3282

of the Scheduler is to minimize queue time and
optimize executive efficiency.

Cross-References

Activity

Scheduling Strategies for Data
Stream Processing

Mohamed Sharaf! and Alexandros Labrinidis?
'Electrical and Computer Engineering,
University of Toronto, Toronto, ON, Canada
2Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

Synonyms

Continuous query scheduling; Operator schedul-
ing; Scheduling policies

Definition

In a Data Stream Management System (DSMS),
data arrives in the form of continuous streams
from different data sources, where the arrival
of new data triggers the execution of multiple
continuous queries (CQs). The order in which
CQs are executed in response to the arrival of
new data is determined by the CQ scheduler.
Thus, one of the main goals in the design of a
DSMS is the development of scheduling policies
that leverage CQ characteristics to optimize the
DSMS performance.

Historical Background

The growing need for monitoring applications
[8] has forced an evolution on data processing
paradigms, moving from Database Management

Scheduling Strategies for Data Stream Processing

Systems (DBMSs) to Data Stream Management
Systems (DSMSs) [4, 11]. Traditional DBMSs
employ a store-and-then-query data processing
paradigm, where data are stored in the database
and queries are submitted by the users to be
answered in full, based on the current snapshot of
the database. In contrast, in DSMSs, monitoring
applications register continuous queries which
continuously process unbounded data streams
looking for data that represent events of interest
to the end-user.

The data stream concept permeated the data
management research community in the mid- to
late 90’s, with general-purpose research proto-
types of data stream management systems mate-
rializing shortly afterwards, for example Aurora
[8], TelegraphCQ [10] and STREAMS [5].

Scheduling is one of the fundamental research
challenges for effective data stream management
systems; as such, it has received a lot of attention,
with early works on scheduling in 2003 [2, 9].

Foundations

System Model

A continuous query evaluation plan can be con-
ceptualized as a data flow tree [2, 8], where the
nodes are operators that process tuples and edges
represent the flow of tuples from one operator to
another (Fig. 1). An edge from operator O, to
operator O, means that the output of O, is an
input to O,. Each operator is associated with a
queue where input tuples are buffered until they
are processed.

Multiple queries with common sub-expressions
are usually merged together to eliminate the
repetition of similar operations. For example,
Fig. 1 shows the global plan for two queries Q)
and Q,. Both queries operate on data streams
M, and M, and they share the common sub-
expression represented by operators O, O, and
O3, as illustrated by the half-shaded pattern for
these operators.

A single-stream query Qy has a single leaf op-
erator Q;‘ and a single root operator Qf, whereas
a multi-stream query has a single root operator
and more than one leaf operators. In a query plan

Scheduling Strategies for Data Stream Processing

Q Q

Shared
operators
s <

Scheduling Strategies for Data Stream Processing,
Fig. 1 Continuous queries plans

Ok, an operator segment E)]C‘,y is the sequence of
operators that starts at O% and ends at O, If the
last operator on E f’y is the root operator, then
that operator segment is simply denoted as E f(f
For example, in Fig. 1, E{ =< 01, 03, 04 >,
whereas E? =< 04, O3, Os >.

In a query, each operator O, (or simply O) is
associated with two parameters:

1. Processing cost or Processing time (cy) is the
amount of time needed to process an input
tuple.

2. Selectivity or Productivity (s,) is the number
of tuples produced after processing one tuple
for ¢, time units. s, is less than or equal to 1
for a filter operator and it could be greater than
1 for a join operator.

Multiple CQ Scheduling
At the arrival of new data, the MCQ scheduler
decides the execution order of CQs, or more
precisely, the execution order of operators within
CQs. The execution order is decided with the
objective of optimizing the DSMS performance
under certain metrics. Towards this, the scheduler
assigns a priority to each operator and operators
are executed according to these priorities.

For a single-stream query Oy which consists of
operators Ok, el 0)’§, OIy‘, el Of>(Fig. 1), the
function for computing the priority of operator

3283

Of typically involves one or more of the follow-
ing parameters:

e Operator Global Selectivity (S)IC‘) is the num-
ber of tuples produced at the root Of after
processing one tuple along operator segment
Ek.

X e X sf

k _ ok, ok
Sy = 8% X5,

—k. .
* Operator Global Average Cost (C) is the ex-
pected time required to process a tuple along
an operator segment C)’f

Ei: (c)’g)—i—(cjlfxs];)—i—...

k k k
—I—(cr X 81 x---xsx)

If Of is a leaf operator (x = [), when a
processed tuple actually satisfies all the filters in

—k . .
E lk then C; represents the ideal total processing
cost or time incurred by any tuple produced or

emitted by query Q. In this case, E;‘ is denoted
as Ty :

e Tuple Processing Time (Ty) is the ideal total
processing cost required to produce a tuple by
query Oy.

Ti =cf +-+ck+ck++cf

The exact priority function depends on the
performance metric to optimize, and in turn on
the employed scheduling strategy.

Metrics and Strategies

Response Time: Processing a tuple by a CQ might
lead to discarding it (if it does not satisfy some
filter predicate) or it might lead to producing one
or more tuples at the output, which means that the
input tuple represents an event of interest to the
user who registered the CQ. Clearly, in DSMSs, it
is more appropriate to define response time from
a data/event perspective rather than from a query
perspective as in traditional DBMSs. Hence, the

3284

tuple response time or tuple latency is defined as
follows:

Definition 1

Tuple response time, R;, for tuple t; is
R;=D;—A;, where A; is t;’s arrival time and
D; is t;’s output time. Accordingly, the average
response time for N tuples is: %ZZN=1 R;.

For a single CQ over multiple data streams,
the Rate-based policy (RB) has been shown to
improve the average response time of tuples pro-
cessed by that CQ [17].

For multiple CQs, the Aurora DSMS [9], uses
a two-level scheduling strategy where Round
Robin (RR) is used to schedule queries and
RB is used to schedule operators within the
query. The work in [14] proposes the Highest
Rate policy (HR) which extends the RB to
schedule both queries and operators. Basically,
HR views the network of multiple queries as a
set of operators and at each scheduling point it
selects for execution the operator with the highest
priority (i.e., output rate).

Specifically, under HR, each operator Of is
assigned a value called global output rate (GR’;).
The output rate of an operator is basically the
expected number of tuples produced per time unit
due to processing one tuple by the operators along
the operator segment starting at Oi‘ all the way to
the root Of. Formally, the output rate of operator
Of is defined as follows:

k
GRE = X (1)
C

X

where S)’f and Ei are the operator’s global selec-
tivity and global average cost as defined above.
The intuition underlying HR is to give higher
priority to operator paths that are both produc-
tive and inexpensive. In other words, the highest
priority is given to the operator paths with the
minimum latency for producing one tuple.
Slowdown: Under a heterogeneous workload,
the processing requirements for different tuples
may vary significantly and average response time
is not an appropriate metric, since it cannot relate
the time spent by a tuple in the system to its

Scheduling Strategies for Data Stream Processing

processing requirements. Given this realization,
other on-line systems with heterogeneous work-
loads such as DBMSs, OSs, and Web servers
have adopted average slowdown or stretch [13]
as another metric. This motivated considering the
stretch metric in [14].

The definition of slowdown was initiated by
the database community in [12] for measuring
the performance of a DBMS executing multi-
class workloads. Formally, the slowdown of a
job is the ratio between the time a job spends
in the system to its processing demands [13]. In
a DSMS, the slowdown of a tuple is defined as
follows [14]:

Definition 2

The slowdown, H ;, for tuple t; produced by query
Ovis Hi = }Te—;, where R; is t;’s response time and
Ty is its ideal processing time. Accordingly, the
average slowdown for N tuples is: %ZIN=1 H;.

Intuitively, in a general purpose DSMS where
all events are of equal importance, a simple event
(i.e., an event detected by a low-cost CQ) should
be detected faster than a complex event (i.e., an
event detected by a high-cost CQ) since the latter
contributes more to the load on the DSMS.

The HR policy schedules jobs in descending
order of output rate which might result in a high
average slowdown because a low-cost query can
be assigned a low priority since it is not produc-
tive enough. Those few tuples produced by this
query will all experience a high slowdown, with a
corresponding increase in the average slowdown
of the DSMS.

The work in [14] proposes the Highest Nor-
malized Rate (HNR) policy for minimizing the
slowdown in a DSMS. Under HNR, each oper-
ator Of is assigned a priority Vf which is the
weighted rate or normalized rate of the operator
segment £ f that starts at operator O)’Cc and it is
defined as:

1 Sk
V=X = 2)
k C

The HNR policy, like HR, is based on output
rate, however, it also emphasizes the ideal tuple

Scheduling Strategies for Data Stream Processing

processing time in assigning priorities. As such,
an inexpensive operator segment with low pro-
ductivity will get a higher priority under HNR
than under HR.

Worst-Case Performance: It is expected that
a scheduling policy that strives to minimize the
average-case performance might lead to a poor
worst-case performance under a relatively high
load. That is, some queries (or tuples) might
starve under such a policy. The worst-case per-
formance is typically measured using maximum
response time or maximum slowdown [7].

Intuitively, a policy that optimizes for the
worst-case performance should be pessimistic.
That is, it assumes the worst-case scenario where
each processed tuple will satisfy all the filters in
the corresponding query.

The work in [14] shows that the traditional
First-Come-First-Serve (FCFS) minimizes the
maximum response time. Similarly, it shows that
the traditional Longest Stretch First (LSF) [1]
optimizes the maximum slowdown.

Average- vs. Worst-Case Performance: On one
hand, the average value for a QoS metric pro-
vided by the system represents the expected QoS
experienced by any tuple in the system (i.e., the
average-case performance). On the other hand,
the maximum value measures the worst QoS
experienced by some tuple in the system (i.e., the
worst-case performance). It is known that each
of these metrics by itself is not enough to fully
characterize system performance.

The most common way to capture the trade-
off between the average-case and the worst-case
performance is to measure the £, norm [6]. For
instance, the £, norm of response times, R;, is
defined as:

Definition 3
The €, norm of response times for N tuples is

equal to 4/ Z}\, R?.

The definition shows that the ¢, norm con-
siders the average in the sense that it takes into
account all values, yet, by considering the second
norm of each value instead of the first norm, it
penalizes more severely outliers compared to the
average metrics.

3285

In order to balance the trade-off between the
average- and worst-case performance, the Bal-
ance Slowdown (BSD) and the Balance Response
Time (BRT) policies have been proposed in [14].
To avoid starvation, the two policies consider the
amount of time an operator O¥ has been wait-
ing for scheduling (i.e., ka). Specifically, under
BSD, each operator 0)]§ is assigned a priority
value ka which is the product of the operator’s
normalized rate and the current highest slowdown
of its pending tuples. That is:

Sk wk
k _ X X
() e

As such, under BSD, an operator is selected
either because it has a high weighted rate or
because its pending tuples have acquired a high
slowdown.

Application-Specific QoS: Aurora also pro-
poses a QoS-aware scheduler which attempts to
satisfy application-specified QoS requirements
[9]. Specifically, under that QoS-aware scheduler,
each query is associated with a QoS graph which
defines the utility of stale output.

Given, a QoS graph, the scheduler computes
for each operator a utility value which is basically
the slope of the QoS graph at the tuple’s output
time. The scheduler also computes for each oper-
ator its urgency value which is an estimation of
how close is an operator to a critical point on the
QoS graph where the QoS changes sharply. Then,
at each scheduling point, the scheduler chooses
for execution the operators with the highest utility
value and among those that have the same utility,
it chooses the one that has the highest urgency.

Memory Usage: Multi-query scheduling has
also been exploited to optimize metrics beyond
QoS. For example, Chain is a multi-query
scheduling policy that optimizes memory usage
in order to minimize space requirements for
buffering tuples [2]. Towards this, for each
query plan, Chain constructs what is called a
progress chart. A progress chart is basically a
set of segments where the slope of each segment
represents the rate of change in the size of a tuple
being processed by a set of consecutive operators

3286

along the query plan. Given that progress chart,
at each scheduling point, Chain schedules for
execution the tuple that lies on the segment with
the steepest slope. The intuition is to give higher
priority to segments of operators with higher
tuple consumption rate which will lead to quickly
freeing more memory.

Quality of Data (QoD): Another metric to
optimize is Quality of Data (QoD). For instance,
the work in [15] proposes the freshness-aware
scheduling policy for improving the QoD of data
streams, when QoD is defined in terms of fresh-
ness. The proposed scheduler exploits the vari-
ability in query costs, divergence in arrival pat-
terns, and the probabilistic impact of selectivity
in order to maximize the freshness of output data
streams.

Multiple-Objective Scheduling: In DSMSs,
and in computer systems in general, it is often
desirable to optimize for multiple metrics at the
same time. However, those metrics might be in
conflict most of the time. This motivated the
proposals of schedulers that are able to balance
the trade-off between certain conflicting metrics.

For instance, the work in [3] attempts to bal-
ance the trade-off between memory usage and
latency by formalizing latency requirements as
a constraint to the Chain scheduler. This formu-
lation lead to the Mixed policy which can be
viewed as a heuristic strategy that is intermediate
between Chain and FIFO. Specifically, Mixed is
tuned via a parameter where a high value of
that parameter causes Mixed to behave more like
FIFO, whereas a lower value makes it behave
more like Chain.

In another attempt towards multiple-objective
scheduling, the work in [16] proposes AMoS
which is an Adaptive Multi-objective Scheduling
selection framework. Given several scheduling
algorithms, AMoS employs a learning mecha-
nism to learn the behavior of the scheduling
algorithms over time. It then uses the learned
knowledge to continuously select the algorithm
that has statistically performed the best.

Scheduler Implementation: To ensure the ap-
plicability of scheduling policies in DSMSs, a
low-overhead implementation is needed in order
to reduce the amount of computation involved in

Scheduling Strategies for Data Stream Processing

computing priorities. For static policies (i.e., poli-
cies where an operator priority is constant over
time), priorities are computed only once when a
query is registered in the DSMS which naturally
leads to a low-overhead implementation. Exam-
ples of such static policies include HR, HNR, and
Chain. On the other hand, for dynamic policies
where priority is a function of time, the priority
of each operator should be re-computed at each
instant of time. Such a naive implementation
renders that class of policies very impractical.
This motivated several approximation methods
for efficient implementation of dynamic poli-
cies to balance the trade-off between scheduling
overhead and accuracy. For instance the work
in [9] proposes using bucketing as well as pre-
computation for an efficient implementation of
the QoS-aware scheduling in Aurora. Similarly,
[14] proposes using search space reduction and
pruning methods in addition to clustered process-
ing of continuous queries.

Key Applications

There is a plethora of applications that require
data stream management systems and, as such,
proper scheduling strategies. The most well-
known class of applications is that of monitoring
applications [8], be it environmental monitoring
(e.g., via sensor networks), network monitoring
(e.g., by collecting router data), or even financial
monitoring (e.g., by observing stock-market
data). In all such cases, the sheer amount of
input data precipitates the use of the data stream
processing paradigm and proper scheduling
strategies.

Cross-References

Adaptive Query Processing
Adaptive Stream Processing
Data Stream

Event Stream

Stream Processing
Streaming Applications
Stream-Oriented Query
Operators

Languages and

Schema Evolution

Recommended Reading

1.

10.

11.

12.

13.

14.

Acharya S, Muthukrishnan S. Scheduling on-demand
broadcasts: new metrics and algorithms. In: Proceed-
ings of the 4th Annual International Conference on
Mobile Computing and Networking; 1998.

. Babcock B, Babu S, Datar M, Motwani R. Chain:

operator scheduling for memory minimization in data
stream systems. In: Proceedings of the ACM SIG-
MOD International Conference on Management of
Data; 2003.

. Babcock B, Babu S, Datar M, Motwani R, Thomas D.

Operator scheduling in data stream systems. VLDB J.
2004;13(4):333-53.

. Babcock B, Babu S, Datar M, Motwani R, Widom J.

Models and issues in data stream systems. In: Pro-
ceedings of the ACM SIGMOD International Confer-
ence on Management of Data; 2002.

. Babu S, Widom J. Continuous queries over data

streams. ACM SIGMOD Rec. 2001;30(3):109-120.

. Bansal N, Pruhs K. Server scheduling in the L p norm:

arising tide lifts all boats. In: Proceedings of the 35th
Annual ACM Symposium on Theory of Computing;
2003.

. Bender MA, Chakrabarti S, Muthukrishnan S. Flow

and stretch metrics for scheduling continuous job
streams. In: Proceedings of the 9th Annual ACM-
SIAM Symposium on Discrete Algorithms; 1998.

. Carney D, Cetintemel U, Cherniack M, Convey C,

Lee S, Seidman G, Stonebraker M, Tatbul N, Zdonik
S. Monitoring streams: a new class of data man-
agement applications. In: Proceedings of the 28th
International Conference on Very Large Data Bases;
2002.

. Carney D, Cetintemel U, Rasin A, Zdonik S, Cher-

niack M, Stonebraker M. Operator scheduling in a
data stream manager. In: Proceedings of the 29th
International Conference on Very Large Data Bases;
2003.

Chandrasekaran S, Cooper O, Deshpande A, Franklin
MJ, Hellerstein JM, Hong W, Krishnamurthy S,
Madden S, Raman V, Reiss F, Shah MA. Tele-
graphCQ: continuous dataflow processing for an un-
certain world. In: Proceedings of the Ist Biennial
Conference on Innovative Data Systems Research;
2003.

Golab L, Ozsu MT. Issues in data stream manage-
ment. ACM SIGMOD Rec. 2003;32(2):5-14.

Mehta M, DeWitt DJ. Dynamic memory allocation
for multiple-query workloads. In: Proceedings of the
19th International Conference on Very Large Data
Bases; 1993.

Muthukrishnan S, Rajaraman R, Shaheen A, Gehrke
J.E. Online scheduling to minimize average stretch.
In: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science; 1999.

Sharaf MA, Chrysanthis PK, Labrinidis A, Pruhs
K. Efficient scheduling of heterogeneous continuous
queries. In: Proceedings of the 32nd International
Conference on Very Large Data Bases; 2006.

3287

15. Sharat MA, Labrinidis A, Chrysanthis PK, Pruhs
K. Freshness-aware scheduling of continuous queries
in the Dynamic Web. In: Proceedings of the 8th
International Workshop on the World Wide Web and
Database; 2005.

16. Sutherland T, Pielech B, Zhu Y, Ding L, Runden-
steiner EA. An adaptive multi-objective scheduling
selection framework for continuous query processing.
In: Proceedings of the International Database Engi-
neering and Applications Symposium; 2005.

17. Urhan T, Franklin M.J. Dynamic pipeline schedul-
ing for improving interactive query performance. In:
Proceedings of the 27th International Conference on
Very Large Data Bases; 2001.

Schema Evolution

John F. Roddick
Flinders University, Adelaide, SA, Australia

Definition

Schema evolution deals with the need to retain
current data when database schema changes
are performed. Formally, Schema Evolution
is accommodated when a database system
facilitates database schema modification without
the loss of existing data, (q.v. the stronger concept
of Schema Versioning) (Schema evolution and
schema versioning has been conflated in the
literature with the two terms occasionally being
used interchangeably. Readers are thus also
encouraged to read also the entry for Schema
Versioning.).

Historical Background

Since schemata change and/or multiple schemata
are often required, there is a need to ensure
that extant data either stays consistent with the
revised schema or is explicitly deleted as part
of the change process. A database that supports
schema evolution supports this transformation
process.

