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Abstract—Large graph datasets have caused renewed interest
for graph partitioning. However, existing well-studied graph par-
titioners often assume that vertices of the graph are always active
during the computation, which may lead to time-varying skewness
for traversal-style graph workloads, like Breadth First Search,
since they only explore part of the graph in each superstep.
Additionally, existing solutions do not consider what vertices
each partition will have; as a result, high-degree vertices may be
concentrated into a few partitions, causing imbalance. Towards
this, we introduce the idea of skew-resistant graph partitioning,
where the objective is to create an initial partitioning that will
“hold well” over time without suffering from skewness. Skew-
resistant graph partitioning tries to mitigate skewness by taking
the characteristics of both the target workload and the graph
structure into consideration.

I. INTRODUCTION

The increasing popularity of large graphs with millions
and billions of nodes and edges, such as the World Wide
Web, Biological Networks, and Social Networks, has led to the
development of many distributed graph computing frameworks
(e.g., Pregel [8], GraphLab [7] and PowerGraph [3]). These
frameworks often require a partitioning of the graph across a
set of machines for parallel computation.

Pregel, one of the most representative graph computing
frameworks, adopts the BSP (Bulk Synchronous Parallel)
model. In such a model, computations are performed in a
sequence of supersteps separated by a global synchronization
barrier. Each superstep thinks like a vertex, in which a user-
defined function is computed against each vertex. The function
can change the vertex state and the state of its outgoing edges
based on the messages it received, send messages to its neigh-
bors, or even modify the structure of the graph. Vertices can
vote to halt during the computation and be reactivated again by
messages from their neighbors. The program terminates when
all the vertices become inactive.

Clearly, a good partitioning of the graph can allow for
high degrees of parallelism and can greatly reduce both the
network communication and the overall runtime. To this end,
there are dozens of graph partitioners, from the “classic”
ones (e.g., [4], [14], [9], [15]) to new, (re)streaming graph
partitioners (e.g., [17], [18], [20], [11]), which address the
scalability challenge. However, despite the large amount of
work so far (including our own prior work, [21], [24], [22],
[23]), largely overlooked are the effects of different types of
skewness on the performance of the graph partitioning.

Algorithmic Skewness Current graph partitioners all assume
that a balanced partitioning of the graph is equivalent to an
even load distribution. Put simply, they all assume that vertices
of the graph are always active during the computation. This is

true for always-active-style graph algorithms, like PageRank.
However, for traversal-style graph algorithms, like breadth first
search (BFS) and single-source shortest path (SSSP), only a
subset of vertices are explored in each superstep. As a result,
vertices active in the same superstep may be concentrated
into a few partitions by existing graph partitioners, leading
to load imbalance, resource underutilization, and contention
on the network interface. One way to avoid this algorithmic
skewness is to migrate vertices dynamically based on some
system metrics [16], [6], [19]. However, this is too late and
the migration is not cost-free. Migrating a vertex to a new
partition requires migrating both its edge list and its associated
application data plus an update of the vertex location.

Structural Skewness Existing graph partitioners often do not
care about what vertices each partition will have. As a result,
high-degree vertices may be concentrated into a few partitions,
causing a new type of imbalance, structural skewness. This
is because high-degree vertices are often the computation
and communication hotspots given their large neighborhood.
Unfortunately, graphs from various important domains are
scale-free, where the vertex degree-distribution asymptotically
follows a power law distribution [2], [13].

Side-Effect of Algorithmic and Structural Skewness An-
other side effect of the skewness on modern multicore ma-
chines is that it may lead to contention for the shared resources
in the memory subsystems, especially when the partitions
that contain most of the active vertices are assigned to the
cores of the same machine for parallel processing. This is
because intra-node data communication (the communication
among cores of the same machine) is often implemented via
shared memory [5], [1], requiring additional data copies. Thus,
having too much data communication among partitions that
are residing on the same machine may lead to serious cache
pollution and therefore contention for the shared last level
cache, front side bus, and memory controller. Several recent
works [24], [22], [23] have shown that contention on the
memory subsystems may have a great performance impact on
distributed graph computation.

Contributions To address the needs of efficient distributed
graph computation, we make the following contributions:

1. To better understand the skewness issue, we experimen-
tally demonstrate the runtime characteristics of two classic
traversal-style-graph workloads (Section II-A) and their
predictability using real-world graphs (Section II-B).

2. We introduce the idea of multi-label graph partitioning
(MLGP) (Section III-A) and an application of MLGP to
do skew-resistant graph partitioning (Section III-B).
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II. TRAVERSAL-STYLE GRAPH WORKLOAD

CHARACTERIZATION

A. Active Vertex Distribution Across Supersteps (Table I)

Configuration In this Section, we examined the runtime
characteristics of BFS and SSSP on the Orkut dataset. Orkut
is a social network run by Google [12] for people across the
world to discuss their common interests. The dataset used is
a subset of Orkut’s user population (around 11.3% at the time
crawled by A. Mislove et. al. [10]). The degree distribution of
the dataset follows a power-law distribution with average and
maximal vertex degree equal 76.281 and 33,313, respectively.
The maximal diameter of dataset is 10 with the effective
diameter of 5.4489.

In the experiment, the graph was partitioned across six
20-core machines using three different techniques with one
partition per core. The techniques examined included: (a)
METIS, a well-known multilevel graph partitioner [9]; (b)
LDG, a state-of-the-art streaming graph partitioner [17]; and
(c) reLDG, a state-of-the-art restreaming graph partitioner [11].

Results Table I presents the number of vertices that are active
in each superstep for the execution of BFS/SSSP with one
randomly selected source vertex. As shown, only a subset of
the vertices were active in each superstep, and the execution
exhibited highly skewed active vertex distribution across su-
persteps. The top-3 supersteps with largest fraction of active
vertices covered around 96% of vertices of the graph. This
was expected for small-world and scale-free graphs. Small-
world graphs are known to have low diameter. Consequently,
the execution of BFS/SSSP on such graphs usually ends in a
few supersteps, causing a large number of vertices to be visited
per superstep. On the other hand, the scale-free property allows
the number of vertices active in each superstep to be expended
and shrink exponentially. As a result, a majority of vertices
were visited in very few supersteps. These supersteps were
also the top-3 most time-consuming supersteps.

We observed similar results for the execution of BFS/SSSP
on the partitionings computed by METIS, LDG, and reLDG.
This was because (1) the execution of BFS/SSSP on the
partitionings all started from the same randomly selected
source vertex; and (2) the way the graph was distributed across
partitions only affected the amount of data communication per-
formed by BFS/SSSP (but not the algorithm characteristics).

Take-away To achieve superior performance, we should offer
differentiated partitioning for vertices that are active in the
peak supersteps. That is, we should focus more on reducing
the edge-cut of vertices that are active in the peak supersteps
and balancing the load of the peak supersteps.

B. Active Vertex Distribution Across Partitions (Fig. 1 & 2)

Configuration This experiment examined the corresponding
active vertex and active high-degree vertex distribution across
partitions for the execution of BFS/SSSP on the partitionings.
We treated the top 1% vertices as the high-degree ones. For
brevity, we only showed the results of BFS in Figures 1 and 2
for the most time-consuming superstep (Step 4 of Table I).

Results As can be seen, the execution of BFS on the parti-
tionings computed by METIS, LDG, and reLDG all exhibited

TABLE I: Active vertex distribution across supersteps of BFS
& SSSP execution with one randomly selected source vertex

com-orkut # of Active Vertices

Supersteps BFS SSSP

0 1 1

1 72 45

2 5,871 4,663

3 215,425 297,943

4 1,753,891 1,421,993

5 1,088,870 1,229,917

6 8,242 117,496

7 69 383

8 0 0

highly skewed active vertex and active high-degree vertex
distribution across partitions, especially the distribution of
high degree vertices (around half of the partitions have nearly
zero active high-degree vertices). This may lead to potential
significant load imbalance and thus resource underutilization as
well as contention on both the network interface and memory
subsystems. Another interesting result was that the decompo-
sition computed by METIS had the largest skewness followed
reLDG next to it. This was somehow expected considering
the fact that METIS tends to produce partitionings of the
highest quality, while LDG performed the worst among the
three. Put simply, METIS and reLDG were better than LDG in
grouping tightly connected vertices together, leading to higher
chance of load imbalance. This also explains the reason why
simple partitioning techniques (e.g., hashing partitioning) may
sometimes perform better than those well-studied ones.

Take-away We should consider the characteristics of both the
target workload and the graph structure while partitioning.

C. Workload Predictability (Table II)

Given the above observations, one may wonder if we
could incorporate such characteristics into the partitioning
process, such that both the algorithmic and structural skewness
are minimized. Towards this, we kept track of vertices that
were active in each superstep for five distinct executions of
BFS/SSSP on the Orkut dataset. Each such execution was
performed with one randomly selected source vertex. Then, we
examined the repeatability of the execution traces. Considering
the highly skewed active vertex distribution across supersteps,
we only considered the top-3 most time-consuming supersteps
for repeatability computation. We defined the repeatability of
execution trace tr1 with respect to tr2 as:

repeat(tr1, tr2) =

∑3
i=1

maxj=1,2,3|str1(i) ∩ str2(j)|∑3
i=1|str1(i)|

(1)

where str1(i) denotes the set of vertices that are active in
the ith most time-consuming superstep of trace tr1. The
execution trace repeatability indicates the degree of overlap
among traces. It should be noted that this was a conser-
vative estimation, because str1(i) may overlap with multiple
supersteps of execution trace tr2. Yet, we only considered the
superstep that overlaps str1(i) the most. We then defined the
predictability of a workload W on a specific graph G as:

predict(W,G, Tr) =

∑|Tr|
i=1

∑|Tr|
j=1 and i�=j repeat(tri, trj)

|Tr|(|Tr|−1)
(2)

where Tr is a given set of execution traces of W on G.
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(a) METIS
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(b) LDG
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(c) reLDG

Fig. 1: BFS active vertex distribution across partitions for the most time-consuming superstep (Step 4 of Table I) on com-orkut
dataset with one randomly selected source vertex. The distribution was measured, when the graph was partitioned across six
20-core machines with one partition per core.
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(b) LDG
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(c) reLDG

Fig. 2: BFS active high-degree vertex distribution across partitions for the most time-consuming superstep (Step 4 of Table I)
on com-orkut dataset with one randomly selected source vertex. The distribution was measured, when the graph was partitioned
across six 20-core machines with one partition per core.

Table II presents the predictability of BFS and SSSP as well
as the standard deviation of the repeatability. As shown, the
runtime characteristics of both BFS and SSSP on orkut were
actually quite predictable. On average, around 60% of vertices
are always active in the same supersteps for two distinct execu-
tions of BFS/SSSP with one randomly selected source vertex.
The relatively high repeatability can be explained by the wave
access pattern of the traversal-style graph workloads. That is,
once the superstep active vertex set of distinct executions of
the workload intersects at certain superstep, the common active
vertex set will be expanded larger and larger (up to a certain
point), especially if we hit a high-degree vertex. This is because
all the neighbours of the vertices in the current common active
vertex set will become active in the next superstep. Note we
observed similar results for the execution of BFS/SSSP on
partitionings computed by METIS, LDG, and reLDG.

Take-away The execution trace of the traversal-style graph
workloads on many small-world and scale-free graphs can be
used as a representative of the runtime characteristics of the
target workloads. This provides us an opportunity to leverage
the runtime characteristics of the target workload into the
partitioning process (using the execution trace).

TABLE II: Workload Predictability

Algorithm Predictability Standard Deviation

BFS 0.6080 0.0843

SSSP 0.6473 0.1063

III. SKEW-RESISTANT GRAPH PARTITIONING

In this section, we first introduce the Multi-Label Graph
Partitioning (MLGP) problem (Section III-A) and then present
an application of such idea to do Skew-Resistant Graph Par-
titioning (Section III-B)

A. MLGP: Multi-Label Graph Partitioning

Let G = (V,E,L) be a graph with labels on vertices,
where V is the set of vertices, E is the set of edges, and
L = {L1, L2, ...Lm} is the set of labels associated with
vertices in V . Each vertex is associated with a binary label
vector, indicating if the corresponding label exists on the
vertex. MLGP aims to minimize the communication cost
among partitions under the constraint (1) that each partition
is balanced; (2) and that vertices of each partition follow a
user-defined distribution in terms of their labels. The quality
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of the partitioning (communication cost) is defined as:

comm(G,MLGP ) =
∑

e=(u,v)∈E and
u∈Pi and v∈Pj and i�=j

w(e) (3)

where w(e) is the edge weight, indicating the amount of data
communication between the vertex pair.

Constraint 1 can be formally defined as:

∑

v∈Pi

w(v) ≤ C(Pi) for i ∈ [1, k] (4)

where k corresponds to the number of partitions we want, w(v)
is the vertex weight (indicating the computational requirements
of the vertex), and C(Pi) denotes the partition capacity. As for
Constraint 2 (the vertex distribution of each partition), we are
particularly interested in distributing vertices of the same labels
evenly across partitions, which can be formulated as:

∑

vl∈Pi

w(vl) ≤ Cl(Pi) for i ∈ [1, k] (5)

where vl denotes vertices that have label Ll, whereas w(vl)
and Cl(Pi), respectively, corresponds to the vertex weight and
the partition capacity of Pi for l-labelled vertices. In other
words, we want each partition to eventually have a similar
vertex distribution to the original graph in terms of their
labels. In case of vertices of the graph do not have any label,
Constraint 1 is self-included in Eq. 5. Sometimes, we may
only want to apply Constraint 2 to a subset of |V | while
guaranteeing the rest of vertices do not violate Constraint 1.

B. MLGP: Skew-Resistant Graph Partitioning

1) Avoiding Algorithmic Skewness: To guarantee that the
load of the traversal-style graph workloads is evenly distributed
in every superstep, we model it as a MLGP problem, in which
we only need to divide the entire execution time into finite
time periods, and associate each vertex with a label vector. The
label vector indicates the time periods in which the vertex is
active. Given the relatively high predictability of the runtime
characteristics of BFS and SSSP on the datasets of interest
(Section II), we use the supersteps as the natural time periods
and obtain the label vector from the execution trace. With the
augmented label information, MLGP will automatically split
vertices active in the same superstep evenly across partitions
while keeping the communication among partitions as small
as possible, thus eliminating algorithmic skewness.

2) Avoiding Structural Skewness: Considering the rela-
tively small number of high-degree vertices and vast disparity
in the vertex weights the graph may have, we avoid structural
skewness by simply assuming that all high-degree vertices
are active in a single additional superstep. By doing this,
MLGP will attempt to distribute high-degree vertices evenly
across partitions. At the same time, the labels that high-
degree vertices originally have can serve as a way to penalize
partitions that have a large number of vertices that are active at
the same time with the high-degree ones. This also means that
high-degree vertices originally active in the same superstep
will have a smaller chance to be put together.

IV. CONCLUSION

In this paper, we introduce the multi-label graph parti-
tioning problem and an application of such idea to avoid the
skewness of traversal-style graph workloads by being aware of
the characteristics of both the workload and the graph structure.
We also show that the execution traces of many traversal-
style graph workloads on small-world and scale-free graphs are
actually quite representative of their runtime characteristics.
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