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ABSTRACT

Data stream processing is becoming essential in most current ad-
vanced scientific or business applications as data production rates
are increasing. Different companies compete to efficiently ingest
high velocity data and apply some form of computation in order to
make better business decisions. In order to successfully compete in
this environment, companies are focusing on the most recent data
within a count or time-based window by continuously executing
aggregate queries on it. Incremental sliding-window computa-
tion is commonly used to avoid the performance implications of
re-evaluating the aggregate value of the window from scratch on ev-
ery update. The state-of-the-art FlatFAT technique executes ACQs
with high efficiency, but it does not scale well with the increasing
workloads. In this paper we propose a novel algorithm, FlatFIT,
that accelerates such calculations by intelligently maintaining index
structures, leading to higher reuse of intermediate calculations and
thus exceptional scalability in systems with heavy workloads. Our
theoretical analysis shows that FlatFIT is superior in both time and
space complexities compared to FlatFAT, while maintaining the
same query generality. Given a window of size n, FlatFIT achieves
constant algorithmic complexity compared to O(log(n)) complexity
of FlatFAT. We experimentally show that FlatFIT achieves up to
a 17x throughput improvement over FlatFAT for the same input
workload while using less memory.
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1 INTRODUCTION

Motivation Data stream processing has gained momentum in
many applications that require quick responses based on incoming
high velocity data flows. A representative example is a stock market
application, where multiple clients monitor the price fluctuations
of the stocks. In this setting, a system needs to be able to efficiently
answer analytical queries (i.e., average stock revenue, profit margin
per stock, etc.) for different clients, each one with (possibly) dif-
ferent relaxation levels in terms of accuracy. Apart from financial
applications, efficient data stream processing is important in fields
such as health care, science, social media, and network control.

Data Stream Management Systems (DSMS) [1-3, 20, 25] have
been proposed as suitable systems for handling such data flows on-
the-fly and in real time. In a DSMS, clients register their analytical
queries on incoming data streams. These queries continuously ag-
gregate streaming data, and as such they are called Aggregate Con-
tinuous Queries (ACQs). The accuracy of an ACQ can be thought of
as the window in which the aggregation takes place, and the period
at which the answer is re-calculated. Periodic properties that are
often used to describe ACQs are range (r) and slide (s) (sometimes
also referred to as window and shift [14]), and can be either count
or time-based. A slide denotes the period at which an ACQ updates
its answer; a range is the window for which the statistics are calcu-
lated. For example, if a stock monitoring application has a slide of
3 seconds and a range of 5 seconds, it means that the application
needs an updated result every 3 seconds, and the result should be
derived from data accumulated over the past 5 seconds.

An ACQ requires the DSMS to keep state over time while per-
forming aggregations. Normally, DSMSs only keep the window of
the most recent data, and produce the query answers by running
different aggregation queries over it. When new data arrives, the
window slides by discarding the data that falls out of the window
specification and filling in the new data. This allows the aggre-
gate query to execute over the updated window and reflect recent
changes. Since it has been shown that in sliding-window stream
processing it is beneficial to reuse unchanged parts of the underly-
ing window, the idea of incremental evaluation is becoming more
and more attractive compared to the window re-evaluation after
each update [9, 18]. Often, it is useful to run partial aggregations
on the data while accumulating it, which could be thought of as
buffering, and then produce the answer by performing the final
aggregation over the partial results [16, 17]. It is clear that the
greater the range and the smaller the slide of the ACQ, the higher
its cost is to maintain (memory) and process (CPU).

Problem Statement Efficient handling of aggregate operations
that are non-invertible and non-commutative proved to be essential
in calculation heavy domains such as finance and science. Examples
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include Max, Min, Concatenate, First N, Last N, CountDistinct,
CollectDistinct, ArgMax, and ArgMin.

This paper focuses on such non-invertible or non-commutative
operations that are heavily used in practical ACQs. We consider
both single query environments where each ACQ executes in
isolation, for example for privacy reasons, and multi-query envi-
ronments, where a large number of ACQs with different periodic
properties (accuracies) are operating on the same data stream, cal-
culating similar aggregate operations. An example of a multi-query
environment is a multi-tenant DSMS deployed to a Cloud Infrastruc-
ture, where multiple ACQs with a wide range of different periodic
features are executed on the same hardware.

The current state-of-the-art solution for efficiently processing
these kinds of workloads is the Reactive Aggregator framework
implemented using the Flat Fixed-sized Aggregator (also known
as FlatFAT) [24]. FlatFAT is able to achieve high throughput by
utilizing a pre-allocated memory circular tree-based data structure,
however it does not scale well with heavy workloads. Recently,
anew system, Cutty [7], was proposed that utilizes FlatFAT in a
multi-query environment and contributes a novel slicing technique
(referred to as Cutty-slicing in the rest of the paper) for partitioning
the incoming tuples. However it does not improve the main query
processing technique which is FlatFAT.

To address the aforementioned shortcomings, in this paper we
propose a novel solution named Flat and Fast Index Traverser, or
simply FlatFIT, which accelerates the processing of ACQs by signif-
icantly speeding up the final aggregation operation of incremental
sliding-window evaluation techniques. FlatFIT achieves this ac-
celeration by maintaining intermediate aggregates in intelligent
indexing structures that reduce the number of partials used in per-
forming a final aggregation and allows a greater level of reuse of
previously calculated results. We show both theoretically and ex-
perimentally that our approach allows better scalability in terms of
window size, and it becomes advantageous to utilize FlatFIT over
FlatFAT starting with windows of a size as small as eight tuples
(or partials in cases when partial aggregation techniques are used).

Contributions We make the following contributions:

e We propose a novel solution for processing ACQs, FlatFIT,
which supports both non-invertible and non-commutative ag-
gregate operations and is applicable for both single query and
multi-query environments.

o We theoretically evaluate the proposed FlatFIT approach and
mathematically show that it achieves a time complexity of
O(1) (compared to log(n) complexity of the state-of-the-art
FlatFAT approach) and a space complexity of 2n (compared to
2[log(mT+1 complexity of FlatFAT). To our knowledge, there
are no prior algorithms that can achieve the same asymptotic
time and space complexities without losing the query generality
in terms of supported aggregate operations.

e We experimentally evaluate the FlatFIT approach based on
a real dataset and show that it significantly outperforms the
state-of-the-art Flat FAT technique in most applicable scenarios
by increasing the ACQ throughput by up to 17 times while
reducing memory consumption by up to 1.9 times, making
FlatFIT significantly more effective in processing ACQs in an
on-line DSMS.

A. U. Shein et. al.
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Figure 1: Panes Technique

Roadmap In the next section, we provide related work which con-
stitutes the background of our work. We introduce our new tech-
nique, FlatFIT for the final aggregation calculations in Section 3.
The complexity analysis of FlatFIT and compared algorithms is
presented in Section 4. We discuss the evaluation platform and the
experiments in Section 5 and conclude in Section 6.

2 BACKGROUND & RELATED WORK

In this section we briefly review the underlying concepts of our
work, which are the incremental sliding-window computation tech-
niques. These could be broadly divided into partial aggregation and
final aggregation. We also review other related work.

2.1 Partial aggregation

Partial aggregation can be thought of as the buffering of partial
results until the query result needs to be returned by the final ag-
gregation. It is clearly only beneficial when the answer look-up
is not scheduled to happen after every single update according to
the query semantics (i.e., ACQ allows some buffering if its slide is
greater than 1 tuple). Since partial aggregation allows some buffer-
ing before the result needs to be processed by a more expensive
final aggregator and each buffered partial can be reused multiple
times as part of final aggregations, the use of the CPU and memory
resources can be alleviated. Because of this, the slide plays a crucial
role in determining the amount of partial aggregations that can be
done. Currently, the following techniques are commonly used for
partial aggregations: Panes, Pairs, and Cutty-slicing.

Panes [17] was proposed as the first partial aggregation technique
for processing ACQ:s efficiently. The idea behind it is to partition
the incoming datastream into “panes” (we refer to them as partials),
and maintain just one aggregate value for each partial. This way
every incoming tuple will affect the aggregate value for just the
current partial, and when the whole aggregate is due to be reported,
the answer is assembled by performing the final aggregation over
all the partials in the current window. Therefore, each new partial
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will be reused multiple times for different final aggregations. For
example, in Figure 1 partial P5 is used 4 times as part of the final
aggregations F1, F2, F3, and F4. The number of partials per win-
dow is range/slide if the range is divisible by slide, otherwise it
is range/GCD(range, slide), where GCD is the Greatest Common
Divisor.

Paired Window technique or simply Pairs [16] was introduced
to reduce the number of partials in a window in cases when the
range is not divisible by the slide. This technique makes the mem-
ory consumption twice as small and accelerates the final aggre-
gations by reducing the number of partials by a factor of 2. As
illustrated in Figure 2, two fragment lengths are used, f1 and fa,
where fi = range%slide and f, = slide — f5. The final aggrega-
tions are computed interchangeably each time after fragment f; is
computed.

Cutty-slicing was proposed as part of the Cutty optimizer [7].
The advantage of Cutty-slicing is that it starts each new partial
only at positions that signify the beginning of new windows. This
way the final aggregations can execute in the middle of partial
aggregation calculations. The final aggregation just uses the current
value in the partial, and after it is done, the partial resumes its
calculation (Figure 3). This technique reduces the number of partials
per window down to | range/slide | + 1, which is twice as small as in
the Pairs approach. However it comes at a cost: instead of having
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Figure 4: FlatFAT Technique

offline execution plans specifically tailored to the query, Cutty-
slicing has to send additional punctuations over the data stream to
the execution module in order to indicate the beginnings of the new
partials, which reduces the effective bandwidth of the stream and
can significantly slow down the system, especially if the workload
includes a large number of queries with small windows. To avoid
such complications, in this paper we utilize the Pairs approach for
the partial aggregations.

2.2 Final Aggregation

The goal of final aggregation is to produce the result of a query
by utilizing the partials. Initially it was done by simply iterating
over them and constructing the answer [16, 17]. For example the
Panes technique in Figure 1 performs a final aggregation F1 by
iterating over partials P2, P3, P4, and P5. Naturally, the naive
solution quickly became outdated due to the increasing workloads
that created bottlenecks in the final aggregator. In order to improve
this, several final aggregation techniques have been proposed [5,
19, 23, 24, 26]. Out of the aforementioned techniques only FlatFAT
and B-Int satisfy our complexity and query generality requirements.

FlatFAT is the state-of-the-art approach for final aggregations,
which stores tuples in a pre-allocated pointer-less tree-based data
structure (Figure 4). Originally, FlatFAT allowed only one tuple per
leaf, effectively preventing itself from doing partial aggregations
(since effectively the slide is one tuple for any ACQ). However a
new general sliding-window processing solution, Cutty, extended
FlatFAT to allow processing multiple queries within the same win-
dow by allowing it to store partial aggregates as tree leaves. Each
internal node of the tree contains an aggregate of its two children.
The root node has the result of the maximum range allowed by
the tree. In this work we use the improved version of the FlatFAT
algorithm, which allows partial aggregates to be stored in the tree
leaves, and we simply refer to it as FlatFAT for clarity.

The algorithm works by sequentially inserting new partials into
the leaves of the binary tree left-to-right. The leaves by themselves
form a circular array, meaning that after inserting a value to the
rightmost leaf, the next insert will go into the leftmost one. Each
insert triggers the update procedure, which is performed by walk-
ing the tree bottom-up and updating all internal nodes with new
aggregate values. The update finishes when the root node is up-
dated. An example of an update operation on leaf 15 is illustrated
with green squares in Figure 4.
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The look-up of the answer in FlatFAT is performed by returning
the root node value if a query requires the result for the maximum
window, or by aggregating a minimum set of internal nodes that
covers the required range in leaf nodes. The example of answering
a query with range of 11 partials starting from leaf 15 is shown
with red triangles in Figure 4.

B-Int (or Base Intervals) was proposed in [5] as another final aggre-
gation technique. It uses a multi-level data structure that consists of
dyadic intervals of different lengths. On the first level, the intervals
are of a length of one partial, on the next level the interval length
is two partials, on the third level the length is four partials, and
so on until we reach the top level that just has one interval of the
maximum supported range length. The whole data structure is
organized in a circular fashion, so that the rightmost interval on
any level is followed by the leftmost interval from the same level
(Figure 5). Notice that the binary nature of this data structure makes
it similar to FlatFAT, and similarly to FlatFAT, when producing
the final aggregate B-Int also determines the minimum number of
intervals needed to represent the desired range, and aggregates
them, for example, in Figure 5 B-Int aggregates all intervals marked
with color in order to get the answer for the specified query range.
Yet, the algorithms for updates and look-ups are slightly different.
During insertions, unlike FlatFAT, B-Int only updates the inter-
vals that end with the inserted value instead of updating the entire
structure bottom up until reaching the top layer. This, however,
slows down look-ups since more intervals are needed to be aggre-
gated to get the result. Due to the algorithms’ similarities, B-Int
and FlatFAT share the same time complexities O(logn), and space
complexities 2 [log(m1+1 however B-Int was shown to be slower
than FlatFAT by a constant factor in [24], and we confirm these
findings in this work as well.

L-Int and R-Int [5] were proposed together with B-Int, however
they are not applicable to our work because they do not satisfy
our complexity and query generality requirements. R-Int requires
queries to be both commutative and invertible, and L-Int is only
applicable for cases with large numbers of historic look-ups com-
pared to the number of updates, where historic look-ups return
answers for ranges within a window that do not include the latest
data. Conversely, the L-Int algorithm becomes impractical since its
complexity devolves to O(n) in such a setting.

A. U. Shein et. al.
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2.3 Shared Processing of ACQs

Since the ACQs are executed periodically (unlike one-shot queries),
the opportunity to reduce the long-term overall processing costs by
sharing partial results arises. Several processing schemes, as well as
ACQ optimizers, take advantage of the shared processing of ACQs [7,
13, 16]. To show the benefits of sharing partial aggregations in such
scenarios, consider the following example:

Example 1 (Fig. 6) Assume two ACQs that monitor MAX stock
value over the same data stream. The first ACQ has a slide of
2 tuples and a range of 6 tuples, the second one has a slide of 4
tuples and a range of 8 tuples. That is, the first ACQ is computing
partial aggregates every 2 tuples, and the second is computing
the same partial aggregates every 4 tuples. Clearly, the calculation
producing partial aggregates only needs to be performed once every
2 tuples, and both ACQs can use these partial aggregates for their
corresponding final aggregations. The first ACQ will then run each
final aggregation over the last three partial aggregates, and the
second ACQ will run each final aggregation over the last 4 partial
aggregates.

Partial results sharing is applicable for all matching aggregate
operations, such as max, count, sum, average, etc., and for different
but compatible aggregate operations, for example sum, count and
average can share results by treating average as sum/count.

To determine how many partial aggregations are needed after
combining n ACQs into a shared execution plan, we need to first find
the length of the new combined (composite) slide, which is the Least
Common Multiple (LCM) of the slides of the combined ACQs (in
Example 1 it is four). Each slide is then repeated LCM/slide times
to fit the length of the new composite slide, and all slide multiples
are marked within the composite slide as edges. If slides consist of
several fragments due to the used partial aggregation, all fragments
are also marked within the composite slide as edges. If two or more
ACQs mark the same location, it means that location is a common
edge. The more common edges are present in the composite slide,
the more partial aggregation sharing can be performed.

In this work we combine all compatible ACQs into one shared
plan in order to achieve maximum sharing, which, in a general case,
provides the most computational resource savings. Although, in
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specific cases it was shown that it is not always beneficial to aim
for maximum sharing [12, 13, 21].

2.4 Other Related Work

Work similar to sliding-window aggregation existed in Temporal
Database Systems long before DSMSs came around. Such systems
store the entire stream of tuples and allow aggregations over any
continuous segments of the stream which are called Historical Win-
dows. Conversely, DSMSs generally only support Suffix Windows,
which end at or near the most recent results. In the context of
Temporal Databases, Moon et al. [19] utilized red-black trees for
aggregations and Yang et al. [26] used SB-trees, which incorporate
features from both segment-trees and B-trees. Due to the tree-based
natures of these algorithms their update complexities are O(log(s)),
where s is the size of the entire stream history over which they
build their structures. Additionally, they do not allow non-invertible
aggregations, which significantly restricts their applicability.

Several approximate calculation approaches were proposed to
save time and space by giving up accuracy [4, 6, 8, 10]. Our approach
focuses solely on computing exact answers since it is crucial for
many applications (i.e., financial, medical, etc.).

In order to improve the partial aggregation sharing in a multi-
query scenario, several heuristic-based plan optimizers have been
proposed for single node systems (WeaveShare [13], TriOps [12],
F1[21]) as well as for distributed environments [22]. We consider all
these techniques complimentary to ours since they can be applied
directly on top of our multi-query FlatFIT aggregator.

3 FLATFIT

In this section we describe our new algorithm, FlatFIT, that sig-
nificantly speeds up the final aggregation calculations in a sliding-
window environment.

3.1 Algebraic Properties and Assumptions

One of the important metrics that allows the evaluation of the
difficulty of incremental evaluation of a particular query is the
algebraic properties of the underlying aggregate operation. Based
on classification from [11], we divide all aggregate operations into
three broad categories: distributive, algebraic, and holistic.

o Distributive aggregation means that the aggregation for the
set S can be computed from two of the same aggregations of
subsets S1 and S2, where subsets S1 and S2 were constructed by
splitting S in two. For example, if we have a set of 10 numbers
and the sum of the first 7 is 20, and the sum of the 3 remaining
is 15, then we can get the sum of all 10 numbers by adding 20
and 15. Therefore, sum is a distributive aggregation.

e Algebraic aggregation means that the aggregation can be com-
puted from a number of distributive aggregations, i.e., average
is an algebraic aggregation because we can calculate it from
two distributive aggregations: sum and count. The list of com-
mon distributive aggregations includes count, sum, product,
max, min, sum of squares, etc. By combining these distribu-
tive aggregations we can calculate some algebraic aggregations
commonly used in statistics such as: average (count and sum),
standard deviation (sum of squares, sum, and count), geometric
mean (product and count), and range (max and min).
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o Holistic aggregations are aggregation that are neither distribu-
tive nor algebraic, i.e., median, top-K, quantile. Holistic ag-
gregates are out of the scope for this work since they require
specifically tailored algorithms which cannot be generalized.

In this paper we will focus just on optimizing the distributive
aggregations, since calculating the algebraic aggregations follows
trivially. Distributive aggregations can be further classified by their
mathematical properties: associativity, invertibility, and commuta-
tivity. Below we provide brief definitions of these properties.

e An operation @ is associative if x ® (y ® z) = (x ® y) ® z is true
for all x, y, z.

e An operation @ is invertible if there exists an operation © such
that (x ® y) © y = x for all x, y, and © is feasibly inexpensive.

e An operation @ is commutative if x @ y = y @ x is true for all
X, Y.

Query Operation Assumptions The state-of-the-art approach,
FlatFAT, as well as our proposed approach, FlatFIT, both support
non-invertible and non-commutative operations, however they
require the operation to be associative. In general, all operations
that can be executed on a window of values are associative. The
common non-associative operations such as subtraction (x — y — z),
division (x/y/z), exponentiation (x¥?), vector cross product (¥ X
ij X Z), and some binary operations such as NAND and NOR, are
generally impractical when executed on sets of values larger than
two.

Window Structure Assumptions In non-FIFO window structures,
the events of insertion and expiration are not synchronized, which
can cause window overflow situations. Such cases arise when there
are not enough expiring tuples (or partial aggregates) to make room
in the window for the insertions. Both the FlatFAT and the FlatFIT
approaches are able to handle such cases by performing dynamic
resize operations, however in this paper we are focusing on the
FIFO window environment since it is the most common approach
to processing sliding-window aggregations in practice, and we treat
non-FIFO windows as a special case.

Arrival Order Assumptions Similarly, both algorithms allow up-
dates on multiple partial aggregates already stored within the win-
dow. However in this paper we focus on the classic streaming
scenario when all new partial aggregates are processed by the final
aggregator one-by-one as they become available. In such settings
the arriving tuples have to be in-order or slightly out-of-order. As
long as the out-of-order tuples are within the same partial aggrega-
tion, the final result will not be affected. If, however, the ordering
of tuples is further degraded, inconsistencies in the final result
may arise. The mechanism that our system uses to cope with such
extreme situations is outside of the scope of this paper.

3.2 The FlatFIT Algorithm

In this subsection we provide the algorithm and implementation
details for our approach followed by two clarifying examples. We
target single query and multi-query environments, though single
query can be considered a special case of multi-query processing.

Our FlatFIT algorithm works by intelligently reusing calcula-
tions performed on sets of partial aggregates within a window,
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Algorithm 1 FlatFIT Pseudocode

1: Input: A set of aggregate continuous queries Q, aggregate op-
eration @, the initial value for @ initVal, and partial aggregation
technique PAT

2: Output: Continuous answers to queries in Q according to their
specifications.

Phase 1 (Preparation)

: sharedPlan = BuildSharedPlan(Q, PAT)

. wSize = sharedPlan.wSize

: Partials = new array[wSize]

: Pointers = new array[wSize]

. Positions = new stack()

10: for i=0 to wSize do

11: Partials[i] = initVal

12: Pointers[i] =i+ 1

13: end for

14: Pointers[wSize - 1] = 0

15: currlnd = 0

16: prevind = wSize - 1

17:

18: Phase 2 (Execution)

19: while results are expected do

20:  length = sharedPlan.getNextPartialsLength()
21:  newPartial = Partial Aggregator.aggregate(length, PAT)

e R R I )

22:  Partials[prevInd] = newPartial

23: Pointers[prevind] = currlnd

24: queriesToAnswer = sharedPlan.getNextSetOfQueries()
25:  for each query q in queriesToAnswer do
26: startInd = currInd - q.range

27: if startInd < 0 then

28: startInd += wSize

29: end if

30: do

31 Positions.push(startInd)

32: startInd = Pointers[startInd]

33: while startInd != currInd

34: end do while

35: answer = Partials[Positions.pop()]

36: while Positions.size() > 1 do

37: templInd = Positions.pop()

38: answer = answer @ Partials[tempInd]
39: Partials[tempInd] = answer

40: Pointers[templnd] = currlnd

41: end while

42: tempInd = Positions.pop()

43: answer = answer @ Partials[tempInd]
44: send (answer)

45: end for

46:  prevind = currlnd

47: currlnd++

48: if currlnd == windowSize then

49: currlnd = 0

50: end if

51: end while

A. U. Shein et. al.

which are stored in a novel index structure. In this way, the Flat-
FIT algorithm avoids costly and unnecessary (re)computations and
enables a higher reuse of the intermediate results than previous
methods. Pseudocode for the FlatFIT algorithm is depicted in
Algorithm 1 and consists of the Preparation and Execution phases.

The Data Structures in the core of the FlatFIT algorithm include
two circular arrays (Pointers and Partials) and a stack (Positions).
The two circular arrays are interconnected with their indices (as
shown in Figure 7), and the stack is used to store the indices that
are currently processed. The Pointers and Partials arrays can be
thought of as a single weighted jump table that allows FlatFIT
to skip to the position stored in the Pointers array while adding
the corresponding value from the Partials array to the running
aggregate value. This way some calculations that have been already
accounted for can be skipped.

The Preparation Phase given a set of queries Q and one of the
partial aggregation techniques discussed in Section 2.1 (i.e., Pairs)
as an input, starts by building a shared execution plan by exe-
cuting the BuildSharedPlan function (line 5). The sharedPlan is
constructed as discussed in Section 2.1, and it includes a full list of
partials (or edges) augmented with their lengths and lists of queries
that need to be evaluated at each partial. The BuildSharedPlan
function identifies the query with the longest range in terms of the
number of partials, and saves this range as the member wSize of
the produced sharedPlan. wSize signifies the necessary window
length needed to process all input queries.

After generating the sharedPlan, FlatFIT initializes the data
structures (lines 7-14). The two circular arrays are both initialized
to a length equal to wSize. The Positions stack is initialized empty
and can expand up to wSize — however normally it is much less
(refer to Section 3.3). The Partials array is initially filled with the
initial value initVal for the query operation @ supplied as input.
For example, initVal is 0 for the SUM operation or —co for the
MAX operation. Each value in the Pointers array is initialized to
point to the next consecutive value in it (i.e., Pointers[2] is 3, and
Pointers[wSize — 1] is 0, since it is a circular array).

The currInd variable signifies the current position within the
two arrays (line 15). It starts at 0 initially and increases to wSize — 1
during execution, after which it wraps back to 0. The arriving
partial aggregates will be inserted into the Partials array always at
the index previous to the currind, referred to as prevind (line 16).

The Execution Phase is implemented as a loop that continuously
returns all the query results while they are expected. At the begin-
ning of the loop (lines 20-24), FlatFIT gets the next partial’s length
from the sharedPlan, and supplies it to our Partial Aggregator
which uses the provided PAT technique to produce the newPartial
value. The newParial is then inserted into the Partials array at
prevind, and Pointers[prevind] is updated to point to the currind.
Now, the answers to all queries scheduled at this position need to
be produced.

After receiving the queriesToAnswer from the sharedPlan (which
is a subset of Q), FlatFIT loops over these queries in order to an-
swer them. The loop starts by identifying the start index startInd
for each query q (lines 26-29) within the two arrays from which it
will start aggregating values. startInd is identified by rewinding
currlnd back by ¢’s range length.
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Once the startInd of g has been determined, our algorithm tra-
verses the Pointers array while pushing all visited indices onto
the Positions stack in a do-while loop until it reaches the currind
again (lines 30-34). Then, in order to construct the final aggregation
FlatFIT needs to access the Partials array at all these indices, and
at the same time update the values in the Partials array to be reused
in the future.

Towards this (lines 35-44), FlatFIT first initializes the answer
variable to the value found in the Partials array at the index popped
from the top of the Positions stack. It then continues by popping all
the indices except for the last one from the Position stack in a loop
and saving them as a tempInd. The values found at the tempInd
indices in the Partials array are aggregated with the answer vari-
able using the aggregate operation @ supplied as an input. Each
time a new partial is aggregated, FlatFIT also writes the current
value of the answer into the Partials array at tempInd, and copies
the currInd into the Pointers array also at tempInd. This technique
allows FlatFIT to later skip from tempInd to currInd by doing just
one aggregate operation. The last index popped from the Positions
stack is also used to retrieve the corresponding partial from the
Partials array and is aggregated to the answer, however it does
not need to update the two arrays because it will be overwritten in
the next iteration of the execution phase with the new partial.

Observations. Notice that the more queries with different ranges
that are registered on the datastream, the more result reusing is
performed by FlatFIT. In cases where the number of queries reg-
istered on the datastream is small, large parts of the Pointers and
Partitions arrays might be visited and updated by FlatFIT on cer-
tain slides (not more frequently than once per wSize), which enables
fast calculations on the rest of the window.

The least amount of calculation reuse for the FlatFIT algorithm
happens in a single query environment, since once per wSize + 1 all
indices are visited and pushed onto the Positions stack, which then
causes an update on almost the entire window. In this paper, we
refer to this event as wReset. wReset also happens as the first itera-
tion of the execution phase in any environment regardless of how
many queries are registered on the datastream. Even though a sin-
gle query environment turns out to require the most computation
for FlatFIT, it still significantly outperforms all competitors includ-
ing the state-of-the-art FlatFAT technique. This stands because
despite wReset being a heavy calculation part, it only happens once
per wSize + 1 and it enables FlatFIT to reuse calculated partials
efficiently during the rest of the execution.

The following Examples 2 and 3 (illustrated in Fig. 7) should
clarify the above algorithm. In order to make the explanation
more intuitive we execute the two queries Q1 and Q2 on the same
incoming datastream using two algorithms: Naive and FlatFIT,
and we illustrate each step of their calculations side-by-side.

Example 2 (Single query environment). Assume we have just
one query Q1 which is seeking the MAX value over the range of 5
tuples with a slide of 1 tuple. The slide size is set to one tuple in
this example for simplicity, which means that there is no partial
aggregation and the answer to MAX needs to be calculated after
every new tuple arrival. A shared execution plan is not needed
in this example since we only have one query, which makes our
window size (wSize) equal to the range of Q1 (5 tuples).
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Figure 7: Example of Naive and FlatFIT algorithms working
in a Single Query Environment (processing just Q1) and in a
Multi-Query Environment (processing both Q1 and Q2)

In both the Naive and FlatFIT representations we mark the po-
sitions that have been modified by the algorithms in each step. The
Positions stack involved in the FlatFIT calculation is not illustrated
here, however its contents in each step are clear since we know
that all indices that are modified in that step were pushed onto
the Positions stack and then popped back off. The current index
(currInd) at each step is bolded in Figure 7 for convenience. The
tuples enter the system in the order: 2,4,0,3,7,6, 1,8, 9, 5.
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After the initialization in Step 0, in Step 1 the first tuple, 2, arrives.
The Naive algorithm stores the new tuple at the current index in its
own Partials array, and it executes a full iteration over the entire
array in order to find the MAX value, which in this case is 2.

FlatFIT writes the first tuple, 2, to the Partials array at the
previous-to-the-current index, which in this case is 4 (we refer to
this index as prevind). Now the algorithms have to make a full
circle over the Pointers array because in a single query environ-
ment, the start index (startInd) for the query is always equal to the
currlnd. By the nature of the FlatFIT operation discussed above,
Step 1 always triggers the wReset event (the update of the whole
window except for the current index) because the Pointers at each
index are pointing to the next index after the initialization, and
FlatFIT is unable to skip any positions while producing the result.
This way, all indices are pushed onto the Positions stack and subse-
quently popped to construct the answer from the partials at those
indices, while also updating the arrays for future use. Thus, all
indices (except the currInd) are pointing now to index 0 and their
corresponding values in the Partials array are set to 2.

In Step 2, the Naive algorithm places the new partial, 4, into the
current index and iterates again over the whole window comparing
every value in order to get the MAX value (which now is 4). Our
FlatFIT algorithm is able to provide the answer to Q1 here with
just one MAX comparison. From the start index, 1, it skips to index
0 (since Pointers[1] is 0) and then again to index 1 since Pointers[0]
is 1. The answer is then computed by taking the MAX of Partials[1]
and Partials[0], which is 4, and it is then stored in Partials[0].

In Step 3 FlatFIT updates index 1 with the new tuple, 0, and it
is able to make a full circle from the currind, 2, back to itself by
visiting intermediate indices 0 and 1, after which just index 0 was
updated for future use.

In Steps 4, and 5 (and later 9) FlatFIT is able to get the answers
in just two MAX comparisons similarly to Step 3, and in Steps 6
and 8 it takes just one comparison similarly to Step 2, while Naive
did 4 comparisons at each and every step. Step 7 forced FlatFIT
to execute 4 comparisons similarly to Naive because the wReset
event happens at this step.

In a single query environment the wReset happens on the first
inserted partial and then repeats periodically every wSize + 1 slides.
Since the period is greater than wSize by one, the start position of
the wReset operation keeps shifting right by one every cycle. m

Notice that this small example highlights the benefit of using
FlatFIT over Naive by showing that Naive had to execute 40 MAX
comparisons total to process Q1, while FlatFIT executed just 21.

Example 3 (Multi-query environment). In this example we illus-
trate how FlatFIT works in a multi-query environment by aug-
menting Example 2 with one more query, Q2. The new query, Q2,
is also seeking the MAX value and has a slide of 1 tuple, however
its range is 2 tuples. Thus, Naive and FlatFIT will need to answer
both queries at every step. Since the range of Q1 is 5, which is
greater than the range of Q2, and the slides of Q1 and Q2 are the
same, the shared execution plan has a wSize of 5 tuples.

The Naive algorithm in this case does a full loop over the entire
array in order to answer Q1 each time, and then iterates over the
most recent two partials to produce the answer for Q2, and this
process is repeated at every step.
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Conversely, FlatFIT, after iterating over the whole structure in
Step 1 to produce the answer for query Q1, is able to generate the
answer for Q2 with 0 comparisons, just by calculating the start
index, startInd, for Q2 (which is 3) and reading the answer from
the Partials array at this index (since the Pointers array at this
index points us directly back at the currInd). Similar behavior for
calculating the answer for Q2 in 0 comparisons can be also found
in Steps 3, 7, and 9.

In Step 2, our FlatFIT algorithm calculates the answer for Q1 just
by doing one comparison (explained in Example 2), and produces
the answer for Q2 by executing also just one MAX comparison
(of Partials[4] and Partials[0]). Similarly to this step, FlatFIT
calculated the answers for query, Q2, in just one comparison also
in Steps 4, 5, 6, 8, and 10. m

Notice that even for query, Q2, with range as small as 2 tuples,
FlatFIT needed just 6 comparisons for the entire example, while
Naive had to perform 10. It is intuitive that with increasing query
numbers and their ranges, FlatFIT allows much better scalability.
Later in this paper this intuition is backed up by both theoretical
analysis (Section 4) and experimental evaluation (Section 5).

3.3 Optimization

In order to reduce memory consumption by the Positions stack in a
single query environment we made the following observation: the
stack fills up to wSize — 1 only during the wReset event, otherwise
it can hold up to 2 values at most. In fact, the usage of the Positions
stack repeats with period wSize +1 and it always contains wSize —1
entries at the first step of each cycle, one entry at the second and the
last entries of the cycle, and two entries in the rest of the wSize — 2
steps. This means that the amount of memory consumed by the
Positions stack can be reduced from wSize — 1 to 2 by implementing
the wReset operation manually without using the stack.

In our optimized wReset function, we initialize the answer vari-
able to the initial value, initVal, for the query operation ®, and
iterate over both the Partials and Pointers arrays of FlatFIT back-
wards from prevind until currind is reached. At each iteration the
value from the Partials array is aggregated into the answer vari-
able, and the current value of the answer variable is written back
to the Partials array. The Pointers array is updated to point to the
currlnd at each iteration. After the traversal is finished, the value
from the answer variable is returned, and both arrays of FlatFIT
are updated and ready to continue executing the main algorithm.

This manual wReset function is triggered periodically every
wSize + 1 slides in a single query environment, and triggered just
once at the beginning of the execution phase of multi-query environ-
ments. The full implications of this optimization on an algorithm’s
space complexity can be found in Section 4.2.

4 COMPLEXITY ANALYSIS

In this section, we calculate the time and space complexities of
Naive, B-Int, FlatFAT, and FlatFIT, summarized in Table 1.

The theoretical time complexities of the above algorithms are
illustrated in Figures 8 & 10, theoretical throughputs in Figures 9 &
11, and theoretical memory consumptions in Figure 12.
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Figure 8: Theoretical operations per slide in a single query
environment
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Figure 9: Theoretical throughput in a single query environ-
ment running N operations per second

4.1 Time Complexities

To compare the time complexities we calculate the number of aggre-
gate operations needed to be executed per slide in order to return
all query answers given a window size of n partial aggregates. In
order to cover the entire complexity space, we provide our calcu-
lations for two boundary scenarios: a single query environment
and a multi-query environment with maximum number of queries
(which we refer to it as a max-multi-query environment).

In a single query environment, only one query with the range
covering the entire window (which is n) is executed each slide. Such

Table 1: Complexities

Algorithm Time Complexity Space Complexity
Single Q [ Max-Multi-Q
Naive n—1 "72 -2 n
FlatFAT log(n) n - log(n) 2[log(m)T+1
B-Int log(n) n - log(n) 2llog(m)T+1
FlatFIT 3 n-1 between 2n(normal)
and 2.5n(worst)
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Figure 10: Theoretical operations per slide in a max-multi-
query environment
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Figure 11: Theoretical throughput in a max-multi-query en-
vironment running N operations per second

an environment can be though of as a lower bound of time com-
plexity per slide. In a max-multi-query environment, the number
of queries that cover all possible ranges from 1 to the length of
the window (n) are executed each slide. This environment can be
thought of as the upper bound. It is clear that the complexity of
the general case (with any other numbers of queries) is between
the lower and the upper bounds.

Naive in single query environment has the time complexity of
n — 1 per each slide because it simply iterates over all the partials
(n) and aggregates them. In a max-multi-query environment, at
each slide Naive needs to return n answers for ranges from 1 to
n, which yields 0 to n — 1 operations, respectively. By summing
up this arithmetic sequence, the number of operations executed by

; . -1 2
Naive per slide becomes "("2 ) = 5 -7

FlatFAT has the time complexity of log(n) in a single query envi-
ronment since with each new partial the binary tree is updated in a
bottom-up fashion from the leaf to the root node. Since the number
of levels in a binary tree is log(n) + 1, Flat FAT needs exactly log(n)
operations to calculate the query answer. In a max-multi-query
environment it is intuitive that the upper bound of the time com-
plexity is n - logan, since FlatFAT needs to iterate over n different
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query ranges at each slide and each range would require logan oper-
ations at most to return the result. The exact FlatFAT complexity
per slide can be produced by iterating over all possible ranges and
summing their required numbers of operations together, which is
equal to: n - logan — 37" + 510% + % For simplicity, we use the
asymptotic equivalent of this complexity which is n - logan.

B-Int similarly to FlatFAT is of a binary nature, and only different
in how it handles updates and look-ups. It has been shown, however,
to have the same time and space complexities as FlatFAT in [24].

FlatFIT when executed in a single query environment can be ob-
served to execute different numbers of operations for different slides
to produce the answer, however the numbers of operations follow
a certain cyclical pattern which repeats every wSize + 1 slides.

In a single query environment the wReset event happens once
per period. Its operational complexity with or without the opti-
mization explained in Section 3.3 is n — 1 operations. wReset is
surrounded by two slides that require just 1 operation, and the
rest of the slides (n — 1) in a period require two operations each.
Therefore, by summing everything, we have the complexity for the
natural period of FlatFIT: (n— 1) +2(n—2) + 2 =3(n-1).

Since the above complexity is calculated for a segment of n + 1
slides, for a fair comparison with other approaches, we need to
convert this complexity to the period of length n. To do that we
multiply the above equation by n and divide by (n — 1), which
results in 3n operations for the segment of n slides, which in turn
makes our complexity equal to just 3 operations per slide and is
asymptotically constant.

In a max-multi-query environment, FlatFIT updates all indices
at each slide by answering queries of all possible ranges, which
allows it to keep the data structure maximally updated and get the
answers for all queries with just one or zero operations each. In this
scenario the wReset event happens only once at the beginning of the
execution phase and is never triggered again, since the algorithm
keeps all of the indices updated at all times. Due to this, at each
slide FlatFIT returns answers to all queries in just 1 operation,
except for the query with range 1, which it processes without any
operations by just using the newly inserted partial value. In this
scenario the operational complexity of the FlatFIT algorithm yields
n — 1 operations per slide.

Takeaway Point FlatFIT is superior in time complexity (See Fig-
ures 8 - 11).

4.2 Space Complexities

Naive has the space complexity of n since it stores partials only
once and does not keep any additional structures. This complexity
stands despite the number of registered queries, since additional
queries do not require any additional structures either.

FlatFAT and B-Int both have the space complexity of 2 [log(n)]+1,
Because of the binary nature of these algorithms, they are more
space efficient when the window size is a power of two, in which
case they consume 2n of memory. 2n is made up of one n for all
leaf nodes and n — 1 for all the tree nodes above leaves, and the
first position within a flat array is normally left unused in order to
simplify the addressing of nodes within the tree. In cases where
the window is not a power of two, FlatFAT and B-Int round it up
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Figure 12: Theoretical Memory Usage in GB increments

to the closest power of two, which is mathematically expressed as:
2lleg(m1 As discussed above, this complexity is multiplied by 2
in order to construct the binary data structure, yielding the final
space complexity of 2log(m1+1 sych window rounding manifests
the abrupt spikes in the graph representation of these algorithms
(Figure 12) and it increases algorithms’ space consumption up to
3n in the worst cases (i.e., n = 1025).

FlatFIT needs two pre-allocated arrays of size n to operate and
a stack that can grow up to n in size, however after introducing
the optimization (in Section 3.3) in a single query environment,
it cannot contain more than two values. In the max-multi-query
environment the stack can contain even less: just one value at
max without regard to the size of n. This makes asymptotic space
complexity of FlatFIT 2n. However, in terms of space complexity,
single query and max-multi-query environments do not bound
FlatFIT. In a general case where we have more than one query
and less than maximum queries registered, the stack might have
to store up to n/2 values at most, in the case with just two queries.
However, each additional query (of a different range) after that
cuts the maximum stack memory consumption in half by enabling
higher reuse of calculations. Therefore, if the number of queries is
q, the space complexity of FlatFIT becomes 2n for ¢ = 1and g = n,
and 2n + qu*l for the rest of the possible values of g.

Takeaway Point Naive is superior in space complexity, however
it is clearly not feasible for heavy workloads. FlatFIT offers the
next best space complexity while being the most scalable solution
in terms of time complexity (See Figure 12).

5 EXPERIMENTAL EVALUATION

In this section, we present our experimental evaluation that con-
firms that the theoretical superiority of FlatFIT stands true in
practice compared to other final aggregation approaches.

5.1 Experimental Testbed

Platform In order to test the scalability of our sliding-window ag-
gregation processing technique, we built an experimental platform
in C++ (compiled with G++5.4.1). Specifically, we implemented
a stand-alone stream aggregator platform and programmed the
Naive, FlatFAT, B-Int, and FlatFIT algorithms within the same
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Figure 13: Throughput in processed slides per second in sin-
gle query environment

codebase, sharing data structures and function calls to enable a fair
comparison. Although, all the compared algorithms can be easily
ported to any commercial general purpose stream processing sys-
tems, we chose to build our own stand-alone platform to carry out
our evaluation in an isolated environment to avoid any potential
system interferences and overheads.

Dataset We utilized the DEBS12 Grand Challenge Dataset [15],
which is widely utilized in the query workload based evaluations
like ours. The dataset contains events generated by sensors of
large hi-tech manufacturing equipment. Each tuple in this dataset
incorporates 3 energy readings and 51 values signifying various
sensor states. The records were sampled at the rate of 100Hz, and
the whole dataset includes ~33 million events repeating it up to
~134 million.

Workload Since the main goal of our evaluation is to compare
different final aggregation techniques, we set all query slides to one
tuple to reduce partial aggregation overheads to the bare minimum
and measure throughput in terms of the number of query results
returned per second in a single query environment. In a multi-query
environment we measure how many slides of a shared execution
plan each technique is able to process per second with an increasing
window size, where, at each slide, multiple queries produce answers.

It is clear that the performance of the final aggregation tech-
niques heavily depends on the window size, i.e., the larger the
window size the longer it takes to process updates to it. Thus, we
varied the window size from 1 tuple to 134 million tuples.

Aggregate Function For our aggregations we chose a distributive
operation, MAX, as opposed to an algebraic operation like MEAN
(which is decomposed into COUNT and SUM for processing) in
order to benchmark the algorithms more accurately. Additionally,
MAX is a non-invertible operation that illustrates generality of the
algorithms.

5.2 Experimental Results

We ran all our experiments on an Intel(R) Core(TM) i7-4770 CPU
@ 3.40GHz machine with 16 GB of RAM. For robustness, all experi-
mental results are taken as averages of three independent runs of
each experiment aggregating three different energy readings from
the DEBS12 dataset.
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Figure 15: FlatFIT / FlatFAT throughput ratio

Exp 1: Single Query Throughput (Figure 13)

In this test we varied the window size from 1 tuple to 134 million
tuples where each window is a power of two, and ran a query cal-
culating MAX over the entire window after each new tuple arrival.
Clearly, increasing window size increases the amount of required
calculations causing lower throughputs for all four algorithms. The
results are depicted in Figure 13. Notice that the rates at which
throughput decreases are very similar to what we expected from
the theoretical analysis of the algorithms (Figure 9).

Our statistical calculations show that FlatFIT’s throughputs
are on average 1.8 times higher than throughputs of FlatFAT
with a maximum of 2.6 times. We also observed that FlatFIT starts
outperforming FlatFAT on windows as small as 8 tuples and in-
creases its gain on the rest of the algorithms rapidly. FlatFAT
showed to be more beneficial than FlatFIT only on window sizes
from 1 to 4 tuples, however this benefit is negligible (4.4% at max).
Exp 2: Max-Multi-Query Throughput (Figures 14 and 15)

In this test we again varied the window size from 1 to 134 million
tuples, however we ran a maximum number of queries calculating
MAX value over the ranges from 1 to the window size after each
new tuple arrives. In this environment, increasing window size
decreases throughputs for all four algorithms much faster, because
we are processing many queries per each slide, which makes the
number of slides processed per second decrease quickly. The results
of processing up to a window size of 1000 are depicted in Figure 14).
Similarly to the previous experiment, the rates at which throughput
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decreases are very similar to what we expected from the theoretical
analysis of the algorithms (Figure 11). The improvement of FlatFIT
over FlatFAT is depicted separately in Figure 15. Our approach
demonstrated superior scalability again by yielding throughputs
that are on average 10 times higher than throughputs of the state-
of-the-art FlatFAT technique with a maximum of 17 times. Notice
that in this setting FlatFIT performs the best on all window sizes
from 2 to 134 million tuples (and only underperforms compared to
Naive and FlatFAT on window size 1 by 2% and 1%, respectively).
Notice that in both experiments so far Naive and FlatFAT slightly
outperformed FlatFIT on small window sizes (between 1 and 4 tu-
ples). In such scenarios, the overhead of maintaining a complicated
structure of FlatFIT outweighs the benefit of using it since the
updates to the structure itself prevail the useful operation.

Exp 3: Memory Consumption (Figure 16)

In this test we again varied the window size from 1 to 134 million
tuples and included window sizes that are not powers of two, and
we executed a query calculating MAX value over the whole window
size incrementally. We measured the maximum resident set size of
the processes for all runs. The results of this test are depicted in
Figure 16). The increasing window size increases the space require-
ment of the algorithms in addition to increasing the processing
cost. The rates at which memory increases are almost identical to
what we expected from the theoretical analysis of the space com-
plexities (Figure 12), with only a constant difference between any
two corresponding data points of all algorithms. We believe that
this difference is caused by the buffering of the incoming tuples
which is performed by our platform and not accounted for in the
theoretical analysis. FlatFIT demonstrated favorable scalability
again by consuming on average 1.4 times less memory than the
state-of-the-art FlatFAT with a maximum of 1.9 times.

6 CONCLUSIONS

The main contribution of this paper is a novel technique, FlatFIT,
for incremental sliding-window final aggregation processing. Our
approach works by intelligently maintaining and reusing calculated
partial aggregations in an index structure.

In the paper, we theoretically showed that FlatFIT significantly
decreases the number of operations required for a continuous query
to produce the answer while reducing the algorithm’s space con-
sumption and supporting generality in query operations. We also
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showed experimentally that FlatFIT achieves up to 2.6 times higher
throughputs in a single query environment and up to 17 times in a
multi-query environment compared to the current state-of-the-art
algorithm. As far as we know, FlatFIT is the first sliding-window
processing technique that has smoothed time complexity of O(1).
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