Check for
Updates

Interactive Exploration of Correlated Time Series

Daniel Petrov, Rakan Alseghayer, Mohamed Sharat”, Panos K. Chrysanthis, Alexandros Labrinidis
Dept. of Computer Science, University of Pittsburgh, Pitsburgh, PA, USA
*University of Queensland, Brisbane, Australia
dpetrov,ralseghayer,panos,labrinid@cs.pitt.edu, “m.sharaf@ugq.edu.au

ABSTRACT

The rapid growth of monitoring applications has led to unprece-
dented amounts of generated time series data. Data analysts typ-
ically explore such large volumes of time series data looking for
valuable insights. One such insight is finding pairs of time series, in
which subsequences of values exhibit certain levels of correlation.
However, since exploratory queries tend to be initially vague and
imprecise, an analyst will typically use the results of one query as
a springboard to formulating a new one, in which the correlation
specifications are further refined. As such, it is essential to pro-
vide analysts with quick initial results to their exploratory queries,
which allows for speeding up the refinement process. This goal is
challenging when exploring the correlation in a large search space
that consists of a big number of long time series. In this work we
propose search algorithms that address precisely that challenge.
The main idea underlying our work is to design priority-based
search algorithms that efficiently navigate the rather large space
to quickly find the initial results of an exploratory query. Our ex-
perimental results show that our algorithms outperform existing
ones and enable high degree of interactivity in exploring large time
series data.

CCS CONCEPTS

«Information systems —Information retrieval; Users and in-
teractive retrieval; Personalization;

KEYWORDS
time series, data exploration, search, subsequence

ACM Reference format:

Daniel Petrov, Rakan Alseghayer, Mohamed Sharaf”, Panos K. Chrysanthis,
Alexandros Labrinidis. 2017. Interactive Exploration of Correlated Time
Series. In Proceedings of ExploreDB’17, Chicago, IL, USA, May 14-19, 2017,
6 pages.

DOI: ht‘tp://dx.doi.org/lo.l145/3077331.3077335

1 INTRODUCTION

In recent years, more and more individuals and companies are col-
lecting data on natural phenomena, social and socio-technological
processes over time in order to quantify them and also to study how
they change over time. Applications, which produce and deal with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ExploreDB’17, Chicago, IL, USA

© 2017 ACM. 978-1-4503-4674-0/17/05...$15.00

DOI: http://dx.doi.org/10.1145/3077331.3077335

such data are medical data [9], location-based services [2], wireless
sensor networks, [1, 3, 15, 16] and finances [6] — to name a few.
A common method to get a better understanding of the observed
behavior conveyed in these datasets is to find correlations in the
time series data [5]. The correlation can be also used as a source to
manipulate the data further like finding similarity measures faster
[11], running threshold queries, [17] or reducing the size of the
data, yet preserving some of its characteristics [8].

Finding correlations in time series (TS) data is a challenging task.
Traversing the data and calculating the correlation is computation-
ally expensive and introduces significant delay in the production
of results. One way to address the challenge is among the lines of
navigating the search space [5]. An alternative approach is to index
the time series data [4, 5, 7, 18]. Predominantly the users look for
pairs of highly correlated TS, and a high number of TS implies an
even bigger number of pairs to be compared — precisely w
pairs for n TS. Often TS data consists of a big number of very long
TS, that would not all fit into memory.

The big number of long TS further complicates data exploration
where an analyst is interested in using the results of one query as a
springboard to formulating new queries, in which the correlation
specifications are further refined. In order to support data explo-
ration, it is essential to provide analysts with quick initial results to
their exploratory queries, which allows for speeding up the refine-
ment process. In other words, there is a need for algorithms that (1)
quickly identify subsequences of highly correlated time series data
and (2) provide results within an interactive time frame. Existing
work has primarily addressed the former [12, 13], which was mainly
focused on correlating semi-finite TS. These current approaches for
identifying pairs of correlated time series are designed to produce a
full set of results before presenting it to the user. Thus, all of them
fall short of supporting interactive exploration, which imposes an
upper bound on the time needed to present the first results and
returns results incrementally. These works are in the time domain,
i.e., working with the raw time-ordered data.

In this paper, we address the latter, an interactive framework in
the time domain, which continuously and incrementally provides
results to the user. To the best of our knowledge, there is no such
system, which identifies correlated TS and provides incremental
results within an interactive time frame with accuracy of 100%
while exploring the data space. Our solution is based on the use of
the Pearson Correlation Coefficient (PCC) as a metric of correlation
of two subsequences of time series data and on the hypothesis that
interactivity can be achieved by integrating caching and scheduling
principles.

In this paper we make the following contributions:

o We formulate the problem of pairwise correlation of time
series data, which produces results in interactive amount
of time (Sec. 2).

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3077331.3077335&domain=pdf&date_stamp=2017-05-14

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

e We propose two primary algorithms. Our baseline one
(iBRAID) explores the pairs in round robin fashion. Our
flagship algorithm (PriCe) utilizes a priority function based
on historical success rate, cost, and PCC (Sec. 3).

e We present an experimental evaluation framework, which
implements iBRAID and eight different variations of PriCe.
Our experimental results using a real dataset show a speedup
of up to 1500% of PriCe compared to iBRAID (Sec. 4).

2 PROBLEM DEFINITION

Without loss of generality, we consider the complete dataset to be
available upfront, data to be numeric, all dimensions to be synchro-
nized - i.e., the next timestamp of all of them is received by the
system at the same point in time, all time series start at the same
point in time, there are no missing timestamps, and all time series
are of the same length.

We adopt the widely used Pearson correlation coefficient (PCC)
as a measure of correlation between a pair of time series. Given two
numeric time series x and y of equal length m, the PCC is calculated
with the following formula:

m

corr(x,y) = Z —(Xi ~ Hx)yi ~ y) (1)

Ox O,
i=1 x=y

where piy is the average (or mean) of the values of x, 1 is the mean
of the values of y, ox and oy are the standard deviations of the
values of x and y, respectively.

PROBLEM (Interactive Pairwise Correlation (IPC)): Let T be a
multidimensional time series of data. Let x and y be dimensions in
T. IPC finds all pairs of subsequences of time series x and y, which
start at the same point in time and have equal length s, for which
corr(x,y) > r and delivers every matched pair as it is detected.

GOAL: The objective of IPC is to minimize the time to deliver
the first r% of the results, where r is a relatively small number. The
equivalent SQL IPC query is:

SELECT x, y

FROM T

WHERE corr(x,y) > © AND SubsequenceLength = s
FETCH FIRST r% ROWS ONLY;

3 ALGORITHMS

In this section, we address the interactivity shortcoming of the
current approaches, propose iBRAID, which is a baseline algorithm,
and introduce PriCe for interactive pairwise correlation of subse-
quences of time series data.

3.1 Naive Approach

The most obvious approach to find and report correlated subse-
quences in a TS dataset is to start with a single pair of time series,
pick subsequences of them, which start at the same point in time
and calculate the Pearson Correlation Coefficient (PCC) for them.
Subsequently, continue the PCC calculations for other subsequences
of the same pair of time series, or move to calculate the PCC for the
corresponding subsequences of other pairs of time series until all
possible pairs of subsequences in TS dataset are examined. Finally,
return all pairs of subsequences whose PCC meets a threshold 7.

D. Petrov et al.

The major cost of the naive approach is in computing the PCC for
each pair of subsequences, which requires at least two traversals of
the values in these subsequences (Eq. 1). The first one is to calculate
the average (or mean) of each subsequence. The second one is
to calculate the standard deviation and the inner cross product
of the two subsequences. The total number of traversals for each
subsequence is in the orders of magnitude of the length of the
subsequence, multiplied by the number of pairs it is part of. The
naive approach illustrates the crux of the IPC problem, which is
the high number of calculations required to explore the dataset.

3.2 iBRAID

The BRAID technique [13] partially solved the problem of the naive
approach by efficiently calculating the PCC based on five basic
and computationally cheap statistics: the sum of the elements in
each subsequence, the sum of the squares of the elements of each
subsequence, and the inner crossproduct of the elements of the two
sub sequences for which the correlation is calculated.

The following notation is adopted for the rest of the paper. The
sum of the elements of a subsequence of length m of time series x

is denoted
m
sumx = Z Xi
i=1

The same way, the sum of the square of the elements is denoted

m

_ 2

Sumxx = xi
i=1

The inner product will be denoted

m

sumprodxy = Z Xiyi

i=1
The covariance of the two time series x and y is

sumx X sumy

cov = sumprodxy - ————
The variance of the subsequence can be calculated according to the
following formula
(sumx)?
VArx = SUMXXx — ———
m

Similarly, the variance for time series y will be denoted vary. Then
the PCC can be calculated byapplying the following formula

cov

\varx X vary

The essential statistics can be computed either at once or incre-
mentally, each time a pair of subsequences gets explored. In the
case of incremental calculation, the sums that are stored in memory
are incremented by the new values added and decremented by the
values that are not part of the subsequences anymore. The same
operations are done for the sums of the squares and the inner cross
products using the respective values.

As we discussed earlier, the naive approach is to arbitrarily select
two time series, calculate the correlation for a pair of subsequences,
explore it by one value, and recalculate the correlation until the
end of the time series is reached. The next step is to arbitrarily
pick different pairs of time series and run the same algorithm. This
should be done until all pairs are explored. This algorithm does

corr(x,y) =

Interactive Exploration of Correlated Time Series

not have any prior knowledge about the data and does not use any
results as a decision making input to speed up the production of
results. Additionally, each value in each time series is touched as
many times as are the different pairs of time series in the dataset.
This makes the computation cost of the algorithm prohibitively
expensive.

We propose a computationally cheaper algorithm, which pro-
duces the same results as the naive one but with fewer computations
and returns the results as soon as they are produced. We explore
the dataset sequentially, starting from the first value for all time
series. We calculate the essential statistics for each subsequence
of each time series and the inner cross product of pairs of time
series. The next step is to calculate the correlations for all pairs
of subsequences, starting from the first value. Once this is done,
the subsequences are explored further by one value, the essential
statistics are updated incrementally - the first value is expired /
subtracted from them and the new value is added. The Pearson
Correlation is calculated again for all pairs. The rest of the steps
are to keep exploring all time series by a single value, augment the
essential statistics incrementally, and recalculate the correlation.
These steps are repeated until the whole dataset is explored.

We named the algorithm “IBRAID”, paying tribute to the authors
of BRAID [13] and emphasizing its focus on producing results
in interactive amount of time. The algorithm has a number of
advantages: it is accurate, easy to implement, and does not cause
“starvation” among the pairs. In other words, all pairs are considered
(i.e., new values are included and old values are excluded) at each
step. Additionally, it reduces the amount of computations by half
due to the usage of the five essential statistics. This algorithm
is expected to perform well for datasets whose data is uniformly
distributed. On the other hand, it might underperform on skewed
datasets. This hypothesis has motivated our second technique,
which is discussed next.

3.3 PriCe

By reusing partial PCC computations, iBRAID captures one part
of our hypothesis, that interactivity can be achieved by utilizing
caching and scheduling principles. In this section, we propose a
novel algorithm that captures both.

PriCe is a more informed searching algorithm; it uses a priority
function to explore the pairs of subsequences while reusing partial
PCC computations as iBRAID. The idea of PriCe is to explore the
most promising pair first, which is the one with the highest priority
function value. We designed the following priority function:

PCC = (M/totalExp)/C (2)

where PCC is the most recent calculated correlation for a pair of
subsequences that belong to the same pair of time series, M is
the number of produced results that match the query (i.e., pair
of subsequences) by a pair of time series so far, totalExp is the
total number of explored pair of subsequences, and C is the cost of
exploring a pair of subsequences.

PriCe gives the highest priority to the pair of time series that have
a history of high number of results produced so far and high recent
calculated PCC. This way, we capture the idea of space locality
along with temporal locality: where space locality is captured by
the PCC, and temporal locality is captured by the ratio of the results

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

Table 1: PriCe and its variations

Abbreviation Name
PriCe M Ratio [P | NP]* | Original PriCe
PriCe M [P | NP] PriCe with only num. of results
PriCe C [P | NP] PriCe with PCC/C
PriCe [P | NP] PriCe with PCC only

*[P | NP] = [Preemptive | Non-preemptive]

to the total number of explored pairs of subsequences. Moreover, we
include the cost to explore a pair of subsequences into the function.

The cost in the priority function is the number of operations
needed to calculate the essential statistics for a pair of subsequences.
For example, if a pair of time series shares one time series with
another pair. Then, the more advanced one (i.e., the one that is at a
higher timestamp) has already calculated the sums of the time series
and the sums of the squares. This leaves the pair that is lagging
behind with lower cost to advance, since the more advanced one
has already computed some of the essential statistics for that shared
time series.

PriCe has two modes of execution: preemptiveand non-preemptive.
In the non-preemptive mode, if the algorithm declares a pair of
subsequences as a result after exploring it (i.e., the calculated PCC
is above 7), it further continues exploring the next pair of subse-
quences of that pair of time series. By doing that, we try to leverage
the space locality of a result. The algorithm ceases to explore that
pair of time series when it encounters the very first pair of subse-
quences that does not count as a result (i.e., the calculated PCC is
below or equal 7). After that, it reevaluates the priority function,
and elects the next pair to explore accordingly. On the other hand,
the preemptive mode would consult the priority function after each
single exploration of any pair of subsequences, irrespective of the
calculated PCC.

4 EXPERIMENTS AND ANALYSIS

In this section we present initial results from the evaluation of
our proposed algorithms. In addition to the comparison between
iBRAID and PriCe, we study the significance of each parameter of
the priority function of PriCe (Eq. 2).

4.1 Experimental Framework

Algorithms In addition to iBRAID and PriCe, we generated three
variants of PriCe by setting some of the parameters of its priority
function (Eq. 2) to 1. All variations are summarized in Table 1. The
first variation of the priority function is PCC/C (i.e., M/totalExp=
1). This variation is denoted as PriCe C, which is less informed than
the original PriCe (denoted as PriCe M Ratio). Similarly, we have
come up with a second variation denoted as Price M, where the cost
is only the number of results produced so far M (i.e., totalExp =1
and C=1). Price M is also less informed compared to PriCe M Ratio,
as it does not take into consideration the cost to explore the pair C
nor the total number of explored subsequences so far totalExp. The
third variation is the simplest, and it has the priority function PCC.
This variation is denoted as PriCe. This means that the algorithm
will elect the pair of time series that have the highest PCC for the
most recently explored pair of subsequences. The downside of this

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

scheme is that it does not account for the cost to explore the pair
of subsequences, which affects the interactivity of the algorithm.
Also, it lacks foresight, as it fails to capture the number of results a
pair of time series has produced so far.

Testbed We implemented all the discussed algorithms and their
variations in both Java 1.8 and in C++ 11. We ran the experiments
on a computer with 2 Intel CPUs, running at 2.66GHz, and 96GB of
RAM memory. The operating system used was CentOS 6.5 and the
compiler was GCC version 4.8.2.

Metrics We evaluated the performance of the algorithms in terms
of both response time and memory footprint.

Response time: We measured the latency in both the number of
operations performed to reach the first r% of the results (i.e., pairs
of subsequences) and wall clock time needed to reach the first r% of
the results. We used the number of operations as it provides the
asymptotic efficiency of the algorithms compared to one another.
This does not depend on factors such as the hardware characteristics
and the operating system of the computer, which the experiments
are run on, nor the efficiency of the compiler / virtual machine,
which compiles and/or executes the code. At the same time, we use
the wall clock time to measure the impact of such dependencies in
the runtime environment mentioned above.

Memory footprint: We measured the number of values of the five
essential statistics, stored in memory for each pair of subsequences.

DatasetYahoo Finance Historical Data [6]: The dataset we have used
in our experiments consists of 318 time series. Those reflect the
trading of 56 companies on the NYSE for the last 28 years. This gives
us a total of 50403 different pairs to query. The data granularity
is a day, which includes the price of the stock of the company at
opening, the price at the end of the day (closing), the highest price
for the day, the lowest price for the day, the amount of shares
traded that day, and the adjusted close (calculated according to the
standards of the CRSP, Center for Research in Security Prices). The
length of each time series is about 7100 timestamps.

4.2 Experimental Results

Our objective has been to get as many results as possible while
maintaining interactivity. In this section, we present the results of
four experiments that we conducted to evaluate the interactivity
and the sensitivity of our proposed algorithms to the length of
subsequences and the target correlation threshold. Recall that all
variations of PriCe and their names in the figures are summarized
in Table 1.

Experiment 1: In our first experiment, we measured the latency
of each algorithm to produce the first 1%, 5%, 10% and 20% of the
results, measured with our first metric of response time, i.e., number
of operations (Fig. 1) as well as the memory footprint, measured
as number of (cached) values in memory (Fig. 2). The target cor-
relation threshold for this experiment is 0.9 and the subsequence
length is set to 64 timestamps. All 8 variations of PriCe outper-
form the baseline algorithm iBRAID. Most of PriCe variations have
comparable performance. Our flagship algorithm PriCe M Ratio [P]
requires only 0.06634 of the operations performed by the baseline
to produce the first 20% of the results — 34076581 vs 927230124. This
is a speed-up of more than 15 times.

D. Petrov et al.

T 3¢iBRAID Price P PriCeCP’
i —=-PriCe NP —*-PriCe M NP -*-PriCe M P ;
i —-PriCeCNP -a-PriCe M Ratio P PriCe M Ratio NP_

1000

of operations (in min)

%r Results

Figure 1: The cost in number of operations to deliver the first
1%, 5%, 10%, and 20% of the results.

=*=iBRAID PriCe P PriCeCP
i =a-PriCe NP =e-PriCe M NP «-*-PriCeMP ;
i _—*-PriCeCNP ___:&-PriCe M Ratio P PriCe M Ratio NP_ !

of values in memory (in min)

%r Results

Figure 2: The memory footprint for each algorithm at 1%, 5%,
10%, and 20% of the results.

The rate at which the memory cost increases for PriCe is signif-
icantly faster than the baseline iBRAID. iBRAID occupies a fixed
amount of memory, as all pairs get explored together, and the over-
head of essential statistics is minimized. It is not a surprise that
PriCe M Ratio [P] has a bigger memory footprint than iBRAID, but
it outperforms the other three variations of the PriCe algorithm.

Experiment 2: In our second experiment, we studied the sensi-
tivity of the algorithms to the length of the subsequence. We set
the target threshold to be 0.9, and then, measured the cost and the
memory footprint to produce the first 20% of the results. We ran the
algorithms for 6 different lengths of the subsequences - 8, 16, 32,
64, 128, and 256 (Fig. 3). PriCe M Ratio [P] consistently outperforms
all the algorithms for subsequence length of 32 or more timestamps,
and it shows comparable results with the other variations of PriCe
for shorter subsequences (30 M). The baseline algorithm exhibits
between 2 and 15 times higher cost compared to PriCe M Ratio [P]
- between 400 M and 600 M

Similarly to the previous experiment, iBRAID has the smallest
memory footprint. PriCe M Ratio [P] has comparable footprint to
PriCe [P] and smaller than PriCe [NP] and PriCe M [P] (Fig. 4).

Experiment 3: In our third experiment, we studied the sensitivity
of our algorithms to the target threshold. We set the subsequence
length to 64 timestamps, and we ran it for 9 different values of 7 —
0.1,0.2, ...,0.9. The statistics are for the first 20% of the results (Fig.

Interactive Exploration of Correlated Time Series

| =%-iBRAID ~=-PriCe P PriCe CP

—=-PriCe NP —*-PriCe M NP --¢-PriCe M P

i —-PriCeCNP -+a-PriCe M Ratio P PriCe M Ratio NP |
700
600
500

e =~

400 ~

-)
e

300
200

100

of operations (in min)

W, el

8 16 2 64 128 256

Subsequence length

Figure 3: The cost in number of operations to deliver the first
20% of the results.

i =%iBRAID -=-PriCe P PriCeCP
| -a-PriCe NP —e-PriCe M NP ~-e--PriCe M P :
i —-PriCe CNP +-a-PriCe M Ratio P PriCe M Ratio NP |

of values in memory (in min)

Subsequence length

Figure 4: The memory footprint for each algorithm at 1%, 5%,
10%, and 20% of the results.

5). Our flagship algorithm PriCe M Ratio [P] exhibits the smallest
cost for all values of the target threshold in comparison with the
other algorithms. For the highest target correlation 0.9, out flagship
algorithm shows a better performance by 15 times, as discussed
earlier in Experiment 1.

The memory footprint of PriCe M Ratio [P] is significantly larger
than the baseline algorithm iBRAID. This is expected, as the different
time series are not explored together, which requires a number of
statistics to be (cached) in memory. Our flagship requires less
memory than two of the other algorithms and has comparable
results with four of the variations of PriCe (Fig 6).

Experiment 4: In our last experiment, we studied the overhead of
running our algorithms in a given environment. For this purpose,
in this experiment we measure the latency of each algorithm using
our second metric for response time - namely wall clock time.

For consistency, in this experiment, we reuse the setup of Exper-
iment 1 - the subsequence length is set to 64, the target threshold
correlation is 0.9 and we measure the response time to produce the
first 1%, 5%, 10% and 20% of the results.

We ran the experiment for a subset of the dataset - only 2 compa-
nies, which corresponds to 12 time series. Figure 7 shows the results
for our implementation in C++. The results for our implementation
in Java are similar even though the performance gap between PriCe
M Ratio [P] and the baseline iBRAID is larger.

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

[S<iBRAID “Elprice P “pricece
i —=-PriCe NP —-PriCe M NP +-PriCeM P }
i _—=-PriCeCNP -+a-PriCe M Ratio P PriCe M Ratio NP __:
700
=
— 600
I3 ,;—gf;-"‘-—a--;--..
- ——
£ sw g ==
= CZize. N
2 i, ~
S e T N
=] e DRy .
E 300 e '\.\\
-3 RS
o 20 NN
s 100 \\\l
= X
Y
o
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Target correlation

Figure 5: The cost in number of operations to deliver the first
20% of the results.

i =%=iBRAID -=-PriCe P PriCeCP
i —=-PriCe NP = -PriCe M NP *-PriCeM P :
i__—*-PriCeCNP :-a-PriCe M Ratio P PriCe M Ratio NP__ !

of values in memory (in min)

0.1 0.2 03 0.4 05 06 07 0.8 0.9

Target correlation

Figure 6: The memory footprint for each algorithm at 20%
of the results.

In Figure 7, the wall clock metric shows a difference of only 1.5
times between PriCe M Ratio [P] and iBRAID, despite the significant
difference in terms of number of operations — 15 times. The former
took 871666 msec to deliver the first 20% of the results; the latter
took 1221845 msec to achieve the same task. This clearly shows that
despite the improvements in computing PCC, the context switch to
compute the priority function and movement of data from memory
to the CPU is significant. As part of our future work, we plan
to investigate ways to reduce this overhead. This experiment also
shows that despite the significant overheads to compute the priority
function, PriCe M Ratio [P] outperforms iBRAID.

The performance of the rest of the PriCe variations is comparable
to PriCe M Ratio [P] and they all outperform iBRAID. We ran the
experiment for subsequence length 8, 16,32, 128 and 256 as well,
and we got similar results. In all cases, PriCe M Ratio [P] consistently
performs better than iBRAID.

5 RELATED WORK

The processing of data and fast discovery of highly correlated sub-
sequences of time series (TS) is tackled in two scenarios with re-
spect to the production of data - static, when the data is collected
upfront and it forms the search space for finding the correlated
subsequences [7, 10, 13], and dynamic, when the data is processed
as it is produced - the scenario of datastreams [12, 14]. The latter

ExploreDB’17, May 14-19, 2017, Chicago, IL, USA

| =¢iBRAID PriCe P PriCeCP :
{~=-PriCe NP —e-PriCe M NP «-e-PriCe M P :
i —=PriCe C NP --a+-PriCe M Ratio P PriCe M Ratio NP/

1400000

1200000

1000000

800000

600000

Time (msec)

400000

200000

o
1% 5% 10% 20%

r% Results

Figure 7: Wall clock time (C++)

is beyond the scope of our work. Also, works on approximate solu-
tions and ones that use techniques in the frequency domain (e.g.,
[10]) are beyond the scope of this paper.

In BRAID [13] the authors propose a technique to find correlated
pairs of subsequences. Their work extends to the point that the
two subsequences might not start at the same point in time - there
might be a lag between them - i.e. the subsequences are of the
same length, but one of them starts [timestamps after the other
one. They navigate the data space sequentially and preemptively.
They calculate the PCC of each pair of subsequences with lag 0
as they navigate the space and use these values to average out (or
“smoothen”) the PCC for larger lags. The authors use powers of
2 in order to build a multilevel “smoothened” PCC as a geomet-
ric progression of the lag. Our work can be extended to support
lagged pairs of subsequences at the cost of keeping in memory
the essential statistics from the timestamps at which each of the
subsequences starts. Our work also differs from BRAID as we focus
on interactive exploration of the correlated subsequences and our
results are always 100% accurate as we do not estimate the PCC and
our algorithms always find all pairs of correlated subsequences.

The authors of [7] propose an extension to SQL, which allows the
definition of new types of queries. Those cannot be expressed easily
with the traditional operators such as GROUPBY and COUNT -
queries, which run arithmetic operators over ranges of data entries.
They also propose a sampling-guided, data-driven search space
navigation technique for interactive data exploration. They build a
grid over the search space and calculate a number of attributes for
each cell of the space. In their example, they use the SDSS dataset,
and the attributes they calculate for each cell are, for example,
average brightness of the cell and the number of stars in the cell.
These attributes are precomputed offline. They use a best-first
heuristic and a priority queue to navigate the order of exploration of
the cells. The algorithms we propose also prioritize the exploration
of pairs of subsequences, which are more likely to produce results.
Unlike [7], we use the smallest step possible for advancement of the
subsequences - one timestamp. The granularity of the grid might
impact significantly the search space navigation. We also do not
precompute any data.

D. Petrov et al.

6 CONCLUSIONS

In this paper we presented a number of priority-based search al-
gorithms for interactive exploration of correlated time series (TS).
Our work aims to assist analysts in finding pairs of TS, in which
subsequences of values exhibit certain levels of correlation. Pro-
viding initial results to the user in interactive fashion helps her to
refine further her exploratory queries, which allows for speeding up
the refinement process. Our solution uses the Pearson Correlation
Coefficient (PCC) as a metric of correlation of two subsequences of
time series, and it is trivial to extend it to negative correlation and
self correlation as we consider the absolute value of the PCC, and
we are not limited to one subsequence per time series.

Our experimental evaluation using real data shows that our
flagship algorithm outperforms the baseline approach by more
than 1500%. This is attributed to our algorithm using a priority
function that accounts for PCC and considering the computation
cost, the number of results that are produced by a pair of TS, and
the total number of explored pairs of subsequences at any given
point in time.

Acknowledgments. We would like to thank the anonymous
referees for their helpful comments and suggestions for improving
this paper.

REFERENCES

[1] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. 2003. Evaluating
Probabilistic Queries over Imprecise Data (ACM SIGMOD’03). 551-562.

[2] R.Cheng, D. V. Kalashnikov, and S. Prabhakar. 2004. Querying imprecise data
in moving object environments. IEEE Transactions on Knowledge and Data
Engineering 16, 9 (Sept 2004), 1112-1127.

[3] Michele Dallachiesa, Gabriela Jacques-Silva, Bugra Gedik, Kun-Lung Wu, and
Themis Palpanas. 2015. Sliding Windows over Uncertain Data Streams. Knowl.
Inf. Syst. 45, 1 (Oct 2015), 159-190.

[4] Kaiyu Feng, Gao Cong, Sourav S. Bhowmick, Wen-Chih Peng, and Chunyan
Miao. 2016. Towards Best Region Search for Data Exploration (ACM SIGMOD’16).
1055-1070.

[5] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. 2015. Overview of
Data Exploration Techniques (ACM SIGMOD’15). 277-281.

[6] Yahoo Inc. 2016. Yahoo Finance Historical Data. (2016). https://finance.yahoo.
com/quote/YHOO/history

[7] Alexander Kalinin, Ugur Cetintemel, and Stan Zdonik. 2014. Interactive Data
Exploration Using Semantic Windows (ACM SIGMOD’14). 505-516.

[8] Dongeun Lee, Alex Sim, Jaesik Choi, and Kesheng Wu. 2016. Novel Data Reduc-
tion Based on Statistical Similarity (SSDBM ’16). 21:1-21:12.

[9] X.Lian, L. Chen, and J. X. Yu. 2008. Pattern Matching over Cloaked Time series
(IEEE ICDE’08). 1462-1464.

[10] Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast Approximate Correlation
for Massive Time-series Data (ACM SIGMOD’10). 171-182.

[11] Mahsa Orang and Nematollaah Shiri. 2015. Improving Performance of Similarity

Measures for Uncertain Time series Using Preprocessing Techniques (SSDBM

’15). 31:1-31:12.

Spiros Papadimitriou, Jimeng Sun, and Christos Faloutsos. 2005. Streaming

Pattern Discovery in Multiple Time-series (VLDB "05). 697-708.

[13] Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. 2005. BRAID:
Stream Mining Through Group Lag Correlations (ACM SIGMOD’05). 599-610.

[14] Tlari Shafer, Kai Ren, Vishnu Naresh Boddeti, Yoshihisa Abe, Gregory R. Ganger,
and Christos Faloutsos. 2012. RainMon: An Integrated Approach to Mining
Bursty Timeseries Monitoring Data (ACM KDD ’12). 1158-1166.

[15] Emma M. Stewart, Anna Liao, and Ciaran Roberts. 2016. Open PMU: A Real
World Reference Distribution Micro-phasor Measurement Unit Data Set for
Research and Application Development. (10/2016 2016).

[16] G. Trajcevski, A. Choudhary, O. Wolfson, L. Ye, and G. Li. 2010. Uncertain Range
Queries for Necklaces (IEEE MDM’10). 199-208.

[17] Eleni Tzirita Zacharatou, Farhan Tauheedz, Thomas Heinis, and Anastasia Aila-

maki. 2015. RUBIK: Efficient Threshold Queries on Massive Time series (SSDBM

'15). 18:1-18:12.

Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for

Interactive Exploration of Big Data series (ACM SIGMOD’14). 1555-1566.

=
)

[18

https://finance.yahoo.com/quote/YHOO/history
https://finance.yahoo.com/quote/YHOO/history

	Abstract
	1 Introduction
	2 Problem Definition
	3 Algorithms
	3.1 Naive Approach
	3.2 iBRAID
	3.3 PriCe

	4 Experiments and Analysis
	4.1 Experimental Framework
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

