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Abstract—Data visualization is a common and effective technique for data exploration. However, for complex data, it is infeasible for

an analyst to manually generate and browse all possible visualizations for insights. This observation motivated the need for automated

solutions that can effectively recommend such visualizations. The main idea underlying those solutions is to evaluate the utility of all

possible visualizations and then recommend the top-k visualizations. This process incurs high data processing cost, that is further

aggravated by the presence of numerical dimensional attributes. To address that challenge, we propose novel view recommendation

schemes, which incorporate a hybrid multi-objective utility function that captures the impact of numerical dimension attributes. Our first

scheme, Multi-Objective View Recommendation for Data Exploration (MuVE), adopts an incremental evaluation of our multi-objective

utility function, which allows pruning of a large number of low-utility views and avoids unnecessary objective evaluations. Our second

scheme, upper MuVE (uMuVE), further improves the pruning power by setting the upper bounds on the utility of views and allowing

interleaved processing of views, at the expense of increased memory usage. Finally, our third scheme, Memory-aware uMuVE

(MuMuVE), provides pruning power close to that of uMuVE, while keeping memory usage within a pre-specified limit.

Index Terms—Data exploration, visual analytics, aggregate views, view recommendation

Ç

1 INTRODUCTION

RECOMMENDING data visualizations that reveal new and
valuable insights is a challenging problem, which has

been the focus of many research approaches (e.g., [19], [20],
[26], [30], [31]). The main idea underlying those approaches
is to automatically generate all possible aggregate views of
data, and recommend the top-k views that result in interest-
ing visualization, where the interestingness of a visualiza-
tion is quantified according to some utility function. Recent
work provides strong evidence that a deviation-based formu-
lation of utility is able to provide analysts with interesting
visualizations that highlight some of the particular trends of
the analyzed datasets [30], [31].

While the deviation-based notion of utility has been shown
to be effective in recommending views with categorical
dimensional attributes, in thisworkwe argue that it falls short
in capturing the requirements of numerical dimensions. Par-
ticularly, in the presence of such numerical dimensions,
binned aggregation is required to group the numerical values
along a dimension into adjacent intervals [10], [17]. Given the
large number of options for binning a numerical dimension, it
is expected that different binning configuration will result in
different deviations, and in turn, different levels of interest-
ingness from the analyst point of view. For instance, in a view

with small number of bins, interesting insights are expected
to remain hidden under a smooth and coarse visual represen-
tation. Meanwhile, in a view that contains a large number of
bins, insightsmight go unnoticed in a cluttered or sparse visu-
alization. To illustrate the impact of binning on numerical
dimensions, consider the following example:

Example 1. Consider a data analyst trying to gain insights
into the special factors that led the Golden State Warriors
(GSW) basketball team towin the 2015NBA championship.
Consequently, the analyst uses the 2015NBAplayers statis-
tics database [4] to compare the GSW team to the other
teams in the league. Particularly, the analyst poses a query:

Q: SELECT * FROM players WHERE team=GSW;

which returns the statistics for all the players on the GSW
team. Such statistics include different dimensions (e.g.,
age, number of games played, minutes played, etc.), and
different measures (e.g., player efficiency rating,
3-point attempt rate, etc.). To recommend interesting bar
chart visualizations, different SQL aggregate functions
are applied on the views resulting from all the possible
pairwise combinations of dimensions and measures, then
the most interesting views are presented to the analyst.
Fig. 1 shows one particular view defined on the dimen-
sion minutes played (MP) and the measure 3-point

attempt rate (3PAr). Such view is equivalent to:

V: SELECT MP, SUM (3PAr) FROM players

WHERE team=GSW GROUP BY MP;

Meanwhile, generating the same view of the entire data-
base of all players (i.e., without the WHERE team=GSW

clause), results in the visualization shown in Fig. 2. At first
glance, comparing the two views fails to reveal any
insights about the GSW team. However, binning the two
views, as shown in Fig. 3, reveals some very interesting
observation. Particularly, Fig. 3 shows that for all NBA
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players, the 3PAr decreases as they play more games. The
intuitive explanation is that the fatigue incurred fromplay-
ing more games can affect their fitness and reduce their
3PAr. However, for the GSW players, that pattern signifi-
cantly deviates from that general pattern. As Fig. 3 shows,
the GSW players who spent more time on the field still
achieve very high 3PAr. In fact, their 3PAr is almost 4
times that of the other players. Clearly, that observation
reflects the fitness and consistency of the GSW players,
which might distinguish them from other players in the
league, and can shed some light into understanding their
championshipwin.

As the above example shows, choosing the right binning
is essential in the process of extracting insights from the
data, whether that process is performedmanually or analyti-
cally. On the one hand, a good binning allows to reduce both
the clutter and sparsity in the generated visualizations,
which makes them easy to use by the analyst to manually
extract insights [7], [11]. On the other hand, a good binning
also allows to group similar data together (e.g., group play-
ers according to their MP), so that the special features of each
group (e.g., 3PAr) is aggregated and emphasized, which in
turn allows quantitative metrics, such as deviation, to cap-
ture the interesting patterns exhibited by those features. We
note, however, that choosing the right binning for each visu-
alization is a non-trivial task. The benefits, as well as the chal-
lenges, of binning numerical dimensions arewell-recognized
in the literature, especially in the context of histogram con-
struction for the purpose of selectivity estimation and query
optimization (e.g., [10], [17], [18]). Such histograms provide a
concise summary of the underlying data distribution of an
attribute, where the accuracy of that summarization is
dependent on the employed binning strategy. Similarly, in
bar chart visualizations, which is the focus of this paper,
the overall utility of a visualization is dependent on the

underlying binning. Consequently, the applicability of the
simple deviation-based notion of utility becomes very lim-
ited in the presence of numerical dimension attributes.

To address such limitation, we introduce a novel hybrid
multi-objective utility function, which captures the impact of
numerical dimension attributes in terms of generating visual-
izations that are: 1) interesting, 2) usable, and 3) accurate.
Clearly, combining these often conflicting objectives dramati-
cally expands the search space of possible visualizations (i.e.,
aggregate views). Moreover, it significantly increases the
processing time incurred to asses the overall utility of each
view, which is assembled from the utility values of each of the
three objectives listed above.

Our earlier work demonstrated that using specific features
of the view recommendation problem allows to efficiently
navigate the prohibitively large search space of possible views
[13]. In this work, we present a novel suite of search schemes
for efficient recommendation of top-k aggregate data views.
The main idea underlying our first scheme Multi-Objective
View Recommendation for Data Exploration (MuVE) is to use an
incremental evaluation of themulti-objective utility function,
where different objectives are computed progressively. Our
results in [13] show that MuVE is able to prune a large num-
ber of unnecessary views, and in turn reduces the overall
processing time for recommending the top-k views. How-
ever, that achieved pruning power is highly dependent on
the order in which those views are presented to MuVE
and might often limit its performance gains. To address that
limitation, we propose our second scheme upper MuVE
(uMuVE), in which the goal is to provide a flexible navigation
of the search space so that high-utility views are discovered
earlier. Particularly, uMuVE is based on setting upper
bounds on the utility of each possible view, which is then
exploited to effectively guide the search process by means of
interleaving the evluation of the different objectives offered
by the different views. Due to that interleaved processing, at
any point of time, uMuVE would typically have multiple
views under consideration, which requires significant
amount of memory for storing their data. This motivated
us to propose our third scheme Memory-aware uMuVE
(MuMuVE), which aims to provide a pruning power close to
that of uMuVE under some memory usage constraints. We
also included set of experiments to demonstrate efficiency of
our optimized view recommendation techniques.

In summary, the main contributions of this work are as
follows:

� We analyze the problem of recommending visualiza-
tions in the presence of numerical dimension

Fig. 1. View on players of the GSW team (target view).

Fig. 2. View on all players in the 2015 NBA (comparison view).

Fig. 3. Binned target view (i.e., GSW team) and comparison view (i.e., all
NBA teams).
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attributes and formulate it in terms of a novel hybrid
multi-objective utility function.

� We propose novel search algorithms MuVE, uMuVE
and MuMuVE, which are particularly optimized to
leverage the specific features of the view recommen-
dation problem.

� We conduct extensive experimental evaluation using
real datasets, which illustrate the benefits achieved
by our proposed algorithms.

The rest of our paper is organized as follows. In Section 2,
we describe the background for our problem. We then for-
mally describe our multi-objective utility function and prob-
lem statement in Section 3, The proposed search algorithms
are discussed in detail in Section 4 and Section 5. We present
our testbed and experiments on real data in Sections 6 and
7. Finally, we discuss related work in Section 8 and con-
clude in Section 9.

2 PRELIMINARIES

2.1 View Recommendation
As in our example above, the process of visual data explora-
tion is typically initiated by an analyst specifying a query Q
on a database DB. The result of Q, denoted as DQ, repre-
sents a subset of the database DB to be visually analyzed.
For instance, consider the following query Q:

Q: SELECT * FROMDB WHERE T;

In Q, T specifies a combination of predicates, which
selects a portion of DB for visual analysis (e.g., team =

GSW). A visual representation of Q is basically the process of
generating an aggregate view V of its result (i.e.,DQ), which
is then plotted using some of the popular visualization
methods (e.g., bar charts, scatter plots, etc.). Similar to tradi-
tional OLAP systems and recent data visualization plat-
forms [19], [20], [28], [30], [31], our model is based on a
multi-dimensional database DB, consisting of a set of
dimension attributes A and a set of measure attributes M.
Additionally, F is the set of possible aggregate functions
over the measure attributes M, such as SUM, COUNT, AVG,
STD, VAR, MIN and MAX. Hence, an aggregate view Vi over
DQ is represented by a tuple ðA;M;F Þ where A 2 A,
M 2 M, and F 2 F. That is, DQ is grouped by dimension
attribute A and aggregated by function F on measure attri-
bute M (all symbols are summarized in Table 1). As in [31],
we consider aggregate views that perform a single-attribute

group-by and aggregation on DQ. A possible view Vi of the
example query Q above would be expressed as:

Vi: SELECT A, F(M) FROMDB WHERE T

GROUP BY A;

where the GROUP BY clause specifies the dimension A for
aggregation, and F ðMÞ specifies both the aggregated mea-
sureM and the aggregate function F .

Typically, a data analyst is keen to find visualizations that
reveal some interesting insights about the analyzed dataDQ.
However, the complexity of this task stems from: 1) the large
number of possible visualizations, and 2) the interestingness
of a visualization is rather subjective. Towards automated
visual data exploration, recent approaches have been pro-
posed for recommending interesting visualizations based on
some objective, well-defined quantitative metrics (e.g., [19],
[20], [30], [31]). Among those metrics, recent case studies
have shown that a deviation-based metric is able to provide
analysts with interesting visualizations that highlight some
of the particular trends of the analyzed datasets [31].

In particular, the deviation-based metric measures the dis-
tance between ViðDQÞ and ViðDBÞ. That is, it measures the
deviation between the aggregate view Vi generated from the
subset dataDQ versus that generated from the entire database
DB, where ViðDQÞ is denoted as target view, whereas ViðDBÞ
is denoted as comparison view. The premise underlying the
deviation-basedmetric is that a view Vi that results in a higher
deviation is expected to reveal some interesting insights that
are very particular to the subset DQ and distinguish it from
the general patterns in DB. To ensure that all views have the
same scale, each target viewViðDQÞ is normalized into a proba-
bility distribution P ½ViðDQÞ� and each comparison view into
P ½ViðDBÞ�. Consider an aggregate view V ¼ ðA;M;F Þ. The
result of that view can be represented as the set of tuples:
< ða1; g1Þ; ða2; g2Þ; . . . ; ðat; gtÞ > , where t is the number of dis-
tinct values (i.e., groups) in attribute A, ai is the ith group in
attributeA, and gi is the aggregated value F ðMÞ for the group
ai. Hence, V is normalized by the sum of aggregate values

G ¼ Pt
p¼1 gp, resulting in the probability distribution P ½V � ¼

< g1
G ; g2G ; . . . ; gtG > . For instance, for the comparison view

shown in Fig. 3, Table 2 illustrates the groups (Minutes
played), aggregate values (Sum 3-PAR) and the computation
of its probability distribution.

For a view Vi, given the probability distributions of its
target and comparison views, the deviation DðViÞ is defined
as the distance between those probability distributions. For-
mally, for a given distance function dist (e.g., Euclidean dis-
tance, Earth Mover’s distance, K-L divergence, etc.), DðViÞ
is defined as

DðViÞ ¼ distðP ½ViðDQÞ�; P ½ViðDBÞ�Þ: (1)

TABLE 1
Summary of Symbols

Symbol Description

DB Database
Q Input query
T Predicates in input query
DQ Data returned by input query Q
A Dimension attribute
M Measure attribute
F Aggregate function
Vi Aggregate view i
Vi;b Aggregate view iwith b bins
DðVi;bÞ Interestingness of view Vi;b

SðVi;bÞ Usability of view Vi;b

AðVi;bÞ Accuracy of view Vi;b

UðVi;bÞ Utility of view Vi;b

aD aA aS Weights of D, A and S

TABLE 2
Computing the Probability Distribution of the

Comparison View Shown in Fig. 3

Minutes Played Sum (3-PAR) Pdf Sum(3-PAR)

a1 : 1� 994 g1 : 103:32
g1
G ¼ 103:32

184:87 ¼ 0:56

a2 : 994� 1988 g2 : 53:97
g2
G ¼ 53:97

184:87 ¼ 0:29

a3 : 1988� 2981 g3 : 27:58
g3
G ¼ 27:58

184:87 ¼ 0:15

Sum of aggregate values ðGÞ ¼ 184:87
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Consequently, the deviation DðViÞ of each possible view Vi

is computed, and the k views with the highest deviation are
recommended (i.e., top-k) [31]. Hence, the number of possi-
ble views to be constructed is N ¼ 2� jAj � jMj � jFj,
which is clearly inefficient for a large multi-dimensional
dataset. Thus, several techniques have been proposed for
optimizing the processing time incurred in recommending
visualizations, which are orthogonal to the optimizations
proposed in this work to address the impact of numerical
dimensions, which is described next.

2.2 Numerical Dimensions
In this paper, we mainly focus on the problem of recom-
mending visualizations in the presence of numerical dimen-
sion attributes. While numerical dimension attributes (e.g.,
age, height, etc.) are abundant in scientific and commercial
databases, current visualization recommendation techni-
ques tend to mostly overlook such numerical dimensions,
and rather focus on the categorical ones. In the presence of
numerical dimensions, binned aggregation is typically
required so that to group the numerical values along a
dimension into adjacent intervals over the range of values
covered by that dimension [10], [17]. Accordingly, binning
of numerical dimensions poses several non-trivial chal-
lenges in terms of recommending visualizations that are not
only interesting, but also accurate and usable. Particularly, in
addition to being interesting (i.e., highly deviated from the
general dataDB), recommended visualizations are expected
to be accurate (i.e., minimize the amount of error between
the aggregated view Vi and its corresponding dataset DQ)
and usable (i.e., minimize the amount of clutter in view Vi).
For instance, while the target and comparison views shown
in Figs. 1 and 2 are highly accurate (no binning applied),
they are also barely usable because of high clutter or high
sparsity, which translates into missing out on revealing
interesting insights.

As mentioned earlier, the benefits, as well as the chal-
lenges, of binning numerical dimensions are well-recog-
nized in the literature, especially in the context of histogram
construction (e.g., [10], [17], [18]), anomaly detection (e.g.,
[29]), and data visualization (e.g., [19], [23]). For instance,
binning (also know as bucketing) is an essential step in con-
structing histograms over numerical attributes for the pur-
pose of selectivity estimation and query optimization.
Deciding the optimal bin width for histograms has been
intensively studied in the statistics literature, where several
model-based approaches have been proposed [10]. In con-
trast, the database literature mostly takes a model-free
approach, considering the dataset currently stored in the
database as the only data of interest. (We refer the reader to
[10], [17], for comprehensive surveys on that topic.) In this
work, we adopt the same approach and expand on existing
model-free methods, as discussed next.

2.3 Binned Views
To enable the incorporation and recommendation of visual-
izations that are based on continuous numerical dimen-
sions, in this work we introduce the notion of a binned view.
A binned view Vi;b simply extends the basic definition of a
view to specify the applied binning aggregation. Specifi-
cally, given a view Vi represented by a tuple ðA;M;F Þ,
where A 2 A, M 2 M, F 2 F, and A is a continuous numeri-
cal dimension with values in the range L ¼ ½Lmin � Lmax�,
then a binned view Vi;b is defined as:

Definition 1 (Binned View). Given a view Vi and a bin width
of w, a binned view Vi;b is a representation of view Vi, in which
the numerical dimension A is partitioned into a number of b
equi-width non-overlapping bins, each of width w, where
0 < w � L, and accordingly, 1 � b � L

w.

For example, Fig. 3 shows a binned view, in which the
number of bins b ¼ 3 and the bin width w ¼ 994.

We note that our definition of a binned view resembles
that of an equi-width histogram in the sense that a bin size
w is uniform across all bins. While other non-uniform histo-
grams representations (e.g., equi-depth and V-optimal)
often provide higher accuracy when applied for selectivity
estimation, they are clearly not suitable for standard bar
chart visualizations.

Given our binned view definition, a possible binned bar
chart representation of query Q is expressed as:

Vi;b: SELECT A, F(M) FROMDB WHERE T

GROUP BY A

NUMBER OF BINS b;

The deviation provided by a binned view Vi;b is com-
puted similar to that in Eq. (1). In particular, the comparison
view is binned using a certain number of bins b and normal-
ized into a probability distribution P ½Vi;bðDBÞ�. Similarly,
the target view is binned using the same b and normalized
into P ½Vi;bðDQÞ�. Then the deviationDðVi;bÞ is calculated as

DðVi;bÞ ¼ distðP ½Vi;bðDQÞ�; P ½Vi;bðDBÞ�Þ: (2)

Clearly, the deviation DðVi;bÞ is bounded by a maximum
value DM . That value DM is achieved when for each group
ai, the corresponding value gi

G in P ½Vi;bðDBÞ� or P ½Vi;bðDQÞ� is
zero. Therefore, to normalize the deviation, DðVi;bÞ is
divided byDM .

Clearly, for a binned view such as view Vi;b defined
above, its usability depends on the visual quality i.e., how
clearly the visualization reveals the structure within the
data. Inversely, clutter is defined by the crowdedness that
obscure the structure within the visualization [7]. A number
of metrics have been proposed to measure clutter for vari-
ous types of visualizations, such as the number of data
points displayed, data density (number of data points/
number of pixels), data to ink ratio and lie factor [7], [11].
All of these metrics basically quantify the amount of content
displayed on screen as a measure of clutter. Similarly, for
bar chart visualizations, clutter occurs due to the large num-
ber of bins in a visualization. Consequently, we simply
define usability as the inverse of clutter, which is captured
as follows:

SðVi;bÞ ¼ 1

b
¼ w

L
; (3)

where b is the number of bins, w is the width of each bin and
L is the range of the dimension attribute. SðVi;bÞ is in the
range ½0; 1�, such that SðVi;bÞ ¼ 1 indicates highest quality.

Furthermore, a binned view Vi;b is obviously a summarized
approximation of the corresponding non-binned view Vi.
Thus, it is essential to measure the (in)accuracy provided by
Vi;b. To achieve this, consider a non-binned view Vi, which is
defined as ðA;M;F Þ. Further, and without loss of generality,
assume A is an ordered integer attribute. As described in the
previous section, the result of that view can be represented as
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the set of tuples: <ða1; g1Þ; ða2; g2Þ; . . . ; ðaj; giÞ; . . . ; ðat; gtÞ> ,
where t is the number of distinct values (i.e., groups) in attri-
bute A. A binned view Vi;b provides a concise approximate
representation of Vi based on partitioning the ordered attri-
bute A into b bins. Particularly, each bin Ix consists of a start
and end point, Ix ¼ ðsx; exÞ, and a value ĝx, which represents
the aggregated value of the measure M over all the values of
dimension A in the range of Ix. That is, Vi;b ¼<ðI1; ĝ1Þ;
ðI2; ĝ2Þ; . . . ; ðIx; ĝxÞ; . . . ; ðIb; ĝbÞ> , where b � t.

This data reduction implies approximation errors in the
estimation of the original non-binned aggregate values,
where the error incurred by that approximation increases
with decreasing the number of bins b. There are number of
metrics that have been used for measuring that kind of (in)
accuracy such as Sum Squared Error, Sum-Absolute-Error,
Sum-Absolute-Relative-Error and Maximum-Absolute Rel-
ative-Error [9]. In this work, we adopt Sum Squared Error
(SSE) metric, which has also been widely employed by the
database community to measure the accuracy of frequency
histograms for the purpose of query optimization (e.g., [9],
[18]). Applying SSE metric for general aggregate views is
straightforward. In particular, the aggregate measure corre-
sponding to any dimension value in the contiguous range
sx; sx þ 1; :::; ex is approximated using a single representa-
tive value g0x, which is computed as ĝx

nx
, where

nx ¼ ex � sx þ 1 (i.e., the number of distinct values in bin
bx). Accordingly, each gj 2 Ix is estimated as g0j ¼ g0x. Hence,
the SSE provided by Vi;b, denoted as EðVi;bÞ, is computed as

EðVi;bÞ ¼
Pt

p¼1ðgp � g0pÞ2 and the relative SSE is computed

as RðVi;bÞ ¼
Pt

p¼1

ðgp�g0pÞ2
g2p

. Accordingly, the accuracy of a

view Vi;b is simply computed as

AðVi;bÞ ¼ 1�RðVi;bÞ
t

: (4)

The computed AðVi;bÞ is in the range ½0; 1�, such that
AðVi;bÞ ¼ 1 indicates maximum accuracy (i.e., zero error).

Clearly, incorporating the different metrics listed above
further complicates the problem of finding the top-k recom-
mended visualizations. This is mainly due to the different
binning options, which in turn leads to an increase in the
number of candidate visualizations. Next, we formally
define the problem of multi-objective view recommendation
in the presence of binned views, as well as the costs
incurred in solving such problem.

3 PROBLEM DEFINITION

In a nutshell, the goal of this work is to recommend the top-k
bar chart visualizations of the results of query Q according
to some utility function. When all dimension attributes are
categorical, such goal simply boils down to recommending
the top-k interesting views based on the deviation metric
[30], [31], as described in Section 2.1. However, that simple
notion of utility falls short in capturing the impact of
numerical dimensions. In particular, the presence of numer-
ical dimensions introduces additional factors that impact
the utility gained from a recommended view. In our pro-
posed schemes, we employ a novel hybrid multi-objective
utility function, which integrates such factors, namely:

1) Interestingness: Is the ability of a view to reveal some
interesting insights about the data, which is

measured using the deviation-based metric DðVi;bÞ
(Eq. (2)).

2) Usability: Is the quality of the visualization in terms
of providing the analyst with an understandable
uncluttered representation, which is quantified via
the relative bin width metric SðVi;bÞ (Eq. (3)).

3) Accuracy: Is the ability of the view to accurately cap-
ture the characteristics of the analyzed data, which is
measured in terms of the accuracy metric AðVi;bÞ
(Eq. (4)).

Notice that the different factors listed above are often at
oddswith each other. For instance, a view that contains a large
number of bins can provide high accuracy, at the expense of
being cluttered and difficult to understand by an analyst. To
the contrary, using a small number of bins leads to a very
smooth and coarse representation of the analyzed data, which
can hide its particular and interesting characteristics. To cap-
ture those conflicting factors, MuVE employs a weighted sum
multi-objective utility function,which is defined as follows:

UðVi;bÞ ¼ aD �DðVi;bÞ þ aA �AðVi;bÞ þ aS � SðVi;bÞ; (5)

where DðVi;bÞ is the normalized deviation of binned view
Vi;b from the overall data, AðVi;bÞ is the accuracy of Vi;b, and
SðVi;bÞ is the usability of Vi;b.

Parameters aD, aA and aS specify the weights assigned to
each objective in our hybrid utility function, such that
aD þ aA þ aS ¼ 1. Those weights can be user-defined so
that to reflect the user’s preference between the three
aspects of utility. Also, notice that all objectives are normal-
ized in the range ½0; 1�. Accordingly, the overall multi-objec-
tive utility function takes value in the same range (i.e.,
½0; 1�), where the goal is to maximize that overall utility.
Such goal is formulated as follows:

Definition 2 (Multi-Objective View Recommendation).
Given a user-specified query Q on a database DB, a multi-
objective utility function U , and a positive integer k, find the k
aggregate binned views over DQ, which have the highest utility
values.

In summary, we posit that a view is of high utility, if it
shows a unique pattern that is based on accurate data and can
be visually identified and appreciated by the user. For
instance, referring back to our motivating example in Sec-
tion 1, while Fig. 1 shows a non-binned view (i.e., accuracy of
1.0), the deviation provided by that view is only 0.17, and its
usability is � 0. Meanwhile, Fig. 3 shows a binned version of
the same viewobtained at aA ¼ 0:2;aD ¼ 0:6;aS ¼ 0:2, which
results in deviation ¼ 0.29, usability ¼ 0.33, and accuracy ¼
0.30. That increase in both deviation and usability, allowed
that particular view to come first on the view recommenda-
tion list (i.e., top-1), and enabled for an insightful visualization.

3.1 View Processing Cost
Recall that in the absence of numerical dimensions, the
number of candidate views N to be constructed is equal to
N ¼ 2� jAj � jMj � jFj. In particular, jAj � jMj � jFj queries
are posed on the data subset DQ to create the set of target
views, and another jAj � jMj � jFj queries are posed on the
entire database DB to create the corresponding set of com-
parison views. In addition, a total of jAj � jMj � jFj distance
computations are needed to calculate the deviation between
each pair of target and comparison views. For each candi-
date non-binned view Vi over a numerical dimension Aj,
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the number of target and comparison binned views is equal
to: 2� jMj � jFj �Bj, where Bj is the maximum number of
possible bins that can be applied on dimension Aj (i.e.,
number of binning choices). Hence, in the presence of jAj
numerical dimensions, the total number of binned views
grows to NB, which is simply calculated as

NB ¼
XjAj

j¼1

2� jMj � jFj �Bj: (6)

Furthermore, for each pair of target and comparison binned
views, the three metrics/objectives listed above are to be
evaluated. Evaluating those metrics incurs the following
processing costs:

- Query Execution Time: the time required to process
the raw data to generate the candidate target and
comparison binned views, where the cost for gener-
ating the target view is denoted as CtðVi;bÞ, and that
for generating the comparison view is denoted as
CcðVi;bÞ.

- Deviation Computation Time: the time required to
measure the deviation between the target and com-
parison binned views, and is denoted as: CdðVi;bÞ.
Notice that this time depends on the employed dis-
tance function dist.

- Accuracy Evaluation Time: the time required to mea-
sure the accuracy of the binned target view in repre-
senting the underlying data distribution and is
denoted as CaðVi;bÞ.

Putting it together, the total cost incurred in processing a
candidate view Vi is expressed as

CðViÞ ¼
XB

b¼1

CtðVi;bÞ þ CcðVi;bÞ þ CdðVi;bÞ þ CaðVi;bÞ: (7)

Hence, the total cost incurred in processing all candidate
binned views is expressed as

C ¼
XNB

i¼1

CðViÞ: (8)

3.2 Search Strategy Overview
In Sections 4 and 5, we present search strategies for find-
ing the top-k binned views for recommendation. For clar-
ity of presentation, we break down a search strategy into
two integral components, namely: 1) Horizontal Search,
and 2) Vertical Search, as shown in Fig. 4. At a high level,
the objective of horizontal search is to find the optimal
binning for a given non-binned view, whereas the objec-
tive of vertical search is to find the top-k binned views
with the highest utility values. In Section 4, we present
different strategies for horizontal search, whereas in
Section 5, we expand on those strategies to enable and
integrate vertical search.

4 SEARCH SCHEMES: HORIZONTAL SEARCH

The total number of binned target and comparison views
are NB as defined in Eq. (6). Evaluating the utility of each
pair of those target+comparison binned views requires a
total processing time CðViÞ, which includes the times
needed for query execution, deviation computation, and
accuracy evaluation. The large number of possible binned

views, together with the complexity of evaluating the utility
function, makes the problem of finding the optimal binning
for a certain view Vi highly challenging. In the following,
we present the optimal baseline scheme namely Linear
Search together with our proposed schemes; i) Multi-Objec-
tive View Recommendation for Data Exploration (MuVE),
ii) Upper bound based MuVE (uMuVE), and iii) Memory-
aware uMuVE (MuMuVE).

4.1 Linear Search
Linear search is basically an exhaustive brute force strat-
egy, which serves as a baseline for our evaluation. In this
strategy, given a certain candidate non-binned view Vi,
all its corresponding binned views are generated and the
overall utility of each of those views is evaluated. Particu-
larly, a non-binned view Vi ¼ ðA;M; F Þ is expanded into
a set of binned views: Vi ¼ fVi;1; . . . ; Vi;b; . . . ; Vi;Lg, where b
is the number of bins, and L is the range of the continu-
ous numerical dimension A. Consequently, the value of b
that results in the highest utility is selected as the binning
option for view Vi resulting in the binned view Vi;opt.

4.2 The MuVE Scheme
Similar to the linear search described above, for a given
non-binned view Vi ¼ ðA;M;F Þ, our MuVE scheme consid-
ers the set of all its possible binned views: Vi ¼ fVi;1;
Vi;2; . . . ; Vi;b; . . . ; Vi;Lg. Unlike linear search, however, MuVE
reduces the computational costs incurred in processing that
set by means of: 1) pruning unnecessary views, and 2) prun-
ing unnecessary utility evaluations.

To easily understand MuVE, notice that our problem of
searching the space and ranking binned views according to
our multi-objective utility function Eq. (5) is similar to
Top-K preference query processing. Particularly, for a view
Vi;b, the three objectives DðVi;bÞ; AðVi;bÞ; SðVi;bÞ can be per-
ceived as the preference query over 3-dimensions. How-
ever, efficient algorithms for preference query processing
(e.g., [14], [24]), are not directly applicable to our problem
because: 1) For any view Vi;b the values ofDðVi;bÞ and AðVi;bÞ
are not physically stored and they are computed on demand
based on the binning choice b, and 2) The size of the view
search space Vi is prohibitively large and potentially infi-
nite. To address these limitations, MuVE adapts and
extends algorithms for Top-K query processing towards
efficiently and effectively solving the multi-objective view
recommendation problem.

Before describing MuVE in details, we first outline a
baseline solution based on simple extensions to the

Fig. 4. Horizontal and vertical searches for recommending top-k
visualizations.
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Threshold Algorithm (TA) [14]. Conceptually, to adapt the
well-know TA to the view recommendation model, each
possible binned view Vi;b is considered as an object with
three partial scores: 1) deviation aDDðVi;bÞ, 2) Accuracy
aAAðVi;bÞ, and 3) Usability aSSðVi;bÞ. Those partial scores are
maintained in three separate lists: 1) D-list, 2) A-list, and 3)
S-list, which are sorted in descending order of each score.
Under the classical TA algorithm, the three lists are tra-
versed sequentially in a round-robin fashion. While travers-
ing, the binned view with the maximum utility seen so far is
maintained along with its utility. An upper bound on the
utility (i.e., threshold) is computed by applying the utility
function to the partial components of the last seen view in
the three different lists. TA terminates when the maximum
utility seen so far is above that threshold or when the lists
are traversed to completeness.

Clearly, such straightforward conceptual implementation
of TA is infeasible to our problem due to the limitationsmen-
tioned before. However, recall that the usability objective S
is based on the number of bins in a view and is calculated as
SðVi;bÞ ¼ w

L ¼ 1
b. Hence, out of the three lists mentioned above,

a sorted list S can easily be generated at a negligible process-
ing cost. In particular, given a view Vi over a numerical
dimension A of range L, MuVE progressively populates the
S-list with the values aSSðVi;1Þ;aSSðVi;2Þ; . . . ;aSSðVi;LÞ,
which are the values of the usability objective sorted in
decreasing order.

One possible approach for populating the D-list and
A-list is to first generate the S-list and then compute the cor-
responding DðVi;bÞ and AðVi;bÞ values for each view Vi;b.
Those values are then sorted in descending order and the
TA algorithm is directly applied on all three lists. Clearly,
that approach has the major drawback of incurring the cost
for computing the deviation and accuracy of all the possible
binned views. Instead, we leverage the particular Sorted-
Random (SR) model of the Top-K problem to minimize the
number of those expensive estimation probes.

The SR model is particularly useful in the context of web-
accessible external databases, in which one or more of the
lists involved in an objective function can only be accessed
in random and at a high-cost [14], [16], [24]. Hence, in that
model, the sorted list basically provides an initial set of can-
didates, whereas random lists (i.e., R) are probed on
demand to get the remaining partial values of the objective
function. In our model, the S-list already provides that
sorted sequential access, whereas the D-list and A-list are
clearly external lists that are accessed at the expensive costs
of computing the deviation and accuracy. Under that set-
ting, while the S-list is generated incrementally, two values
are maintained (as in [14], [24]): 1) Useen: the maximum util-
ity seen among all binned views generated so far, and 2)
Umax: a threshold on the maximum possible utility for the
binned views yet to be generated. These two values enable
efficient navigation of the search space by pruning a signifi-
cant number of possible binned views as well as utility eval-
uations, which is achieved using two simple techniques:

Incremental Evaluation: The main idea is to calculate the
different components of the utility functionUðVi;bÞ incremen-
tally and terminate the calculation once it is clear that Vi;b is
not the optimal binned view. To achieve this, when a candi-
date binned view Vi;b is considered, its SðVi;bÞ value is com-
pared to the maximum utility seen so far, (i.e., Useen), then
the calculation of itsDðVi;bÞ andAðVi;bÞ values are eliminated
(i.e., pruned) if aD þ aA þ aSSðVi;bÞ � Useen. The idea is that

since each of DðVi;bÞ and AðVi;bÞ is bounded to 1.0, then a
binned view Vi;b that satisfies this condition will never have a
utility greater than Useen, which makes evaluating its devia-
tion and accuracy unnecessary. Such viewwill incur no proc-
essing costs since SðVi;bÞ is readily available given b, whereas
the calculations ofDðVi;bÞ andAðVi;bÞ are pruned.

If the above condition is not satisfied, instead of calculat-
ing both DðVi;bÞ and AðVi;bÞ, further incremental evaluation
is performed. Particularly, MuVE decides an order of evalu-
ation of those two objectives. If DðVi;bÞ is evaluated first,
then if aDDðVi;bÞ þ aA þ aSSðVi;bÞ � Useen, then Vi;b is safely
pruned without the need for evaluating its accuracy. Alter-
natively, if AðVi;bÞ is evaluated first, then if aD þ aAAðVi;bÞþ
aSSðVi;bÞ � Useen, then the deviation objective is not calcu-
lated and Vi;b is pruned. The evaluation order of these two
objectives is very important for pruning of low utility views.
To decide the evaluation oder of those two objectives,
MuVE applies a simple priority function, such that if

aA

CtðVi;bÞ þ CaðVi;bÞ >
aD

CtðVi;bÞ þ CcðVi;bÞ þ CdðVi;bÞ ; (9)

then AðVi;bÞ is evaluated first, otherwise DðVi;bÞ is the one to
be evaluated first. The idea is to give higher priority to eval-
uating an objective if it incurs less processing cost and/or
contributes more to the utility function that is to be maxi-
mized. Recall that CtðVi;bÞ, CcðVi;bÞ, CdðVi;bÞ, CaðVi;bÞ are the
costs of evaluating the target view, comparison view, devia-
tion, and accuracy, respectively. To estimate such costs for a
binned view Vi;b, MuVE simply maintains a moving average
of each of those costs over the previous Vi;1; Vi;2; . . . ; Vi;b�1

binned views. Particularly, whenever a short circuit fails
and an objective is evaluated, the cost for evaluating the
operations involved in that objective is updated as:
CxðVi;bÞ ¼ bCxðVi;b�1Þ þ 1�b

b�2

Pb�2
j¼1 CxðVi;jÞ, where x is any of

the four operations listed above, and b ¼ 0:825 to give more
weight to the most recent costs. In our experiments
(Section 7), we consider other options for setting the priority
function and discuss the trade-offs between those options.

Early Termination: when a binned view Vi;b is considered
for evaluation, the threshold Umax is updated to
Umax ¼ aD þ aA þ aSSðVi;bÞ . That is, assuming that Vi;b will
receive the maximum score of 1.0 under both the deviation
and accuracy objectives. In that case, if Useen 	 Umax, then it
is guaranteed that the actual utility of Vi;b cannot exceed
Useen. Moreover, since all the following views starting at
Vi;bþ1 will have lower S values, they are also guaranteed to
provide utilities less than Useen. Hence, those views are
pruned and early termination is reached.

Example 2. Consider applying MuVE search on a non-
binned view Vi, which is represented by 5 binned views
Vi;2 to Vi;6 (Fig. 5). Further, consider that k ¼ 1, aD ¼ 0:2,
aA ¼ 0:6 and aS ¼ 0:2. For each binned view Vi;b, its
usability SðVi;bÞ is already known and the binned views
are ordered accordingly. However, the values of the other
two objectives AðVi;bÞ and DðVi;bÞ are calculated as MuVE
progresses. UðVi;bÞ is the utility of the binned view Vi;b if
all three objectives are known, otherwise, it specifies an
upper bound on that utility. Useen is the maximum utility
seen so far and Umax is the threshold on the maximum
possible utility. Fig. 5 shows a snapshot of how MuVE
returns the top-1 binned view for Vi. In the first iteration
(Fig. 5a), Umax is set as aD þ aA þ aSSðVi;2Þ ¼ 0:90, then
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both the accuracy and deviation of the first binned view
Vi;2 are computed (shown as a highlighted column in
Fig. 5a). Since Vi;b is the only seen view, therefore,
Useen ¼ UðVi;2Þ ¼ 0:62. In the second iteration (Fig. 5b),
MuVE considers the next view (i.e., Vi;3). The new value of
Umax is 0.87 calculated by aD þ aA þ aSSðVi;3Þ. According
to our priority function, Vi;3 is probed for accuracy and its
new upper bound on utility is computed as aD þ aA

AðVi;3Þ þ aSSðVi;3Þ ¼ 0:66, which is stored in UðVi;3Þ. Since
that value of 0.66 is greater than the current value of Useen,
then Vi;3 can possibly have a utility greater thanUseen, so it is
further probed for deviation. In the third iteration (Fig. 5c),
Vi;4 is probed for accuracy. Its updated upper bound onutil-
ityUðV4Þ ¼ 0:61, which is less thanUseen, therefore its devia-
tion computation is pruned. Similar to Vi;2, the next two
views Vi;5 and Vi;6 are also fully probed (both accuracy and
deviation are evaluated). Finally, MuVE selects Vi;6 as the
top-1 view,which has the highest utility.

In Example 2, MuVEmanaged to prune one deviation cal-
culation for Vi;4. In general, the amount of pruning achieved
by MuVE depends on several factors including the data dis-
tribution and the weights of each objective. To attain even
higher pruning power, our uMuVE and MuMuVE schemes
are proposed next.

4.3 The uMuVE Scheme: Upper Bound Based MuVE
Similar to the TA algorithm, MuVE visits the sequence of
possible binned views one at a time. For each visited view
Vi;b, the objective values AðVi;bÞ and DðVi;bÞ are either imme-
diately calculated or pruned. Hence, all the necessary proc-
essing is completed once a view is visited and no
backtracking is needed. Alternatively, in this section, we
propose uMuVE, which extends the Upper Algorithm [8],
[24] and allows for interleaved processing of views. Particu-
larly, uMuVE follows a greedy approach, in which it evalu-
ates the most promising views first so that to minimize the
total processing time while providing the same results as
our original MuVE.

Like MuVE, uMuVE also maintains Umax, a threshold on
the highest possible utility of a view in the S-list, which has
not yet been visited. Additionally, each binned view Vi;b has

an upper bound UupperðVi;bÞ on its utility, which is the maxi-
mum possible utility a view Vi;b can have. In uMuVE a prior-
ity queue PQ is maintained based on the upper bound scores
of the views. When a view is retrieved from the S-list, its
UupperðVi;bÞ equals to aD þ aA þ aSSðVi;bÞ and it is added to
PQ. Once any or both of the objectives (i.e., deviation or
accuracy) is calculated, UupperðVi;bÞ of the view is updated
accordingly.

For example, in Example 2, the first view retrieved from
the S-list and added to PQ is Vi;2 (Fig. 6a). According to our
earlier explanation, initially UupperðVi;2Þ ¼ Umax ¼ aD þ aAþ
aSSðVi;2Þ ¼ 0:90. In the first iteration, according to our prior-
ity function (Eq. (9)), accuracy of Vi;2 is computed and its
upper bound on utility is updated to 0.66.

In each iteration, uMuVE decides to process one out of
two views: 1) view Vi;bþ1, which is the next view in the
S-list, or 2) Vh, which is the view with the highest Uupper in
PQ. To decide between those two views, the upper bound
of Vh is compared against Umax and the following two cases
are considered:

Case 1: UupperðVhÞ � Umax: If the upper bound of Vh is
lower than the upper bound of the unseen views and there
are still views that are not added to PQ yet. Then, this is an
indication that the next view in S-list can have a higher
upper bound on its utility as compared to all of the views in
PQ. Particularly, Uupper of the next binned view Vi;bþ1 is com-
puted and Umax is updated as Umax ¼ UupperðVi;bþ1Þ.

To further illustrate that case, consider Fig. 6 again. As
UupperðVi;2Þ is less than Umax, the decision on pruning or
probing of Vi;2 is deferred for now (shown as dark
highlighted column) and it will be kept in memory until
uMuVE comes back to it. In the second iteration (Fig. 6b),
Umax is updated according to the new view Vi;3 and Vi;3 is
added to PQ. After probing Vi;3 on accuracy, its upper
bound on utility becomes less than Umax and uMuVE
retrieves the next view from S-list. In the next three itera-
tions, uMuVE will add the next three views Vi;4, Vi;5, Vi;6 in
PQ and probe them for accuracy only, as shown in Fig. 6c.

Case 2: UupperðVhÞ > Umax or S-list is empty: If UupperðVhÞ is
greater than Umax, then this is an indication that Vh can be
the top-1 view. If Vh is already fully probed then it is

Fig. 5. Example: The MuVE scheme. Fig. 6. Example: The uMuVE scheme.
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returned as the top-1 view and the rest of the views are
removed from PQ. However, if it is partially probed then its
other objective is calculated and UupperðVhÞ is updated
accordingly.

If S-list is empty, uMuVE selects the view with highest
upper bound Vh, probe it further and update its UupperðVhÞ.
To illustrate this case consider Fig. 6d, in which uMuVE has
added all possible views to the PQ and S-list is empty.
Now, uMuVE will select a view from the front of PQ i.e.,
Vi;6 and compute its deviation objective. The final utility of
Vi;6 is 0.74 and the upper bound of every other view is less
than this utility, therefore, Vi;6 is returned as top-1 view.
Fig. 6 clearly shows that uMuVE is able to prune three more
deviation evaluations as compared to MuVE.

4.4 The MuMuVE Scheme: Memory-Aware uMuVE
Our machines have limited computational and memory
resources. Therefore, along with the processing cost of pro-
posed search schemes, it is also important to understand
their memory requirements. For instance, consider our pro-
posed schemes MuVE and uMuVE, MuVE’s memory usage
is negligible since it considers only one view at a time. How-
ever, uMuVE stores multiple views in the priority queue,
therefore, it uses more memory and its memory require-
ments need to be quantified and optimized. In the classical
Upper scheme [8], [24], objects are points in multidimen-
sional space and partial probes only require to store single
value per dimension. Therefore, memory is not a critical
problem in that scenario. However, in our case, each object
is a view and view data is stored in memory. This brings
forth the addition challenge of optimizing memory require-
ments of uMuVE. In this section, we address that challenge
by quantifying the memory needs of uMuVE and proposing
the memory-aware uMuVE scheme (MuMuVE).

As explained in Section 4.3, the decision on the views in
the priority queue remain pending, unless there is an indica-
tion that those views should be probed further or pruned.
The memory requirements for uMuVE depend on the order
in which views are visited. For instance, for a non-binned
view Vi, if the top-1 binned view is seen earlier in the search,
memory needs will be minimal. In the worst case scenario,
the data for every binned view Vi;b is stored in memory. The
amount of memory used by a binned view Vi;b denoted as
MUðVi;bÞ, equals to the number of bins b of Vi;b. Then, a binned
view Vi;b in PQ, can be in one of the following three states:

1) AðVi;bÞ & DðVi;bÞ are known: That is, view Vi;b has
been fully probed and both objectives have been
evaluated. Therefore, the data for comparison and
target view is not required anymore. Hence,
MUðVi;bÞ ¼ 0.

2) AðVi;bÞ is known & DðVi;bÞ is unknown: That is, the
accuracy of view Vi;b has been computed. Specifically,
the underlying target view of Vi;b has been retrieved
and it will be kept in memory until Vi;b is pruned or
probed for deviation. Therefore,MUðVi;bÞ ¼ b.

3) DðVi;bÞ is known & AðVi;bÞ is unknown: That is, the
deviation of view Vi;b has been evaluated. Particu-
larly, the underlying target and comparison views of
Vi;b were retrieved. After computing deviation, the
comparison view is discarded, but the target view
will remain in main memory because it may be
needed if uMuVE decides to evaluate the accuracy
of this view. Therefore,MUðVi;bÞ ¼ b.

Let Li be the range of the dimension attribute of the non-
binned view Vi, then the maximum memory needed to
search for the top-1 binned view is

MUðViÞ ¼
XLi

b¼2

MUðVi;bÞ ¼
XLi

b¼2

b:

In Example 2, the amount of memory used by uMuVE
(Fig. 6) is MUðViÞ ¼

P6
b¼2 b ¼ 2þ 3þ 4þ 5þ 6 ¼ 20. This is

because uMuVE had all 5 views in the memory.
Clearly, uMuVE always has lower processing cost as

compared to MuVE, but it has additional memory needs. To
balance the trade-off between memory and processing time,
a memory-aware version of uMuVE (MuMuVE) is proposed
next.

MuMuVE is an extension of uMuVE for memory-bounded
evaluation of views. The new scheme attempts to minimize
view probes for a given amount of memory ML. The main
idea is when the memory utilization gets close to ML,
instead of adding more views to PQ, give preference to
probing those views which are already in PQ. Conse-
quently, memory will be evicted.

As explained previously, uMuVE selects a view Vh with

the highest Uupper from PQ and if UupperðVhÞ < Umax, moves

a binned view VS from S-list to PQ. However, for MuMuVE

before adding VS to PQ, we also need to check if there is

enough space available. Therefore, the condition is modified

as: if UupperðVhÞ < Umax &MUðVSÞ < ML then add VS to PQ.

VS is not added to PQ if any of the two conditions is vio-

lated. Hence, if UupperðVhÞ < Umax is false, MuMuVE probes

Vh further. If MUðVSÞ < ML is false, that means MUðViÞ has
reached the bound ML. MuMuVE will choose a partially
probed view Vh0 from PQ to complete its utility evaluation.
This ensure that the memory occupied by Vh0 is evicted and
more views can be added to PQ. The decision about which
view to evict is critical, as it affects the processing time. We
consider the following three options:

1) Max-Bins: In this option, MuMuVE chooses the view
with the maximum number of bins from the partially
probed views in PQ. Although, there is no indication
that this view might be the top-1 view, however, it
ensures that the maximum possible memory is
evicted by a single probe.

Again, consider Example 2 and assume ML ¼ 10.
MuMuVE starts adding views from S-list to PQ as in
uMuVE. By the end of the third iteration (Fig. 7a),
Vi;2, Vi;3 and Vi;4 are already in PQ. The amount of
memory used MUðViÞ is 9. The next view in S-list Vi;5

require 5 locations while there is only 1 available,
therefore, MuMuVE needs to evict memory before
adding Vi;5 to PQ. According to max-bins, MuMuVE
probes the view having maximum bins i.e., Vi;4

(Fig. 7b). Consequently, there is enough space to add
Vi;5 as shown in the final state of the fourth iteration
in Fig. 7c. After the final iteration (Fig. 7d), this
scheme is able to prune two objective evaluations as
compared to four of uMuVE. However, in worst case
it only used 50 percent of the space compared to
uMuVE.
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2) Max-Utility: In this option, MuMuVE chooses the
view Vh0 having maximum upper bound Uupper.
However, if number of bins of Vh0 is lower than the
number of bins of VS then it will keep choosing Vh0
views until there is enough space. Therefore, as
result MuMuVE evaluates unnecessary objectives
and that will increase processing cost as compared
to MuVE. On the other side there is possibility that
the view MuMuVE has fully probed might be the
top-1, which will end the search.

Consider Example 2 again and assume ML ¼ 10.
Similar to max-bins, Vi;2, Vi;3, Vi;4 are added to PQ
and ML is reached (Fig. 8a). According to max-util-
ity, the view having maximum upper bound on util-
ity i.e., Vi;2 is probed further (Fig. 8b). However, the
available space (ML �MU ) is still not enough to
accommodate Vi;5. Therefore, MuMuVE probe Vi;3

(Fig. 8c), which will reduce the used memory space
MU to 4. Then, Vi;5 can be added to PQ as shown in
the final state of fourth iteration in Fig. 8c. Max-util-
ity pruned one objective evaluation as compared to
two of max-bins.

3) Max-Min-Utility:Memory requirements and process-
ing time of the max-utility scheme can be further
reduced by keeping track of lower bound on the util-
ity of the views in PQ. Particularly, when the mem-
ory is full, view Vh0 with the maximum utility from
PQ is probed further. Utility of this Vh0 becomes
lower bound on the utility i.e., Ulower ¼ UðVh0 Þ and all
views Vi;b from PQ which have UupperðVi;bÞ < Ulower

are removed, because none of these can be top-1
view.

Consider Fig. 8 again, and assume Ulower is also main-
tained. In initial state of the fourth iteration (Fig. 8b) after
view Vi;2 is fully probed the lower bound on utility is
updated as Ulower ¼ 0:62. As the upper bound on the utility
of Vi;4 is less than Ulower, which means Vi;4 can not be in top-
1 therefore it is removed from PQ. Now, there is enough
memory available to probe the next view. After the final
step, max-min-utility is able to prune two objective evalua-
tions compared to max-utility.

5 SEARCH SCHEMES: VERTICAL SEARCH

Recall that the goal of this work is to recommend the top-k
visualizations that maximize our multi-objective utility
function. In the previous section, we discussed horizontal
search strategies, which find the optimal binned Vi;opt for a
given non-binned view Vi. As discussed earlier, the space
of possible non-binned views, is of size N ¼ 2� jAj�
jMj � jFj. In the case where A is a set of numerical dimen-
sions, then the total number of corresponding possible
binned views is NB, where NB ¼ PjAj

j¼1 2� jMj � jFj �Bj

and the goal is simply to find the top-k binned views across
those NB views. We note, however, that recommending two
different binned views that correspond to the same non-
binned views adds little value to the analyst and is rather
redundant. Hence, if Vx;b1 and Vy;b2 are two views in the top-
k list, then x 6¼ y. Consequently, we propose the following
vertical search strategies.

In our first strategy for vertical search, we extend linear
search (as described in the previous section) for the purpose
of finding the top-k recommendations. Particularly, in this
simple strategy, the set of all possible non-binned views V

is traversed sequentially in an exhaustive manner. Then,
each view Vi 2 V is expanded and searched horizontally to
find its optimal binned view Vi;opt. As linear search finishes
scanning V, the optimal binned view corresponding to each
view Vi is identified, and out of those, the k with the highest
utility are the ones to be recommended.

Note, however, that under this vertical linear search, the
vertical and horizontal searches are clearly decoupled. Hence,
while the vertical search is performed linearly, the choice of
the horizontal search strategy is open. Given the algorithms
discussed so far, this allows for the combinations denoted as
follows: linear-linear: in which linear search is used for both
the vertical and horizontal searches, and MuVE-Linear: in
which linear search is used for vertical search, whereas the
optimized MuVE, as described in the previous section, is
used for horizontal search. Obviously, the latter combination
allows leveraging the optimizations offered by MuVE to
reduce the cost of each horizontal search. Towards further

Fig. 7. Example: The MuMuVE scheme (Max-Bins). Fig. 8. Example: The MuMuVE scheme (Max-Utility).
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optimizations, in the following we discuss extending MuVE,
uMuVE and MuMuVE to perform both the vertical and hori-
zontal searches (i.e., MuVE-MuVE, uMuVE-Linear, uMuVE-
uMuVE,MuMuVE-Linear,MuMuVE-MuMuVE).

Extending MuVE to perform both horizontal and vertical
searches is straightforward. To explain that extension, recall
that for performing horizontal search on a non-binned view
Vi over a numerical dimension of range L, MuVE progres-
sively populates the S-list with the values aSSðVi;1Þ;
aSSðVi;2Þ; . . . ;aSSðVi;LÞ, which are the values of the usability
objective sorted in decreasing order. Hence, to allow vertical
search, MuVE traverses the set of non-binned views V in a
round-robin fashion, where in a round r each view Vi 2 V is
appended to the S-list as Vi;r, given that r is less than the
maximum number of bins that is possible for that view.
Adding a view Vi;r to the S-list triggers evaluating the
multi-objective utility function UðVi;rÞ. That evaluation is
performed similar to the one described above for the hori-
zontal search, except that the pruning conditions employed
for the incremental evaluation are set for top-k instead of
top-1. Evaluating new views continues until all possible
binned views are generated or until early termination is
reached, then the top-k views with the highest utility are
returned to the user.

In comparison to MuVE-Linear described above, using
MuVE for both vertical and horizontal search clearly offers
further reductions in cost by means of increasing the num-
ber of pruned operations. To explain this, consider an unin-
teresting view Vi (i.e., a view with low deviation). If that
view is considered in isolation, as in MuVE-Linear, then sig-
nificant processing time will be spent on finding Vi;opt. How-
ever, UðVi;optÞ is expected to still be very small compared to
the other views, which are more interesting. Under MuVE,
however, those interesting views will lead to increasing the
value of Useen, which in turn allows for pruning many of the
objective evaluations that were to be performed on Vi.

Extending uMuVE to perform vertical and horizontal
search is similar to MuVE. Like MuVE, uMuVE traverses
the set of non-binned views V in round robin fashion and in
each round r it appends each Vi;r to S-list. However,
uMuVE also maintains a priority queue PQ and moves
views from S-list to PQ when none of the views in PQ are
promising enough to be probed further. When the utility of
a fully probed view Vh becomes greater than Umax it is rec-
ommended as top-k and removed from PQ. Further, all of
the views with same A, M and F as Vh are also removed
from PQ to ensure that the recommended views are diverse.

Progressive Results: A key advantage of using uMuVE in
both horizontal and vertical direction is that it can produce
progressive results, i.e., results as they become available rather
than waiting for complete evaluation of all of the views. Spe-
cifically, after returning the top-1 view, if more views are
required uMuVE continues to probe more views and com-
plete their utility evaluations. Then, uMuVE returns the next
viewwith the highest utility and it keeps going until all of the
top-k views are returned. This feature can be particularly ben-
eficial in an interactive data exploration scenario, where as
soon as the first few results are known, the usermay decide to
terminate the current search and begin a next search by
changing some of the input parameters.

Additional Aggregate Queries: We note that while in this
paper we consider only aggregation with a single numeric
dimension (i.e., single group-by attribute), our techniques are
directly applicable to the more general scenario, in which

there aremultiple numeric group-by attributes. Such aggrega-
tions will result in multi-column views that can be visualized
as multi-dimensional or stacked bar charts. Hence, more
memory is required to store thosemulti-columnviews but the
process of the objective computationwould remain the same.

Another interesting setting to consider is when some of
the possible aggregations have a numerical dimension attri-
bute, whereas others are based on a categorical dimension
attribute. In that case, recommending the top-k interesting
views is rather challenging as it requires the employed utility
function to be able to fairly compare the utility provided by
those two different kinds of views. One idea is to adapt our
multi-objective function (Eq. (5)) such that if a view Vi is
based on a categorical dimension, then its overall utility is
computed as follows: 1) the deviation of Vi is computed as in
Eq. (2), 2) the accuracy of Vi is always equal to 1.0 since no
summarization is performed, and 3) the usability of Vi is also
equal to 1.0 since categorical values cannot be aggregated in
larger bins. However, that simple adaptation is expected to
always assign high utility values to those views based on cat-
egorical dimensions because their accuracy and usability
will always receive a perfect score of 1.0. This is clearly in
contrast with our goal of ensuring a fair comparison between
different kinds of views. Hence, our utility function needs to
incorporate additional measures to enforce that fairness
(e.g., diversification [21], [22]). A detailed exploration of that
problem is part of our future work.

6 EXPERIMENTAL TESTBED

We perform extensive experimental evaluation to measure
the efficiency of the different top-k view recommendation
strategies presented in this paper. Here, we present the dif-
ferent parameters and settings used in our experimental
evaluation.

Setup: We built a platform for recommending visualiza-
tions, which extends the SeeDB codebase [31] to support
numerical dimensional values, binned aggregation, and the
different search strategies presented in this paper. Our experi-
ments are performed on a Corei7 machine with 16GB of RAM
memory. The platform is implemented in Java, and Post-
greSQL is used as the backend databasemanagement system.

Schemes: We investigate the performance of the different
combinations of the vertical and horizontal search strategies
presented in this paper. Our naming convention for those
combinations is represented as: SearchH-SearchV, where
SearchH denotes the search strategy employed for horizontal
search, whereas SearchV is the one for vertical search. For
instance, in MuVE-Linear, MuVE is used for horizontal
search, whereas linear search is applied for vertical search.

Data Analsyis: We assume a data exploration setting in
which multi-dimensional datasets are analyzed. We use
three datasets: DIAB: dataset of diabetic patients [1], NBA:
dataset of basketball players [4] and CENSUS: dataset of
adult census income [2]. The independent numeric attrib-
utes of each dataset are used as dimensions, whereas the
observation attributes are used as measures. For instance, in
the DIAB dataset, dimensions are selected from age, BMI,
etc., whereas measures are selected from insulin level, glu-
cose concentration, etc.

The DIAB, NBA and CENSUS datasets have 9, 28 and 15
attributes, respectively. In our default setting, we select 3
dimensions, 3 measures, and 3 aggregate functions. Table 3
shows the range of each dimension A for every dataset and
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accordingly the number of possible views are also shown. In
the analysis, all the a values are in the range ½0� 1�, where
aD þ aA þ aS ¼ 1. In the default setting, aD ¼ 0:2, aA ¼ 0:2,
aS ¼ 0:6 and k ¼ 5, unless specified otherwise. The input
queries for each dataset are: DIAB: SELECT * FROM DIAB

WHERE Pregnancies>3, NBA: SELECT * FROM NBA

WHERE team=GSW, and CENSUS: SELECT * FROM CENSUS

WHERE income>50K.

Performance: We evaluate the efficiency of the different
recommendations strategies in terms of (1) Cost: As men-
tioned in Section 3, the cost of a strategy is the total cost
incurred in processing all the candidate binned views, which
is measured in wall clock time, and (2) Fully Probed Views:
Count of the views Vi;b for which both objectives DðVi;bÞ and
AðVi;bÞwere calculated. Each performance metric is reported
based on the average of 10 different executions.

7 EXPERIMENTAL EVALUATION

In the following experiments, we evaluate the performance
of our techniques under different parameter settings.

Impact of the a parameters (Figs. 9, 10 and 11): In this set of
experiments, we measure the impact of the a values on
processing time (i.e., cost). Figs. 9, 10 and 11 show how the
cost of the different schemes is affected by changing the val-
ues of aD, aA and aS .

In Figs. 9 and 10, aS is set to constant 0.2 while aA and aD

are changing. In particular, as shown in the figures, aD is
increased, while aA is implicitly decreased and is easily
computed as aA ¼ 1� aD þ aS . Fig. 9 shows that Linear-
Linear has almost same cost for all values of aS , which is
expected since it performs exhaustive search over all combi-
nations of A, M, F , and B. Therefore, its cost depends on
the number of all possible combinations, irrespective of the
values of a.

Fig. 9 also shows that MuVE-MuVE has lower cost than
Linear-Linear and MuVE-Linear, especially in the region
where aD is low and correspondingly, aA is high. This is
because interesting views with high accuracy will lead to a
higher Useen, which in turn allows for pruning the less

interesting views during the vertical search. Furthermore,
Fig. 9 also shows that uMuVE-uMuVE offers the lowest cost,
especially when aD < 0:4. For instance, at aD ¼ 0:2,
uMuVE-uMuVE has almost 30 percent lower cost as com-
pared to MuVE-MuVE. This is because after evaluating one
objective of a view, uMuVE delays probing that view in full
until the partial utility of that view becomes higher than the
current Umax. Hence, it prunes many unnecessary deviation
evaluations. The reduction in cost of the MuVE variants can
be further understood using Fig. 10, in which we plot the
number of views that are probed in full (i.e., both deviation
and accuracy are evaluated). Fig. 10 shows that MuVE-
MuVE and uMuVE-uMuVE fully probe a very low number
of views at the high values of aD. Interestingly, however,
that large reduction in the number of probed views does
not translate into cost saving as it has been the case at high
aA (Fig. 9). This is because at high aD, MuVE-MuVE and
uMuVE-uMuVEmainly prune the operations for computing
accuracy, whereas at high aA mainly the operations for com-
puting deviation are pruned, which typically incur higher
processing cost than that needed for computing accuracy.

In Fig. 11, aA ¼ 0:2, whereas aS is increasing and accord-
ingly aD is decreasing. Fig. 11 shows the effect of changing
aS and aD values on cost. Particularly, Figs. 11 shows that
the MuVE schemes have almost same cost as Linear-Linear
for smaller values of aS , but outperform it as the value of aS

increases. For instance, in Fig. 11 at aS > 0:5, all four
schemes show more than 70 percent reduction in cost as
compared to Linear-Linear. This happens because in the
MuVE and uMuVE schemes, when aS is high, there are
more chances of applying the short circuiting and early ter-
mination conditions based on the usability value, and in
turn pruning many of the operations required for evaluat-
ing deviation and accuracy. The amount of achieved

TABLE 3
Details of Datasets

Datasets Number
of tuples

Range
of A1

Range
of A2

Range
of A3

Number
of Views

DIAB 768 21-81 0-67 0-199 2,961
NBA 651 19-38 1-83 1-2981 27,765
CENSUS 32,561 17-90 1-16 1-99 1,701

Fig. 9. DIAB: Impact of aA and aD on cost, when aS ¼ 0:2.

Fig. 10. DIAB: Impact of aA and aD on the number of fully probed views,
when aS ¼ 0:2.

Fig. 11. DIAB: Impact of aD and aS on cost, when aA ¼ 0:2.
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pruning is further increased under MuVE-MuVE and
uMuVE-uMuVE, which is able to prune those operations
during both the vertical and horizontal searches. For
instance, Fig. 11 shows that uMuVE-uMuVE reduces the
processing cost by almost 75 percent, compared to uMuVE-
Linear, at aS ¼ 0:6.

Impact of k (Fig. 12): In the previous experiments, the
value of k is set to 5 (i.e., top-5 views are recommended).
Fig. 12 shows that Linear-Linear, MuVE-Linear and uMuVE-
Linear are all insensitive to the increase in the value of k.
This is because Linear-Linear is exhaustive search, whereas
MuVE-Linear and uMuVE-Linear also performs an exhaus-
tive vertical search. For instance, in Fig. 12a, in case of top-1
MuVE-MuVE reduces the cost by up to 90 percent com-
pared to the Linear-Linear scheme, while the reduction
offered by uMuVE-uMuVE is up to 85 percent compared to
theMuVE-MuVE scheme.

Priority Function Analysis (Fig. 13): As mentioned in Sec-
tion 4.2, we consider different options for setting our prior-
ity function for ordering the evaluation of objectives. The
options that we considered are: 1) Random: Randomly choo-
ses the objective to evaluate first, 2) Deviation-First: Always
computes the deviation objective first, 3) Accuracy-First:
Always computes the accuracy objective first, 4) Weights-
Based: Selects the objective which has more weight as it con-
tributes more to the objective function, and 5)Hybrid: Selects
an objective based on its weight and evaluation cost (as in
Eq. (9)).

Fig. 13 shows the cost of MuVE-MuVE in terms of the
number of fully probed views when incorporating each of
the options listed above. In Fig. 13, aS ¼ 0:2, whereas aD is
increasing and accordingly aA is decreasing.

Fig. 13 shows that for low value of aD, number of fully
probed views for accuracy-first scheme are lower than devi-
ation-first because of the short circuiting of deviation objec-
tive evaluation. However, for high values of aD, number of

fully probed views for deviation-first are lower because of
the short circuiting of accuracy objective evaluation. Hybrid
scheme captures the advantage of both deviation-first and
accuracy-first schemes.

Scalability (Fig. 14): From Section 3.1, the theoretical com-
plexity of our recommendation problem is linear in terms of
the number of dimensions A, expressed as cA, where c is the
product of number of measures, aggregate functions and
bin settings. While such complexity applies to both Linear,
MuVE and uMuVE, in practice, however, c is much smaller
for MuVE and uMuVE due to pruning. For example, Fig. 14
shows our results on the NBA data, it can be inferred that c
for Linear goes up to �12, whereas it is only �0:05 for MuVE
and uMuVE.

Progressive Results (Fig. 15): In this experiment we dem-
onstrate uMuVE’s ability to produce results in a progressive
fashion. Particularly, Fig. 15 shows the delay (i.e., process-
ing cost) until producing the ith-top view when recom-
mending a total of 15 views (i.e., top-k, where k ¼ 15). As
the figure shows, Linear-Linear, MuVE-Linear, MuVE-MuVE
and uMuVE-Linear produce the top-15 views all together as
a batch. However, uMuVE-uMuVE produces the 1st top
view as soon as it is identified, and then it keeps producing
more views in descending order of their utility values. For
instance, uMuVE-uMuVE recommends the 9th view after
only 0.18sec, while MuVE-MuVE recommends it along with
all the 15 top-k views after 1sec.

Memory Requirements (Fig. 16): In this experiment we
study the performance of our memory-aware MuMuVE
scheme under a predefined memory constraint ML. We par-
ticularly evaluate the different variants of MuMuVE,
namely: Max-bins, Max-utility, and Max-Min-Utility,
against uMuVE. To do that, we set the limitML as a percent-
age of the memory used by uMuVE in the worst case
(as shown on the x-axis in Fig. 16). For instance, a value of

Fig. 12. Impact of k on cost.

Fig. 13. Priority function analysis. Fig. 14. NBA: Scalability.
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0.75 means that the memory constraint ML is set to 75 per-
cent of the maximum memory used by uMuVE. As the
figure shows, uMuVE-uMuVE acts as a baseline and its per-
formance is independent of ML. Further, the figure also
shows that as ML is decreased, the cost of all the memory-
aware schemes increase. This is because the memory-aware
schemes are forced to evaluate extra objectives to reclaim
space. The figure shows that Max-Bins outperforms Max-
Utility because of its ability to avoid unnecessary probes
and reclaim space, whereas Max-Min-Utility performs as
good as uMuVE-uMuVE while keeping the memory usage
well under constraint.

8 RELATED WORK

Recent years have seen the introduction of many visual ana-
lytic tools such as Tableau, Qlik and Spotfire [3], [5], [6].
These tools aim to provide aesthetically high-quality visual-
izations of the subsets of data selected by an analyst. How-
ever, the selection of the interesting attributes and subsets
of data remains a user-driven manual task. As such, those
tools provide a limited support for automatic data explora-
tion, especially for large data sets.

Alongside the commercial tools discussed above, several
research efforts have been directed towards providing auto-
mation features to the visualization process. For instance,
Rank-by-Feature Framework [27] computes statistical sum-
maries and ranking for histograms and scatter-plots. While
visualizations can be ranked by various features, the user
still has to select a ranking criterion, and then all possible
projections are ranked by that criterion. Profiler [19] detects
anomalies and recommends visualizations based on mutual
informationmetric. Hence, it is specifically designed to high-
light data quality issues, but exploring data for interesting
view is beyond the scope of that work. VizDeck [20] gener-
ates all possible 2-D visualizations on a dashboard and
allows users to reorder, share or permanently store those vis-
ualizations. It also recommend views, based on a visualiza-
tion quality model using statistical features of the dataset.
VizDeck lacks the deviation based ranking and it does not
scale for high dimensional large datasets. The ziggy
approach [25], [26] introduces a multi-view subset character-
ization approach based on the idea of selecting tuples that
differ from the rest of the database. It recommends sets of
columns on which user selected data has an unusual distri-
bution from the rest of the database. Specifically, it performs
tuple based ranking, while our work focuses on binned
aggregate views.

As mentioned earlier, our work recommends visualiza-
tions based on the deviation between two datasets, as in
SeeDB [30], [31]. However, while SeeDB effectively recom-
mend views for categorical attributes, it lacks the necessary
techniques for handling numerical attributes, which is focus
of our work.

9 CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel utility function and a
suite of search schemes for recommending top-k aggregate
data visualizations. Our utility function recognizes the
impact of numerical dimensions on visualization, which is
captured by means of multiple objectives, namely: devia-
tion, accuracy, and usability. Our proposed search schemes
further incorporate that utility function for the purpose of
recommending the top-k aggregate data visualizations. A
key goal in the design of those search schemes is to effi-
ciently prune the prohibitively large search space of possi-
ble data aggregations. That goal is reasonably achieved by
our MuVE scheme, and is further improved by uMuVE, at
the expense of a high memory usage. Accordingly, we pre-
sented MuMuVE, which provides a pruning power close to
that of uMuVE, while keeping memory usage within pre-
defined constraint.

In the future, we plan to extend the data-driven approach
adopted in this work to incorporate a user-driven approach
for recommending data visualizations. In particular, in our
data-driven approach, the interestingness of a view is cap-
tured by its deviation from the entire database, irrespective
of the user’s preferences (with the exception of setting the
weights in our multi-objective utility function). Hence, in
the future we plan to investigate different methods for cap-
turing different aspects of the user’s preference. For
instance, we are considering an interactive approach, in
which the user is presented with a small set of sample views
and they are requested to provide relevance feedback (i.e., if
the view is relevant to their analysis task), similar to the
approaches proposed in [12], [15]. That feedback is used to
build a predictive model to learn the user’s preference,
which is to be integrated with our data-driven model.
Orthogonally, we also plan to extend our problem for the
cases where recommendations can be made based on the
availability of a history of views that the user has found to
be interesting in the past, or that have been identified as
interesting by similar users. Towards that we will investi-
gate the integration of collaborative filtering model with our
approach.

Fig. 15. DIAB: Progressive results.

Fig. 16. Impact ofML on MuMuVE scheme.
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