Semantics-Based Concurrency Control

Recommended Reading

1. Akkiraju R, Farrell J, Miller J, et al. Web service
semantics — WSDL-S, vol. 1.0, tech. note, Apr. 2005.
At http://www.w3.org/Submission/WSDL-S/.

2. Battle S, Bernstein A, Boley H, et al. Semantic
Web Services Framework (SWSF) Overview, 2005. At
http://www.w3.org/Submission/SWSF/.

3. Cabral L, Domingue J, Galizia S, et al. IRS-III: a
broker for semantic web services based applications.
In: Proceedings of the 5th International Semantic Web
Conference; 20006. p. 201-14.

4. Fensel D, Lausen H, Polleres A, et al. Enabling seman-
tic Web services: the Web service modeling ontology.
New York: Springer; 2006.

5. Martin D, Burstein M, McDermott D, et al. Bringing
semantics to web services with OWL-S. World Wide
Web J. 2007;10(3):243-77.

Semantics-Based Concurrency
Control

Krithi Ramamritham! and Panos K.
Chrysanthis?

IDepartment of Computer Science and
Engineering, Indian Institute of Technology
Bombay, Mumbai, India

2Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

Definition

Specifications of data contain semantic in-
formation that can be exploited to increase
concurrency. For example, two insert operations
on a multiset object commute and hence, can
be executed in parallel; further, regardless of
whether one operation commits, the other can
still commit. Applying the same rule, two push
operations on a stack object do not commute and
hence cannot be executed concurrently. Several
schemes have been proposed for exploiting
the semantics of operations have to provide
more concurrency than obtained by the con-
ventional classification of operations as reads or
writes.

3435

Key Points

In most semantics-based protocols, conflicts be-
tween operations is based on commutativity, an
operation o; which does not commute with other
uncommitted operations will be made to wait un-
til these conflicting operations abort or commit.
Some protocols use operations’ return value com-
mutativity, wherein information about the results
of executing an operation is used in determining
commutativity, and some use the arguments of
the operations in determining whether or not two
operations commute. An example of the former,
two increment operations on a counter object
commute as long as they do not return the new or
old value of the counter. An example of the latter,
two insert operations on a set object commute as
long as they do not insert the same item.

In the scheme reported in [1], non-commuting
but recoverable operations are allowed to execute
in parallel; but the order in which the transactions
invoking the operations should commit is fixed to
be the order in which they are invoked. If o; is
executed after o;, and o; is recoverable relative
to o; , then, if transactions 7; and T; that invoked
o; and o; respectively commit, 7; should commit
before T; . Thus, based on the recoverability re-
lationship of an operation with other operations,
a transaction invoking the operation sets up a dy-
namic commit dependency relation between itself
and other transactions. If an invoked operation is
not recoverable with respect to an uncommitted
operation, then the invoking transaction is made
to wait. For example, two pushes on a stack
do not commute, but if the push operations are
forced to commit in the order they were invoked,
then the execution of the two push operations
is serializable in commit order. Further, if ei-
ther of the transactions aborts the other can still
commit.

In [2] authors make an effort to discover,
from first principles, the nature of concurrency
semantics inherent in objects. Towards this end,
they identify the dimensions along which ob-
ject and operation semantics can be modeled.
These dimensions are then used to classify and
unify existing semantic-based concurrency con-
trol schemes. To formalize this classification, a



3436

graph representation for objects that can be de-
rived from the abstract specification of an object
is proposed. Based on this representation, which
helps to identify the semantic information inher-
ent in an object, a methodology is presented that
shows how various semantic notions applicable to
concurrency control can be effectively combined
to improve concurrency. A new source of se-
mantic information, namely, the ordering among
component objects, is exploited to further en-
hance concurrency. Lastly, the authors present a
scheme, based on this methodology, for deriving
compatibility tables for operations on objects.

Cross-References

ACID Properties
Concurrency Control: Traditional Approaches

Recommended Reading

1. Badrinath BR, Ramamritham K. Semantics-based con-
currency control: beyond commutativity. ACM Trans
Database Syst. 1991;17(1):163-99.

2. Chrysanthis PK, Raghuram S, Ramamritham K Ex-
tracting concurrency from objects: a methodology.
In: Proceedings of the ACM SIGMOD International
Confernce on Management of Data; 1991.

Semijoin

Kai-Uwe Sattler

Technische Universitit Ilmenau, Ilmenau,
Germany

Synonyms

Bit vector join; Bloom filter join; Bloom join;
Hash filter join; Semijoin filter

Semijoin
Definition

Semijoin is a technique for processing a join
between two tables that are stored at different
sites. The basic idea is to reduce the transfer cost
by first sending only the projected join column(s)
to the other site, where it is joined with the
second relation. Then, all matching tuples from
the second relation are sent back to the first site
to compute the final join result.

Historical Background

The semijoin technique was originally developed
by Bernstein et al. [3] as part of the SDD-1
project as a reduction operator for distributed
query processing. The idea of applying hash
filtering was proposed by Babb [1] as well as
by Valduriez [9] particularly for specialized hard-
ware (content addressed file stores and distributed
database machines respectively). The theory of
semijoin-based distributed query processing was
presented in [2]. In [10] semijoins are also ex-
ploited for query processing on multiprocessor
database machines. Results of detailed experi-
mental work on semijoins in distributed databases
were first reported by Lu and Carey [6] as well as
by Mackert and Lohman [7].

Foundations

Semijoin is a join processing technique
which was originally developed for distributed
databases. A semijoin is the “half of a join” and
is particularly useful as a reduction operator.

Relational Definition

Given two relations R(A,B) and S(C,D) with the
join condition R.A = S.C the semijoin R x S is
defined as follows:

R><4=c S = Tartr(R) (R >a=c )

where attr(R) denotes the set of attributes in R.
The semijoin has two important characteristics:



