that user’s inspection of each view takes
around 9 seconds [27]. Accordingly, on average, 16.8 seconds
can be saved for each view by using HVS. In the scenario
of data exploration, when a user submits a large number of
queries during the exploration, the saving in runtime by HVS
will become very beneficial.

Other Machine Learning Models As previously men-
tioned, in addition to KNN/LR Offline/Online models, we also
evaluated HVS with two other Offline models and one other
Online model to verify the ability of HVS in accommodating
different machine learning models. Experiments for HVS with
all six combinations of Offline/Online models show similar
trends, such that HVS improved accuracy compared against

117

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Accuracy of Offline and
HVS (10% train set ratio).

Fig. 8: Accuracy of Offline and
HVS (20% train set ratio).

Fig. 9: Accuracy of Offline and
HVS (30% train set ratio).

Fig. 10: Accuracy of Offline and
HVS (40% train set ratio).

Fig. 11: Accuracy of Online and
HVS (10% train set ratio).

Fig. 12: Accuracy of Online and
HVS (20% train set ratio).

Fig. 13: Accuracy of Online and
HVS (30% train set ratio).

Fig. 14: Accuracy of Online and
HVS (40% train set ratio).

Fig. 15: Runtime of Online and
HVS (10% train set ratio).

Fig. 16: Runtime of Online and
HVS (20% train set ratio).

Fig. 17: Runtime of Online and
HVS (30% train set ratio).

Fig. 18: Runtime of Online and
HVS (40% train set ratio).

Offline and reduced user effort against Online. For a training
set ratio of 0.3, the average precision ratio across all models
for Offline versus HVS is 67% with a standard deviation of
4%, the average labeled view ratio of HVS versus Online is
58% with a standard deviation of 7%, and the average runtime
saving of HVS versus Online is 23.3 seconds per view, with
a standard deviation of 7.1 seconds.

VI. RELATED WORKS

In this section, we review works strongly relevant to ours.

Utility Discovery are the most relevant works to us [30],
[20], [21]. In [30], the author has proposed an interactive way
to perform view recommendation called ViewSeeker, which
essentially is the online learning approach that we are referring
to in this work. Specifically, ViewSeeker interacts with the user
by presenting them with a set of carefully selected example
views and obtains user feedback on the examples. Learning
from the collected feedback, ViewSeeker is able to identify
the ideal utility function that is most suited to a given user
and exploration task. In [20], the author has proposed an

offline learning solution that recommends an appropriate utility
function during each exploration by learning from a large
collection of interactive data analysis logs. In [21], a similar
offline model was created using deep reinforcement learning.
HVS is more advanced than the above works, since it is
the first one to attempt to combine the offline learning from
data analysis logs and online learning from user interaction to
provide a personalized recommendation with minimized user
effort.

View Recommendation is another relevant area to ours
(e.g., [28], [5], [12], [19], [17]). A key difference among these
works is the proposed utility functions. Recent work placed
additional constraints, e.g., upper bound on the number of
views to be explored and execution time limit when computing
the recommended views [12]. The closest work to ours is
the use of generic priors (i.e., general knowledge of how
people associate views with different datasets and exploration
tasks) to train a general machine learning model that predicts
the utility score of any given view [17]. The generic priors
were obtained by hiring a large number (i.e., 100) of human

118

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

annotators to annotate multiple real-world datasets. The key
difference between our work and all prior work, including the
one using generic priors, is that all previous work employed
predefined utility functions and did not discover the most
appropriate utility function that matched an individual user’s
intention and exploration task.

Interactive Visualization Tools have been studied exten-
sively for the past few years [13], [18], [26], [10], [14],
[7], [16]. Unlike visualization recommendation tools such
as ViewSeeker that recommend visualization automatically
by searching through the entire views spaces, traditional
interactive visualization tools require the user to specify the
views to be generated manually. Recently, a few interactive
visualization tools have attempted to automate part of the
data analysis and visualization process. For instance, Profiler
automatically helps analysts detect anomalies in the data [13].
But, unlike our approach, Profiler is not capable of providing
general recommendations for any group-by queries. Another
recent example is VizDeck [14], which generates all possible
2D views for a given dataset and allows the user to control
manually (e.g., reordering, pinning) these views through a
dashboard, rather than using a utility function.

Data Exploration techniques that aim to extract knowledge
from data [23] efficiently are complementary to our work.
In particular, example-driven data exploration approaches [9],
[4] assume that the user has minimum prior knowledge of
the data and iteratively refine the exploratory query through
user interaction by acquiring user feedback on example data
records. Our work in this paper is complementary to data
exploration techniques and can enhance them by creating
visualizations that illustrate interesting patterns during the
construction of the exploratory queries.

VII. CONCLUSION

In this work, we proposed HolisticViewSeeker (HVS) a
hybrid solution for efficient, personalized view recommen-
dation for ad-hoc data analysis tasks. HVS combines the
benefit of both online and offline learning approaches to
provide high-quality view recommendation while minimizing
interactive user effort. Our contribution is a novel, interactive
view recommendation solution to the fundamental challenges
of providing effective results with minimum user effort while
making no assumption on the amount of the prior knowledge
that the users have.

The crux of HVS is to leverage the offline learning approach
to boot the online interactive discovery of the utility function,
which is used to select the views that best match the user’s
exploration task. HVS effectively learns the user’s preferred
views through simple interactions between the user and the
system, while leveraging the IDA session logs to significantly
reduce the amount of human effort required for finding user’s
ideal utility function.

Our experimental results on real-world datasets show that
HVS significantly outperforms the state-of-the-art baseline
approaches by reducing the human effort up to 42%. Con-
sequently, such a reduction in user effort can lead to up to
72% improvements in the productivity of data analysis task
given a fixed number of working hours.

Acknowledgements We would like to thank the anonymous
reviewers for their helpful comments.

REFERENCES

[1] NBA. - http://www.basketball-reference.com.
[2] Tableau public - http://public.tableau.com.
[3] G. E. Box, D. R. Cox. An analysis of transformations. Journal of

the Royal Statistical Society: Series B (Methodological), 26(2):211–243,
1964.

[4] K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-example:
an automatic query steering framework for interactive data exploration.
In ACM SIGMOD, 2014.

[5] H. Ehsan, M. A. Sharaf, and P. K. Chrysanthis. Muve: Efficient multi-
objective view recommendation for visual data exploration. In IEEE
ICDE, 2016.

[6] H. Ehsan, M. A. Sharaf, P. K. Chrysanthis. Efficient recommendation
of aggregate data visualizations. IEEE TKDE, 30(2):263–277, 2018.

[7] D. Fisher. Hotmap: Looking at geographic attention. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1184–1191, 2007.

[8] R. Garnett, Y. Krishnamurthy, X. Xiong, J. Schneider, and R. Mann.
Bayesian optimal active search and surveying. arXiv:1206.6406, 2012.

[9] X. Ge, Y. Xue, Z. Luo, M. A. Sharaf, and P. K. Chrysanthis. Request: A
scalable framework for interactive construction of exploratory queries.
In IEEE BigData, 2016.

[10] H. Gonzalez, A. Y. Halevy, C. S. Jensen, A. Langen, J. Madhavan,
R. Shapley, W. Shen, and J. Goldberg-Kidon. Google fusion tables:
web-centered data management and collaboration. In ACM SIGMOD,
2010.

[11] R. J. Hilderman and H. J. Hamilton. Knowledge discovery and measures
of interest. Vol. 638. Springer Science and Business Media, 2013.

[12] I. A. Ibrahim, A. M. Albarrak, and X. Li. Constrained recommendations
for query visualizations. Knowl. Inf. Syst., 51(2):499–529, 2017.

[13] S. Kandel, R. Parikh, A. Paepcke, J. M. Hellerstein, and J. Heer.
Profiler: integrated statistical analysis and visualization for data quality
assessment. In ACM AVI, 2012.

[14] A. Key, B. Howe, D. Perry, and C. R. Aragon. Vizdeck: self-organizing
dashboards for visual analytics. In ACM SIGMOD, 2012.

[15] S. Lin and D. E. Brown. An outlier-based data association method for
linking criminal incidents. Decision Support Systems, 41(3):604–615,
2006.

[16] M. Livny, R. Ramakrishnan, K. Beyer, G. Chen, D. Donjerkovic,
S. Lawande, J. Myllymaki, and K. Wenger. Devise: Integrated querying
and visual exploration of large datasets. In ACM SIGMOD, 1997.

[17] Y. Luo, X. Qin, N. Tang, and G. Li. Deepeye: Towards automatic data
visualization. In IEEE ICDE, 2018.

[18] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic
presentation for visual analysis. IEEE TVCG, 13(6):1137–1144, 2007.

[19] R. Mafrur, M. A. Sharaf, and H. A. Khan. Dive: Diversifying view
recommendation for visual data exploration. In ACM CIKM, 2018.

[20] T. Milo, C. Ozeri, and A. Somech. Predicting what is interesting by
mining interactive-data-analysis session logs. In EDBT, 2019.

[21] T. Milo and A. Somech. Deep reinforcement-learning framework
for exploratory data analysis. In Workshop on Exploiting Artificial
Intelligence Techniques for Data Management, 2018.

[22] T. Milo and A. Somech. Next-step suggestions for modern interactive
data analysis platforms. In ACM SIGKDD, 2018.

[23] D. Mottin, M. Lissandrini, Y. Velegrakis, and T. Palpanas. New trends on
exploratory methods for data analytics. In PVLDB, 10(12):1977–1980,
2017.

[24] J. Rissanen. Modeling by shortest data description. Automatica,
14(5):465–471, 1978.

[25] E. H. Simpson. Measurement of diversity. Nature, 163(4148):688, 1949.
[26] C. Stolte and P. Hanrahan. Polaris: A system for query, analysis and

visualization of multi-dimensional relational databases. In INFOVIS,
2000.

[27] J. Talbot, V. Setlur, and A. Anand. Four experiments on the perception
of bar charts. IEEE TVCG, 20(12):2152–2160, 2014.

[28] M. Vartak, S. Rahman, S. Madden, A. G. Parameswaran, and N. Poly-
zotis. SEEDB: efficient data-driven visualization recommendations to
support visual analytics. PVLDB, 8(13):2182–2193, 2015.

[29] K. Wongsuphasawat, D. Moritz, A. Anand, J. Mackinlay, B. Howe,
and J. Heer. Voyager: Exploratory analysis via faceted browsing of
visualization recommendations. IEEE TVCG, (1):1–1, 2016.

[30] X. Zhang, X. Ge, P. K. Chrysanthis, and M. A. Sharaf. Viewseeker: An
interactive view recommendation tool. In BigVis, 2019.

119

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 20:13:16 UTC from IEEE Xplore. Restrictions apply.

