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Abstract—The exponential growth of high dimensional biolog-
ical data has led to a rapid increase in demand for automated
approaches for knowledge production. Existing methods rely on
two general approaches to address this challenge: 1) the Theory-
driven approach, which utilizes prior accumulated knowledge,
and 2)the Data-driven approach, which solely utilizes the data
to deduce scientific knowledge. Both of these approaches alone
suffer from bias toward past/present knowledge, as they fail
to incorporate all of the current knowledge that is available
to make new discoveries. In this paper, we show how an
integrated method can effectively address the high dimensionality
of big biological data, which is a major problem for pure data-
driven analysis approaches. We realize our approach in a novel
two-step analytical workflow that incorporates a new feature
selection paradigm as the first step to handling high-throughput
gene expression data analysis and that utilizes graphical causal
modeling as the second step to handle the automatic extraction of
causal relationships. Our results, on real-world clinical datasets
from The Cancer Genome Atlas (TCGA), demonstrate that our
method is capable of intelligently selecting genes for learning
effective causal networks.

[. INTRODUCTION

Automated approaches for knowledge production from
large-scale biological datasets are crucial to analyzing the
exponentially increasing amount of publicly available data for
analysis. Standard approaches can be categorized into two
major classes: the Theory-driven approach, and the Data-
driven approach [1]. The Theory-driven approach utilizes
background knowledge accumulated through prior research to
establish future knowledge, while the data-driven approach
relies solely upon the data being analyzed to generate new
scientific knowledge. Using either approach alone suffers from
bias towards past/present knowledge and fails to incorporate
all the information that is available to make future scientific
claims.

One specific type of biological big data being readily ana-
lyzed is high-throughput gene expression data, which consists
of measurements of the expression levels of the full human
genome. To complement this expression data, clinical data
(demographics, health status, etc.) provides useful information
about patients. These heterogeneous sources together provide
researchers with a way of uncovering meaningful relationships
among genes and clinical outcomes to further the goal of
individualized treatment plans. A major issue in analyzing this
type of data is high dimensionality, which poses problems
to pure data-driven analysis approaches. A way to mitigate
this problem is feature selection; however, solely statistical
techniques for feature selection do not incorporate background
knowledge into this process.
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For example, causal models were developed for automatic
extraction of relationships between continuous and discrete
variables; however, these algorithms are typically computa-
tionally expensive and cannot function well on very high
dimensional datasets (>1000 variables) [2]. Feature selec-
tion for causal modeling approaches have recently started to
emerge [3], [4] and using typical machine learning feature
selection approaches for predictive models ignores theory-
driven knowledge.

In this work, we present a novel paradigm for feature selec-
tion on high-throughput gene expression data, and we use this
paradigm as the first step in a two-step analytical workflow.
The second step of the workflow is causal modeling [5], which
automatically extracts causal relationships from data under
suitable assumptions [6].

Central to our paradigm for feature selection is a theory-
driven analysis curated from a gene-disease relationship
database used alongside data-driven analysis from the expres-
sion data itself to produce a single importance or preference
score for each gene. We combine gene importance with dif-
ferences between genes to select relevant and diverse features
to be subsequently analyzed. This procedure avoids two major
issues in standard modeling approaches: highly correlated vari-
ables and lack of prior knowledge. Highly correlated variables
pose problems for graphical models that use independence
relations between variables to extract causality. In addition,
failing to utilize prior knowledge in feature selection limits the
amount of useful information we can derive from our data.

We use the Preferential Diversity (PrefDiv) framework [7]
to realize the first step of our analytical workflow. PrefDiv was
proposed as an efficient solution to the Maximum Covering
Diversified Top-K problem in traditional databases and used
as a tool for big data exploration. Given a ranked set of objects,
PrefDiv returns a set of K objects with maximized relevance
and diversity. For the second step, we use the MGM-PC Stable
causal discovery method that learns causal knowledge in high-
dimensional datasets with discrete and continuous data [8].

Building upon the PrefDiv and Graphical Causal Modeling
frameworks our major contributions are as follows:

« We define functions that serve as precise measures of
importance and semantic distance for genes, and use
these functions with PrefDiv to select relevant and diverse
subsets of genes from expression data. (Sec. II)

We combine this selected subset of genes with clinical
data from The Cancer Genome Atlas (TCGA) as input to
MGM-PC Stable to generate causal networks. (Sec. III)
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e« We provide an evaluation of the selected genes from
our workflow as well as the learned causal networks on
these genes and show the effectiveness of our proposed
approach. In our evaluation, we use Top-K and Pref-Div
gene sets produced by our approach and two baseline sets
of randomly selected genes and genes produced based on
maximum statistical variance. (Sec. IV)

II. INTEGRATED APPROACH FOR FEATURE SELECTION

Our hypothesis is that each gene’s role can be expressed by
a single importance score and for different types of analyses,
similar or dissimilar genes are the most preferred to be
explored. There are several ways in which the importance
score and gene distance can be used to select the most
relevant genes. One example is the Top-K approach where
the genes with the K highest importance scores are selected.
Another is to select the K most diverse (dissimilar) genes. In
this section, we describe our theory-driven and data-driven
integrated approach for genetic feature selection. We first
describe the data used to illustrate our approach, and then
describe the computation of both the importance or preference
score of genes as well as our distance equation between genes.

A. Datasets

In this work, we use a heterogeneous set of genetic infor-
mation collected from a pathway information database, a gene
expression dataset coupled with clinical information, a gene-
disease similarity scoring dataset, and an informational dataset
for each human gene. Each of these datasets is described
below:

Pathway Information Data: Pathway Information data
was obtained from the KEGG Pathway Database [9]. Three
pathways (WNT-Signaling Pathway, TGF-/ Signaling Path-
way, and Breast Cancer Pathway) were used, as these are
known to be relevant to breast cancer [10], [11]. The pathway
information was trimmed to just the genes involved in each
pathway, and these were used for downstream validation
testing, which is further explained in Section I'V-B.

Prediction Analysis of Microarray 50 (PAMS0): PAM50
is a set of genes whose expression profile is used by clinicians
to determine short-term treatment plans for breast cancer
patients. These genes can also be used to inform breast cancer
subtype classification. [12] In our work, the PAMS50 gene list is
used as further biological validation for our importance score.

Gene Expression Data: Gene expression data was provided
by The Cancer Genome Atlas Breast Invasive Carcinoma
(TCGA-BRCA) project [13]. This data consists of RSEM
normalized RNA-Seq gene expression data for 20,531 genes
across 1,212 patients. In addition, clinical data (Age, Race,
Gender, Vital Status, Tumor Stage, and Cancer Subtype) is
available for each of these patients through TCGA-BRCA.

Gene-Disease Scoring Data: A gene-disease mapping
dataset was provided by the DisGeNET database [14]. This
data consists of 17,381 genes and 15,093 diseases composing
429,057 gene-disease associations with a score for each com-
puted based upon the level of evidence present supporting the
gene-disease relationship. In particular, the scoring function
takes into account which organism the evidence was produced
from (Human, Mouse Model, etc.), the level of curation of the
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data (Uniprot, GWAS, etc.), and the number of publications
in which the gene-disease relationship appears.

Genetic Information Data: Genetic information data was
obtained from the Human Genome Organization (HUGO)
Gene Nomenclature Committee (HGNC) [15]. This database
had data for 19,030 human genes including their full gene
name, official gene symbol, chromosomal location, and gene
family/functional grouping. This data was supplemented with
specific chromosomal base pair location data for each gene
from the PharmGKB database [16].

All of the information utilized by our approach for each
gene is summarized in Table I.

B. Importance and Distance Equations

In this section, we define two central concepts for modeling
the selection of genes, 1) the importance score of a gene G,
denoted by I(G), and 2) the distance between two genes G
and Ga, denoted by dt(G1, Ga).

Importance Score: The importance score for a particular
gene G is given by the following equation:

n
LZASD)
N

Here, F'C¢ refers to the fold change of the gene expression
values of GG between control and experimental tissue samples.
SD; refers to the relevancy score between gene GG and disease
i. N refers to the number of diseases the user wishes to
study (the sum ranges over all user-specified diseases of
interest), and « is a positive user specified parameter. This
parameter balances the trade-off between using expression data
to determine gene preference versus using prior information
about the gene-disease mapping to determine gene preference.

I(G) = axlogy(FCg) + (1 — a)

Gene Distance Metric: To measure the distance between
two genes (GG; and G, we first measure the chromosomal
distance between the two genes, which is defined by:

mazBase(G1,Gy) — minBase(G1, Ga)
# of bases in Chromosome @)

Here, when G; and G4 are located on the same chromo-
some. maxBase refers to the largest base position of either
gene on the chromosome, while minBase refers to the smallest
base position. If G; and G2 are located on different chro-
mosomes this function is equal to 1, denoting the maximum
possible chromosomal distance.

In order to define the distance using the gene-disease
mapping some additional notation is required. Let G D1 (%) be
the score of the relevancy of gene (G; with disease i. Then the
distance between two genes based on their disease relevancy
scores is given by:

CD(Gy,Gs) =

DD(G1,Gs) = Y _(GDy(i) — GDs(i))?

=1

3)

Note that this is equivalent to the euclidean distance between
the gene-disease relevancy vectors of the two argument genes.

Now, the overall distance equation between two genes Gy
and G, is given by the following equation:
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TABLE I: Genetic Data Utilized

Attribute Example

Description

Gene Symbol CDH1

Official HUGO Gene Symbol

Chromosomal Location

chr16, 68761195 to 68872444

Chromosome number of the gene, along
with specific base pair location

Gene Family

Type 1 Classical Cadherins

List of Gene families to which this gene
belongs

Expression Values

[1, e, Tn]

Vector of expression values across normal
and tumor samples

Gene Disease Association

CDHI1, Adenocarcinoma, 0.0165

Relevance Score for gene-disease pairs

dt(Gy,Ga) =(a x CD(Gy,Gy)+
b*DD(Gl,GQ) +C*pe.7:p)+ (4)
(I-(a+b+c))*0(G1,G2)

Here, a, b, and ¢ are positive parameters where (a+b+c =
1). 6(G1, G>) is an indicator function that is 1 when the two
genes belong to different gene families and is 0 otherwise. peyyp
refers to the Pearson product moment correlation between the
full expression vectors of (G; and G2 across all samples.

III. TWO-STEP WORKFLOW

As mentioned above, we use our integrated approach for
the selection of genes as the first step in a two-step analytical
workflow. We adopted PrefDiv [7] to realize this step because
of its ability to select genes that are relevant yet diverse. The
assumption is that often highly ranked genes are similar and do
not contribute any additional information. In the second step,
the selected genes become an input to the MGM PC-Stable
[8] causal discovery method.

A. Relevance, Intensity, Diversity, and Similarity

We start by formally introducing the concepts of relevance
and diversity, which are the two crucial elements for utilizing
the PrefDiv algorithm.

Relevance: The Relevance of a gene essentially means the
importance of this gene. Thus, the relevance of a gene G is
represented by I(G) (Equation 1).

Diversity: We measure the diversity of a set of genes S by
measuring how dissimilar, i.e., the distance beyond a threshold,
each gene in S is with respect to each other.

Definition 1: Dissimilarity Let S be the set of genes in the
database. Two genes G; and G; € S are dissimilar to each
other dsm,(G;, G;), if dt(G;,G;) > o, for a real number p,
where p is a distance parameter, which we call radius.

Definition 2: Similarity Let S be the set of items. Two genes
G, and G; € S are similar to each other, if dt(G;,G;) < o
for a real number p. We use sim,(G;,S) to denote a set of
items in S that are similar to an gene G, such that VG, €
szmg(G“ S), Gj 7A G7

B. Preferential Diversity

In this section, we present the details of Preferential Diver-
sity (PrefDiv) [7], which we have previously proposed as an
efficient solution to the Diversified Top-k problem. PrefDiv
is an iterative algorithm that utilizes a ranking model that
produces an initial result set of genes for a given query
and returns a set of £ genes with maximized relevance and

diversity. PrefDiv is shown in Algorithm 1 and its input
parameters in Table II.

Parameter A is used to tune the balance between relevance
and diversity in the returned result set. Specifically, A defines
the distribution of the intensity values of genes in the final
result set R. When A = 1, R would simply be the top &
genes from the initial set, i.e., the genes with the k highest
intensity values. When A = 0, R contains k dissimilar genes
from the initial set. When A is between 0 and 1 and given that
PrefDiv is an iterative algorithm, the final result will have at
least A x k genes from every iteration, and, in each iteration,
A will be divided by half. For example, when A = 0.5 and
k = 20, the first iteration will select at least 20 * 0.5 genes
for the final result set, the second iteration will select at least
20 % (0.5 % 0.5) genes, and so on.

The basic logic of PrefDiv is as follows: It first sorts the
genes in the initial set S = {G1, ...., G,,} in descending order
along with their intensity value and splits them into groups of
k genes. In each iteration, it evaluates the genes in a group
for diversity, starting with the first group with the highest
intensity genes. The gene G; with the highest I(G;) in the
group T's is moved into the final result set R, if there is no
gene in R similar to G, i.e., sim,(G;, R) is empty; otherwise
it is marked as “Eliminated”. Also, all genes in sim,(G;, Ts)
are marked as “Eliminated”. While there are still genes left
in Tp that are not marked as “Eliminated”, it processes the
next unmarked one G; with the highest I(G;) in the same
manner. It ends an iteration by finalizing the moved genes
into R according to A, as mentioned above. If fewer than
the required A x k¢%°n genes were moved in R, then the
difference s is covered by moving the top-s genes with the
highest intensity values that have been marked as “Eliminated”
in Ts into R. The iterations continue until either k£ genes are
selected (|R| = k), or if all genes in S are examined. If the
size of R is still less than k, k — |R| genes with the highest
intensity values that have been marked as “Eliminated” will
be selected and added into R.

PrefDiv is linear to the number of genes in the initial
set. The initial candidate selection for the first iteration takes
O(k?) and each subsequent iteration costs O(k?) as well. As
there are at most % iterations, Algorithm 1 has an overall
worst case complexity of O(kN).

C. Graphical Causal Models

Graphical causal modeling is a data analysis methodology
to infer causal relationships from a dataset of observations
of random variables. These algorithms typically fall into two
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Algorithm 1 PrefDiv
Require:
One set of genes S, a size k, a relevancy parameter A,
and a radius p
Ensure:
One subset R of S
1T+ 0
2: turnCounter = 0
3. while there exists unmarked items in S and |R| < k do

4:  Increase turnCounter by 1

5: T < Pick k items with highest intensity from S

6: for all genes G; € R do

7: for all genes G; € T, s.t. G € sim,(G;,T) do

8: Mark G; as “Eliminated”

9: end for

10:  end for

11:  while there exists unmarked items in 7" do

12: R =RUG,, st. G; € T is unmarked and I(G;) >
](G]) : VG] eT

13: for all unmarked G, € T do

14: if G,, € sim,(G;,T) then

15: mark G, as “Eliminated”

16: end if

17: end for

18:  end while

19:  while number of unmarked items in 7' < A - k do

20: R=RUG,, st. G; € S is unmarked and I(G;) >
I(Gj) :VG; €T

21:  end while

2: A=A-05

23:  if turnCounter == 1 then

24: create new set N < VG; € T, s.t. G is marked

25:  end if

26 S=85-(5SNT)

27: end while

28: if |[R| < k and VG, € S, s.t. G; are marked then

29:  while |R| < k do

30: R =RU Gj, S.t. Gj € N and I(Gj) > I(Gl) :
VGZ eN

31:  end while

32: end if

33: Return R

major categories: constraint-based algorithms, and score-based
approaches [17]. In this work, we focus on the constraint-based
approach as these algorithms have recently been extended
to handle both continuous and categorical variables that are
present in our heterogeneous data source [18].
Constraint-based algorithms utilize conditional indepen-
dence tests to determine direct causal influences between
observed variables. The de facto standard for constraint-based
causal inference has been the PC Algorithm, and more recently
an order independent version called PC-Stable [19]. PC-Stable
begins its search with a fully connected graphical structure
and performs conditional independence tests in order to delete
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TABLE II: Parameters of PrefDiv

Par. Range Usage

S 1<15] Set of genes with intensity values

k 1<k Size of the result set

0 0< o< M'"| Determines whether a pair of
genes are similar.

A 0<A<1 Determines the number of genes
to be promoted to the result set at
each iteration.

'M = Max distance of dataset

adjacencies from the graph. The space of all causal graphs is
super-exponential in the number of variables, so to avoid this
search PC-Stable searches by performing conditional indepen-
dence tests in increasing size of the conditioning set (starting
with unconditional independence tests). The algorithm finds
the provably correct equivalence class of causal graphs given
that the conditional independence test always outputs the true
conditional independencies in the underlying causal graph. For
full details of this method we refer the reader to [19] and [6].

In order to improve both the speed and accuracy of the PC-
Stable algorithm on mixed data, the Mixed Graphical Models
(MGM) [20] preprocessor was used. MGM is a character-
ization of a joint distribution over discrete and continuous
variables given in Equation 5.

rp p

p(2,y;0) exp( Zl ; —%Bstﬂcswﬂr

p p q - B q q
a0 paiyi)as + 3> briun yj)) ®)
s=1 s=1j=1 j=1r=1

Here, x, represents the s** of p continuous variables and
y; represents the jt of q discrete variables. SBs; represents
the potential for an edge between continuous variables s and
t, as represents the potential for a node of a continuous
variable, ps; represents the potential for an edge between
continuous variable s and discrete variable j, and finally
®,.; represents the potential for an edge between discrete
variables r and j. This model has the favorable property
that its conditional distributions are given by Gaussian linear
regression and Multiclass Logistic Regression for continuous
and discrete variables respectively. However, as many next
generation genome sequencing datasets consist of continuous
variables that do not satisfy a normality assumption, we
employ a non-paranormal transformation of the data to render
our method suitable for any mRNA sequencing method.

Optimizing this distribution exactly is computationally in-
tractable, and thus a pseudolikelihood approach is used. To
avoid overfitting and to ensure a sparse causal structure a
penalized form of the pseudolikelihood is used, and this
penalty is given by a separate regularization parameter for
each type of edge (Acc for Continuous-Continuous edges,
Acp for Continuous-Discrete edges, and App for Discrete-
Discrete edges). This penalized pseudolikelihood is given by
Equation 6.

The nonzero parameters from the MGM model serve as
indicators of the existence of an edge between two variables,
and so MGM learns an undirected graph representing the
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adjacencies of the variables in the undirected causal graph. The
graph produced by MGM then serves as a starting point for
the PC-Stable algorithm (instead of the fully connected graph),
thus resulting in runtime savings and improved precision.

p s—1
minimize IAN©) =1(O) + Acc Z Z |Bst]

s=1t=1

P q
+Acp )Y sl

s=1j=1
q j—1

+>\DDZZ||¢TJ||F

j=1lr=1

(6)

IV. EXPERIMENTAL EVALUATION

Here we demonstrate our workflow on real expression and
clinical data from the TCGA-BRCA project [13]. We validate
our gene selection results and the predictive modeling that
results from using the selected genes. We test four different
gene selection methods: Random, Highest variance, Top-K,
and Pref-Div. Highest variance refers to choosing the K genes
with the largest statistical variance, Top-K refers to choosing
the K genes with the largest intensity score, and Pref-Div uses
the PrefDiv algorithm to choose a diverse set of K genes with
high intensity. We perform three evaluations of our approach: a
sensitivity analysis of the parameters of our importance score
and PrefDiv, an evaluation of the relevance of the selected
genes to breast cancer, and an examination of the predictive
accuracy of the selected genes to important clinical variables.

A. Parameter Selection

The initial segment of our experimental workflow is to
determine the parameter o for our gene importance score
(Equation 1). A reasonable choice for « is one that balances
the theory-driven approach through the gene-disease relation-
ships with the data-driven approach through fold changes from
the expression data. Our exploration of the Top 50 genes
selected by intensity score over varying « values is given by
Figure 1. From this figure, it is clear that the pure data-driven
and theory-driven approaches select entirely different sets of
genes. Thus, we chose a balanced approach between the two
extremes and set the o parameter to be 0.25.

Due to a large number of parameters for the distance
between two genes (Equation 4), we chose to leave these
parameters equal. We leave an examination of the distance
parameters for future work.

The aforementioned « parameter is the only necessary
parameter to set for the Top-K approach. The next portion of
the workflow involves finding the appropriate tradeoff between
intensity and diversity for the PrefDiv approach through the
Accuracy parameter (A). We choose to use a similar visual
procedure to find a reasonable value. Figure 2 displays a
visualization of the selected genes across the various values
of the A parameter. Here we choose the parameter value to be
0.5 to balance high intensity scores (A = 1) with fully diverse
sets (A = 0).
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Sensitivity of Intensity Parameter k = 50

B—

0.8

0.6

0.4

0.2

x

Fig. 1: Heatmap of Selected Genes, varying Intensity Param-
eter «, using the Top-K Approach

Sensitivity of Accuracy Parameter k = 50

Accuracy

Fig. 2: Heatmap of Selected Genes, varying Accuracy Param-
eter A for PrefDiv
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B. Biological Relevance

Next, we analyze the selected genes for their biological
relevance. We find that 6 of our top 50 genes with the highest
intensity score are found in the PAMS50 (p = 1.55 x 1077).
Upon examination of the top 50 highest scoring genes, we
find that the top five genes with high intensity score (BRCAI,
BRCA2, TP53, FGFR2, TOX3) have all been found to be
relevant to breast cancer in recent publications. BRCA1 and
BRCA2 genes encode tumor suppressing proteins, and it
has been shown that a mutation in these genes increases
susceptibility to breast cancer [21], [22]. FGFR2 and TOX3
mutations have both been linked to an increase in breast
cancer risk though their molecular mechanisms are not well
understood [23], [24]. Finally, TP53 is an important gene in
many cancers, and it has been shown that a change in the p53
pathway leads to more aggressive breast cancer. [25]

In addition, we determine the biological relevance of the
selected genes of all three approaches using pathway data. Our
analysis focuses upon three KEGG Pathways relevant to Breast
Cancer: WNT-Signaling, TGF-/ Signaling, and Breast Cancer.
The goal of this study is to determine whether underlying
theory supports the relevance of the selected genes to breast
invasive carcinoma. The results are given by Figure 3, which
shows the percentage of selected genes belonging to at least
one of the three relevant pathways for each method. The figure
clearly demonstrates that using our intensity score provides
more theory-driven gene selections than the data-driven high-
est variance baseline or randomly selecting genes; however,
this effect does tend to dissipate when selecting a very large
subset of genes (K = 500). This is due to the fact that the total
number of unique genes in the three pathways is 203, thus the
maximum possible percentage decreases when selecting 500
genes. It is also interesting to note that both the Pref-Div and
Top-K genes have similar relevance scores when computed
in this manner, implying that the relevant genes selected by
Top-K do not tend to be replaced with irrelevant genes when
diversity is also desired. Overall, this study displays theory-
driven support for our approach, especially when selecting
smaller subsets of genes.

C. Predictive Modeling of Outcomes

1) Approach: Our final experiment attempted to quantify
the predictive value of the full workflow. We chose to study
the predictive value of the workflow because evaluating causal
associations is a difficult problem on real biological data due
to a lack of ground truth knowledge. Thus, our experimental
design is as follows (outlined in Figure 4). First, we use each of
our feature selection approaches to choose a subset of genes
as in the previous experiment. Then we use the expression
data from this subset merged with clinical variables from
the TCGA to produce a full dataset. The causal modeling
algorithm (MGM PC-Stable) is then used to find the causal
associations between the genetic and clinical variables. For a
particular variable of interest, 7', we use the Markov Blanket
of T in the causal graph as the relevant predictors. The Markov
Blanket of a target variable 7" refers to the set containing
the parents of 7', the children of 7', and the parents of the
children of 7. This set of variables contains all of the causal
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KEGG Pathway Relevance of Selected Genes
0.3 T T T

Il Highest Variance
I Top K

[ ]Pref-Div

[ JrRandom

o
N
a

o
o i o
- o N

PercentofGenesAppearinginPathway
=

N [ s |

500

[]
100

Number of Selected Genes (K)

50

Fig. 3: Percentage of Genes selected by each method appearing
in a relevant KEGG Pathway. (Note: Highest Variance had 0
correct genes for K = 50)

information about 7' that the data can provide. The data from
these relevant features are fed to a Support Vector Machine
classification algorithm, and 5-fold cross validation is done to
find the predictive accuracy of the model. In this manner, we
can evaluate the selected features for their predictive relevance
to important target variables in Breast Cancer.

2) Results: In Figure 5 the results of predicting whether a
given sample is from tumor or normal tissue is displayed by
Fy Score. Clearly, for the smaller sets of variables choosing
the Top-K variables with the highest intensity score provides
the best predictive accuracy. However, as shown in Figure
6, by selecting only the most relevant variables the method
produces relatively small Markov Blankets and thus prevents
biologists from potentially finding all relevant genes for the
disease of interest. Adding diversity to the Top-K using the
PrefDiv framework tends to have similar predictive accuracy
as the Highest Variance method, but this approach is able
to find significantly larger Markov Blankets. This could be
due to the fact that having a diverse set of variables prevents
one variable from shielding away other genes from causal
relevance to the target variable. Thus, we conclude the Top-
K and Highest Variance approaches both perform well when
predictive accuracy is the goal, while the PrefDiv approach
finds a large number of relevant features.

Figures 7 and 8 demonstrate results for a similar workflow
for predicting the Breast Cancer subtype of each sample. Four
breast cancer subtypes were present in this dataset (Luminal-A,
Luminal-B, Basal, and HER-2). Since this involved a multi-
class classification problem, these results are given as misclas-
sification rate instead of F; Score. Here we clearly see similar
predictive performance between Top-K, Highest Variance, and
PrefDiv approaches. However, we see a significant change in
performance when using PrefDiv with a large number of genes
selected (e.g., 500) for Causal Modeling. Although, PrefDiv
still finds the most variables relevant to the target, these lead to
overfitting as nearly 150 predictors were found in the Markov
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Classification
of Target

Fig. 4: Tlustration of experimental workflow for Predictive Modeling

F, Scores for Classifying Tumor Samples

Il Highest Variance
Il Top K

[1Pref-Div
[ IRandom

F, Score

0.85 . L !
100 500

Number of Selected Genes (K)

Fig. 5: F; Score for Classification of Tumor vs. Normal
Samples. Genes selected using Markov Blanket of causal
graph learned on variables selected by each method.

Number of Predictors for Classifying Tumor Samples
120 T T
Il Highest Variance
Bl Top K
[Pref-Div
[ JRandom

Number of Predictors

| ||

100 500
Number of Selected Genes (K)

-l

Fig. 6: Number of Predictors found in the Markov Blanket of
the Tumor variable for each dimensionality reduction method.

Blanket of the Subtype variable when using PrefDiv. With
these detailed analyses, we established a distinction between
predictive and causal models, which can be used to determine
the best method based on different use cases.

V. CONCLUSION

In this work, we have presented a two-step analytical
workflow for theory and data-driven feature selection in high-
throughput gene expression data. We formulated an impor-
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causal graph learned on variables selected by each method.
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tance score for genes as the first step, and we then used
graphical causal models to extract variable relationships. Our
results show that our approach balances selecting predictive
features with finding causally relevant features for knowledge
generation compared to the baseline approaches. The Top-K
approach appears to be better suited to predictive modeling
applications whereas diversity allows for improved causal
knowledge generation.

Our work differs from the current state of the art in feature
selection, as most approaches have focused on data-driven
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quantitative methods [26]. However, some methods have in-
corporated prior knowledge into their dimensionality reduction
techniques. In [27] and [28], the authors use a constraint-based
feature hierarchy given by a domain expert to inform feature
selection techniques. This is difficult to apply to our case as
it is unclear how to partition the human genome into layers
of relevance to the target variable. In [29], the author uses a
domain expert provided pairwise dissimilarity score, similar
in nature to ours to project the data into smaller dimensions
for clustering. In our work, we do not aim to find clusters
of the original data though this could be an added method of
evaluation for our dissimilarity score for future work.

Furthermore, our method is the first to study using feature
selection methods prior to the causal modeling in an analytical
workflow. The second part of our workflow (using causal mod-
els for further feature selection) has been lightly examined.
Sun et al. use Granger causality for feature selection in time
series data [30]. In [31], the authors provide an extensive
evaluation of the effectiveness of causal discovery methods to
inform predictive variables. And, in [32], the authors examine
causal feature selection in instances where the relationships
between input and response variables can change between
training and testing data. Despite these related works, ours is
the first method to utilize prior domain knowledge in a simple
manner to inform causal discovery approaches.

In the future, we will work to integrate more types of data
to better inform our intensity score. In addition, we intend to
examine more closely the biological relevance of portions of
the discovered causal networks. Finally, we are also interested
to see a more thorough evaluation of the predictive accuracy
and causal relevance of our method as compared with more
traditional machine learning feature selection approaches. The
difficulty in evaluating causal discovery methods is the lack
of ground truth causal knowledge, so finding alternative eval-
uation methods would be a meaningful contribution.
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