View Maintenance

may be materialized as a separate table in the
database.

In relational systems, a view is defined using
the create view command:

* create view <V > as < query expression >

The name of the view in the above example is
< v >, and the schema and content of the view are
derived on demand by the evaluation of < query
expression >, which should be a legal expression
supported by the database management system.
Different vendor systems may impose some con-
straints on the form of < query expression >;
for instance, they may disallow references to
temporary tables. When the data in the table(s)
mentioned in < query expression > changes, the
data in view < v > changes also.

Consider the following view definitions:

e Create view vl as select Name, Age from
Personnel where Department = “Sales”

* Create view v2 as select Wages.Name, Wages.
Salary from Personnel, Wages where
Personnel. Name = Wages.Name and Per-
sonnel.Department = “Sales”

The first expression defines a view termed v/
that contains the name and age attributes from
database table Personnel. The instance of view v/
consists of the subset of personnel data restricted
to those working at department Sales. View v2 de-
fined by the second expression contains the result
of the join between tables Personnel and Wages
for employees working at the sales department.

Cross-References

View Maintenance Aspects
Views

Recommended Reading

1. Adiba ME, Lindsay BG. Database snapshots. In: Pro-
ceedings of the 6th International Conference Sympo-
sium on Very Data Bases; 1980. p. 86-91.

4445

2. Dayal U, Bernstein P. On the correct translation of
update operations on relational views. ACM Trans
Database Syst. 1982;8(3):381-416.

3. Gupta A, Jagadish HV, Mumick IS. Data integra-
tion using self-maintainable views. In: Advances in
Database Technology, Proceedings of the 5th Interna-
tional Conference on Extending Database Technology;
1996. p. 140-44.

4. Gupta H, Harinarayan V, Rajaraman A, Jeffrey DU.
Index selection for OLAP. In: Proceedings of the 13th
International Conference on Data Engineering; 1997.
p- 208-19.

5. Kotidis Y, Roussopoulos N. DynaMat: a dynamic view
management system for data warehouses. In: Proceed-
ings of the ACM SIGMOD International Conference
on Management of Data; 1999. p. 371-82.

6. Roussopoulos N. View indexing in relational
databases. ACM Trans Database Syst. 1982;7(2):258-
90.

7. Roussopoulos N. An incremental access method for
viewCache: concept, algorithms, and cost analysis.
ACM Trans Database Syst. 1991;16(3):535-63.

View Maintenance

Alexandros Labrinidis! and Yannis Sismanis?®
1Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA, USA

2IBM Almaden Research Center, Almaden,

CA, USA

Synonyms

Materialized view maintenance; View update

Definition

View maintenance typically refers to the updat-
ing of a materialized view (also known as a
derived relation) to make it consistent with the
base relations it is derived from. Such an update
typically happens immediately, with the transac-
tion that updates the base relations also updating
the materialized views. However, such immediate
updates impose significant overheads on update
transactions that cannot be tolerated by many
applications. Deferred view maintenance, on the

4446

other hand, allows the view to become inconsis-
tent with its definition, and a refresh operation is
required to establish consistency. Typically, under
deferred maintenance, a view is incrementally
updated only just before data is retrieved from it
(i.e., on-demand, just before a query is performed
on the view).

Historical Background

Early systems that supported views did so in their
“pure form,” i.e., by storing just the view defini-
tion and using query rewriting to take advantage
of views in other queries [11].

Incremental view maintenance is introduced in
[1] through a technique to efficiently detect rele-
vant updates to materialized views, thus stream-
lining their maintenance.

Deferred view maintenance is introduced in
[10] as a scheme for materializing copies of
views on workstations attached to a mainframe
that maintains a shared global database. The
workstations update local copies of the views
while processing queries. In [7], deferred view
maintenance is defined as the application of in-
cremental view maintenance whenever desired,
unlike the immediate view maintenance, where
any database update triggers the incremental view
maintenance algorithm. [5] has a nice survey of
view maintenance techniques.

Foundations

Algorithms and techniques for maintenance of
materialized views can be classified according to
three different criteria:

* Whether the view is recomputed from scratch
or not: recomputation versus incremental
maintenance.

* Whether the view is updated whenever the
base data change or not: immediate versus
deferred maintenance.

* Whether queries can be executed while the
view is being updated or not: online versus
offline maintenance.

View Maintenance

All the above dimensions are typically orthog-
onal. We explain the different options below.

View Recomputation

Recomputing a materialized view from the base
relations it is derived from is the most general
technique of updating. As such, it can be applied
on any type of view, regardless of the complexity
of the query definition. The disadvantage is that,
in most cases, such recomputation is costly, and,
in many cases, the view can be updated incremen-
tally instead, at a fraction of the cost.

Incremental View Maintenance

It is possible to update a materialized view incre-
mentally for many types of view definitions (i.e.,
queries). One such class is the general case of SPJ
views (i.e., views whose definition is just a select-
project-join query).

For example, assume that we have a view V
defined over two relations R and S through a
natural join (i.e., V = R > §; for simplicity
of the presentation we ignore the selection and
projection operators). Further, let us assume that
we have a set of deleted tuples from relation
R, denoted as Rp; a set of inserted tuples into
relation R, denoted as R; (i.e., R =RU R, —
Rp). Also, assume a set of deleted tuples from
relation S, denoted as Sp; and a set of inserted
tuples into relation S, denoted as S; (i.e., S "=
S U S; — Sp). We trivially represent base relation
updates as pairs of deletions and insertions.

Given the above, the updated version of V, i.e.,
V', shouldbe V' =R S = (RUR; — Rp)
> (S U S; — Sp). By expanding this further, and
grouping all the deletions from V as V), and all
the insertions to V as V;, we have that: Vp =
(Rp > (S U Sp) > (R U Ry < Sp), and V;
= (R > 8) U RS U (R > 8)), so that
V' = VUV, — Vp. This, incrementally computed
formula, should be less costly to compute than
recomputing the entire join from scratch.

The problem of incrementally updating
materialized views is difficult in the general
case, but there are additional classes of queries
(i.e., besides SPJ views) that it can be solved
for [6].

View Maintenance

Immediate View Maintenance

The default way of updating materialized views is
to do so immediately, i.e., batch together, in a sin-
gle transaction, the updating of the base relations
and the updating of the materialized views that
are derived from these relations. However, many
applications cannot tolerate this delay, especially
if they are interactive and users are expecting an
answer at transaction commit.

Deferred View Maintenance

Incremental deferred view maintenance requires
(i) techniques for checking what views are af-
fected by an update to the basic tables, (ii) auxil-
iary tables that maintain certain information like
updates and deletes since the last view refresh
and finally (iii) techniques for propagating the
changes from the base tuples to the view tuples
without fully recomputing the view relation.

First, Buneman in [2], proposes a technique
for the efficient implementation of alerters and
triggers that checks each update operation prior
to execution to see whether it can cause a view to
change. In [1], an efficient method for identifying
updates that cannot possibly affect the views
is described. Such irrelevant updates are then
removed from consideration while differentially
updating the views.

In [7], the hypothetical relations technique
developed in [12] is adapted to the purpose of
storing and indexing the deltas to the base tables.
The main idea is to use a single table AD that
stores deletions and insertions for the base tables
(updates can be modeled as a deletion followed
by an update). Whenever a view is accessed, the
base tables and the AD table need to be accessed
(in order to check for new or deleted tuples).
A bloom filter however, is used to check if a tuple
from the base relation exists in AD significantly
reducing irrelevant accesses to AD.

In [4], the authors demonstrate that the or-
dering of the updates from the base tuples to
the view tuples is critical and call this phe-
nomenon state bug. Typically, an “incremental
query” — during the refresh operation — avoids
recomputing the full view and only incremen-
tally computes the delta view to bring it up to
date, based on updates/deletes made to the base

4447

tables. Such incremental queries can evaluated
in two states: The pre-update state, where the
base table updates have not been applied yet or
the post-update state where changes have been
applied. In most techniques a pre-update state
is assumed which severely limits the class of
updates and views considered. The post-update
state allows for a much larger class of view to
be deferred maintained, however direct applica-
tion of pre-update techniques results in incor-
rect answers (state bug) and new techniques are
proposed.

Offline View Maintenance

Typically, maintaining materialized views is done
offline, without allowing queries to the mate-
rialized view to execute concurrently with the
processing of the materialized view updates. This
simplifies the view maintenance algorithms sig-
nificantly, at the expense of delaying queries. Tra-
ditionally, in data warehousing environments [3],
updates of materialized views are performed at
night, thus minimizing the possibility of delaying
user queries.

Online View Maintenance

The need of most companies for continuous op-
eration (especially in the presence of the Web),
has precipitated the need for online view mainte-
nance, where queries can be answered while the
materialized views are being updated.

In a centralized setting, this is typically
achieved through some sort of multi-versioning,
either as horizontal redundancy, where extra
columns are added to hold the different versions
[9], or as vertical redundancy, where extra rows
are needed to hold the different versions [8]. In
a distributed setting, this is typically achieved
through determination of additional queries to
ask of the data sources [13].

Key Applications

Materialized views help speed up the execution
of frequently accessed queries, giving interactive
response times to even the most complex queries.
The cost of maintaining materialized views is

4448

typically amortized over multiple accesses (i.e.,
queries to the view). This has been utilized/trans-
ferred in many different application domains,
from data warehousing to web data management.
Beyond efficient algorithms and techniques to up-
date materialized views, special attention has also
been given to the view selection problem: how
to identify which views should be materialized,
and also to the issue of how to effectively use
materialized views to answer other queries (i.e.,
by utilizing subsumption or caching).

Cross-References

Maintenance of Recursive Views

Recommended Reading

1. Blakeley JA, Larson PA, Tompa FW. Efficiently Up-
dating Materialized Views. In: Proceedings of the
ACM SIGMOD International Conference on Man-
agement of Data; 1986. p. 61-71.

2. Buneman P, Clemons EK. Efficient monitoring
relational databases. ACM Trans Database Syst.
1979:4(3):368-82.

3. Chaudhuri S, Dayal U. An overview of data ware-
housing and OLAP technology. ACM SIGMOD Rec.
1997;26(1):65-74.

4. Colby LS, Griffin T, Libkin L, Mumick IS, Trickey
H. Algorithms for deferred view maintenance. In:
Proceedings of the ACM SIGMOD International
Conference on Management of Data; 1996. p. 469—
80.

5. Gupta A, Mumick IS. Maintenance of materialized
views: problems, techniques, and applications. IEEE
Data Eng Bull. 1995;18(2):3-18.

6. Gupta A, Mumick IS, Subrahmanian VS. Maintain-
ing views incrementally. In: Proceedings of the ACM
SIGMOD International Conference on Management
of Data; 1993. p. 157-66.

7. Hanson EN. A performance analysis of view ma-
terialization strategies. In: Proceedings of the ACM
SIGMOD International Conference on Management
of Data; 1987. p. 440-53.

8. Labrinidis A, Roussopoulos N. A performance eval-
uation of online warehouse update algorithms. Tech-
nical report CS-TR-3954, Department of Computer
Science, University of Marylan. 1998.

9. Quass D, Widom J. On-line warehouse view mainte-
nance. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data; 1997.
p. 393-404.

View Maintenance Aspects

10. Roussopoulos N, Kang H. Principles and tech-
niques in the design of ADMS=£. IEEE Comp.
1986;19(12):19-25.

11. Stonebraker M. Implementation of integrity con-
straints and views by query modification. In: Proceed-
ings of the ACM SIGMOD International Conference
on Management of Data; 1975. p. 65-78.

12. Woodfill J, Stonebraker M. An implementation of
hypothetical relations. In: Proceedings of the 9th
International Conference on Very Data Bases; 1983.
p. 157-66.

13. Zhuge Y, Garcia-Molina H, Hammer J, Widom J.
View maintenance in a warehousing environment.
In: Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data; 1995.
p. 316-27.

View Maintenance Aspects

Antonios Deligiannakis
University of Athens, Athens, Greece

Definition

Database systems often define views in order to
provide conceptual subsets of the data to differ-
ent users. Each view may be very complex and
require joining information from multiple base
relations, or other views. A view can simply be
used as a query modification mechanism, where
user queries referring to a particular view are
appropriately modified based on the definition
of the view. However, in applications where fast
response times to user queries are essential, views
are often materialized by storing their tuples in-
side the database. This is extremely useful when
recomputing the view from the base relations is
very expensive. When changes occur to their base
relations, materialized views need to be updated,
with a process known as view maintenance, in
order to provide fresh data to the user.

Historical Background

The use of relational views has long been pro-
posed in relational database systems. The notion

