
DCS: A Policy Framework
for the Detection of Correlated

Data Streams

Rakan Alseghayer1(B), Daniel Petrov1, Panos K. Chrysanthis1(B),
Mohamed Sharaf2, and Alexandros Labrinidis1

1 University of Pittsburgh, Pittsburgh, PA, USA
{ralseghayer,dpetrov,panos,labrinid}@cs.pitt.edu

2 Department of Computer Science and Software Engineering,
College of Information Technology, United Arab Emirates University, Al Ain, UAE

msharaf@uaeu.ac.ae

Abstract. There is an increasing demand for real-time analysis of large
volumes of data streams that are produced at high velocity. The most
recent data needs to be processed within a specified delay target in order
for the analysis to lead to actionable result. To this end, in this paper,
we present an effective solution for detecting the correlation of such data
streams within a micro-batch of a fixed time interval. Our solution,
coined DCS, for Detection of Correlated Data Streams, combines (1)
incremental sliding-window computation of aggregates, to avoid unnec-
essary re-computations, (2) intelligent scheduling of computation steps
and operations, driven by a utility function within a micro-batch, and
(3) an exploration policy that tunes the utility function. Specifically, we
propose nine policies that explore correlated pairs of live data streams
across consecutive micro-batches. Our experimental evaluation on a real
world dataset shows that some policies are more suitable to identifying
high numbers of correlated pairs of live data streams, already known
from previous micro-batches, while others are more suitable to iden-
tifying previously unseen pairs of live data streams across consecutive
micro-batches.

1 Introduction

Motivation. More and more organizations (commercial, health, government,
and security) currently base their decisions on real-time analysis of business and
operational data in order to stay competitive. Towards this, they deploy a variety
of monitoring applications to analyze large volumes of live data streams, that
are produced at high velocity. Data analysts explore such large volumes of data
streams, typically representing time series of raw measures, looking for valuable
insights and interesting events.

A common method for getting a better understanding of the observed behav-
ior conveyed in a set of data streams is to find correlations in the data streams
c© Springer Nature Switzerland AG 2019
M. Castellanos et al. (Eds.): BIRTE 2015/2016/2017, LNBIP 337, pp. 191–210, 2019.
https://doi.org/10.1007/978-3-030-24124-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24124-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-24124-7_12

192 R. Alseghayer et al.

[1]. The correlation can be also used as a source for finding similarity measures
faster [2], running threshold queries [3], or reducing the size of the data, but
preserving some of its characteristics [4].

Challenges. Finding correlations in data streams is a challenging task. Current
methodologies approach this challenge by employing some prediction techniques
[5], Discrete Fourier Transform approximations [6,7], or using clustering and
Markov chain modeling [8]. All those approaches have their limitations, whether
due to lack of absolute precision as a result of using approximations or pre-
dictions, or due to the usage of computationally expensive operations. Other
approaches address this challenge by indexing the data series [9–11]. Predomi-
nantly the users are looking for pairs of (positively or negatively) correlated data
streams over a short period of time. The high number of data streams implies
an even bigger number of pairs—precisely n∗(n−1)

2 pairs for n data streams. The
time to explore completely all pairs on one computer may be prohibitively long.
The challenge is exacerbated when the demand is for answers in real-time and
for a large set of live data streams.

Problem Statement. Clearly there is a need for algorithms that quickly iden-
tify windows of correlated data streams. In our prior work [12,13], we proposed
such algorithms, called iBRAID-DCS and PriCe-DCS, which detect pairs of cor-
related data streams within micro-batches of data streams with specific intervals.
They both uses the Pearson Correlation Coefficient to correlate two windows of
pairs of data streams.

As long as the detection of correlated pairs is considered independent across
micro-batches, PriCe-DCS executes in the same fashion within each micro-batch,
identifying the highest possible number of correlated pairs. However, there are
exploration tasks that do consider the detection of correlated pairs across micro-
batches. For example, in some tasks, the goal is to detect as many unique pairs of
correlated data streams as possible across two consecutive micro-batches, while
in others, the goal is to assure the perpetual correlation between them.

To that end, in this paper, we study nine policies to address the different
requirements of exploration tasks. These policies may leverage prior knowl-
edge (i.e., exploit already detected correlated data streams in preceding micro-
batches) to steer the detection of correlated pairs in the current micro-batch.

Contributions. In summary, in this paper:

– We present our DCS (Detection of Correlated Data Streams) framework that
employs the two base algorithms iBRAID and PriCe and is driven by a utility
function [12,13], (Sect. 2).

– We propose nine different policies that our novel PriCe-DCS algorithm can
employ when analyzing consecutive micro-batches. These policies can increase
the efficiency when detecting correlated live data streams and/or address
different exploration requirements. By appropriately tuning the parameters
of the utility function, the different policies exhibit different detection-recall,
overlapping-recall, and diversity results (Sect. 3).

DCS: Detection of Correlated Data Streams 193

– We experimentally evaluate and compare our algorithms, along with the
behavior of the nine detection policies. Our results using a real world dataset
show that our PriCe-DCS outperformed all the other algorithms. Further-
more, with the policies Blind and X% Probing (i.e., 1% Probing and 5%
Probing), PriCe-DCS was able to identify more diverse correlated data
streams across micro-batches than the Informed policy. On the other hand,
P-Alternating and Informed policies were able to assure the existence of cor-
relation in already identified correlated data streams (i.e., high overlapping-
recall). The other policies exhibited mixed behavior (Sect. 4).

We discuss related work in Sect. 5 and conclude in Sect. 6.

2 DCS Framework

In this section, we review our DCS mode of operation, introduced in [13], its
optimization objective, and our novel algorithm PriCe-DCS that implements its
objective.

2.1 System Model

Without loss of generality, we consider a (monitoring) system that receives data
from n data streams. Each data point in a data stream is a tuple t consisting of
a timestamp ts and a numeric value val (t = (ts, val)). The timestamp captures
the moment in time when the tuple was produced.

The data is produced at high velocity. The different streams produce the
consecutive tuples at the same rate, and they are all synchronized. However,
there are techniques to determine missing values, and to synchronize data which
arrives at different rates, but they are beyond the scope of this paper.

The real-time analytical processing is performed in micro-batches.

Definition 1. A micro-batch is a group of synchronized tuple subsequences over
a set of data streams defined by a timestamp interval I.

Each micro-batch, whether of the same or different data streams, is of the
same size, i.e., contains the same number of tuples with consecutive timestamps
within the interval. The inter-arrival time of two consecutive micro-batches spec-
ifies the maximum computational time for processing a micro-batch.

Definition 2. The inter-arrival time is the delay target or deadline d by which
the last result can be produced while analyzing a micro-batch.

In real-time processing, ideally, the deadline d equals to the interval (d = I) so
that there is no delay gap in processing between two consecutive micro-batches.
However, it is expected to be a bit longer due to various overheads in the system,
including any pre-processing of micro-batches.

194 R. Alseghayer et al.

2.2 Optimization Objective

Our DCS framework focus on analytical processing that finds correlated data
streams in real-time, using the Pearson Correlation Coefficient (PCC) as a cor-
relation metric for pairs of sliding windows of data streams.

Definition 3. Given two numeric data streams x and y of equal length m, the
PCC is calculated with the following formula:

corr(x, y) =
m∑

i=1

(xi − μx)(yi − μy)
σxσy

(1)

where μx is the average (or mean) of the values of x, μy is the mean of the values
of y, σx and σy are the standard deviations of the values of x and y, respectively.

Definition 4. Two sliding windows of the same range w with a slide of 1 are
correlated when the PCC is more than a given threshold τ (PCC ≥ τ).

Definition 5. A pair of data streams in a micro-batch is correlated when it
contains at least A correlated sliding windows with threshold τ .

The windows, which meet the criterion, may be consecutive or stratified over
the interval defining a micro-batch.

The formalization of the algorithmic problem is as follows:

Problem: Given a micro-batch B of a set of data streams DS with an arrival
interval I, perfectly synchronized and with no missing tuples, and a deadline
d, detect the number of correlated pairs of data streams, each of which has A
correlated sliding windows, not necessary consecutive, with a PCC threshold of
τ , by the deadline d.

The optimum solution will be when the number of identified correlated pairs
in a micro-batch are equal to the actual total number of correlated pairs. Hence,
the optimization goal in DCS is to maximize the number of identified pairs by a
deadline. Formally, the ratio of number of detected correlated pairs to the total
number of correlated pairs is close to 1 and the metric is defined as:

Detection-Recall =
identified correlated pairs

Actual # correlated pairs
(2)

2.3 Base Algorithms

IBRAID-DCS is an enhancement over the work BRAID [14], where the PCC
can be calculated by computing five sufficient statistics—sum of the tuples in
each window, the sum of the squares of the tuples of each window, and the
inner cross-product of the tuples of the two windows, for which the correlation
is calculated. The sum (sumx) and the sum of the square of the tuples (sumxx)

DCS: Detection of Correlated Data Streams 195

of a window of length m of a data stream x, and corresponding inner product
(sumprodxy) are denoted as

sumx =
m∑

i=1

xi sumxx =
m∑

i=1

x2
i sumprodxy =

m∑

i=1

xiyi

The covariance of the two data streams x and y is

cov = sumprodxy − sumx × sumy

m

and the variance of the window can be calculated as according to the following
formula

varx = sumxx − (sumx)2

m
Similarly, the variance for data stream y will be denoted vary. Then PCC

can be calculated, applying the following formula

corr(x, y) =
cov√

varx × vary

The sufficient statistics can be computed either from scratch or incrementally
each time a pair of data streams is explored by a new tuple. In the case of
incremental calculation, the sums stored in memory are incremented by the new
values and decremented by the values that are not part of the windows anymore.
The same operations are performed for the sums of the squares and the inner
cross products, using the respective tuples.

With that in mind, iBRAID-DCS is a round-robin scanning algorithm that
uses the incremental computation of PCC. It analyzes the pairs of data streams
in a micro-batch sequentially, starting from the first tuple for all data streams. It
calculates the sufficient statistics that are needed to calculate the PCC efficiently
(i.e., single pass over tuples). Next, it calculates the PCC for the first tuple
for all pairs of windows. Once this is done, the windows are slid further by
one tuple, the sufficient statistics are updated incrementally—the first tuple
is expired/subtracted from them, and the new tuple is added. The PCC is
calculated again for all pairs. Then, it keeps analyzing all data streams by a
single tuple, augmenting the sufficient statistics incrementally, and recalculating
the PCC. This is done until the whole micro-batch is analyzed.

iBRAID-DCS has four key advantages: (1) it is accurate, (2) easy to imple-
ment, (3) does not cause “starvation” among the pairs, and (4) it reduces the
computations by half due to the usage of the sufficient statistics. iBRAID-DCS
is experimentally shown to perform well for data streams whose data is uniformly
distributed and for low correlation thresholds (τ < 0.5).

PriCe-DCS is a scanning algorithm that uses a utility function to analyze the
pairs of windows while reusing partial PCC computations. It analyzes the most
promising pair first, which is the one with the highest utility function value:

Pr = PCC ∗ (M/totalExp)/C (3)

196 R. Alseghayer et al.

where PCC is the most recently calculated Pearson Correlation Coefficient for
a pair of sliding windows that belong to the same pair of data streams, M is the
number of correlated sliding windows found in the corresponding pair of data
streams so far, totalExp is the total number of analyzed pairs of sliding windows,
and C is the cost of analyzing a pair of sliding windows in terms of number of
computations (i.e., the number of operations needed to calculate the sufficient
statistics for a pair of sliding windows). The default values are PCC = 1, M =
0, totalExp = 1, and C = 1.

Early termination happens when the A criterion of the number of correlated
windows is reached for a pair, and pruning happens according to the following
condition:

(A − correlatedWindows) > (I − slidingWindowPosition)

where correlatedWindows are the total number of windows that are correlated in
a pair of streams according to PCC τ , and slidingWindowPosition is the pair’s
analysis location in the interval. Recall, I is the interval of the data streams.

3 Detection Policies

When the very first micro-batch arrives at the system, the system has no prior
knowledge about any correlated pairs of streams. However, this is not the case
after the analysis of any micro-batch that produces a set of correlated pairs
of data streams. This raises the question of how to exploit the results of past
micro-batch analyses, such as, picking the first pair in a new micro-batch to ana-
lyze. This question has a major impact on PriCe-DCS ’s behavior in supporting
exploration, exploitation or fairness, and its answer determines the initialization
of the parameters of PriCe-DCS ’s utility function.

In fact, we propose nine policies, which differ in the way each initializes the
utility function of PriCe-DCS.

Blind. When the analysis of a micro-batch starts with no prior knowledge of cor-
related pairs of streams, Blind policy initializes PriCe-DCS ’s utility function
to its default values (as discussed in Sect. 2.3). It is to be noted, however,
that the very first micro-batch analysis in all approaches follows the Blind
approach1.

Informed. The utility function is initialized based on the results of the latest
micro-batch analysis. In Informed starting phase, PriCe-DCS ’s utility func-
tion is initialized to the same parameter values of the correlated pairs used
by the immediately previous micro-batch. The rationale behind this policy is
to keep analyzing closely those pairs that already exhibited high correlation
in the previous micro-batch, potentially indicating an insight of interest.

1 In DCS [12,13], Blind was referred to as Cold Start whereas the other proposed
policies here are instances of Warm Start.

DCS: Detection of Correlated Data Streams 197

Untouched. The focus is on the pairs that were not processed at all in the pre-
vious micro-batch due to the lack of any correlated windows (i.e., not chosen
for analysis due to their low values of Pearson Correlation Coefficient) at the
beginning of PriCe-DCS ’s execution. Specifically, such pairs are jumpstarted
by altering their previous number of correlated windows (i.e., the parame-
ter that reflects this information) to have the value A. This increases their
priority, preventing their starvation and giving them another chance to be
analyzed in the new micro-batch. The rationale behind this policy is to allow
such pairs another chance, potentially identifying different behavior, which
remained undetected in the previous micro-batch.

Alternating. This policy gives the pairs that were not correlated in the previous
micro-batch a chance to be explored through a hybrid round-robin fashion.
In Alternating starting phase, alternately, a pair from those that are not cor-
related in the previous micro-batch, is picked and explored using PriCe-DCS
followed by a pair from those which were correlated. When the starting phase
concludes (i.e., touched all the pairs at least once), the pairs are processed
with PriCe-DCS according to the utility function. By doing this, we hope
to reduce the effect of starvation for those that were not correlated in the
previous micro-batch.

X% Non-correlated. This policy tries to achieve fairness of exploration
through jumpstarting the lowest X% pairs in priority. The pair with the high-
est priority among those lowest X% is picked and explored. This continues
until all those X% pairs are jumpstarted. Subsequently, PriCe-DCS carries
out the exploration process as it usually does.

Decaying History. This policy regards the significance of the whole historical
correlation information of a pair differently from recent micro-batches infor-
mation. In the utility function, it alters the parameter M, which reflects the
number of correlated sliding windows found for a corresponding pair, such
that it becomes weighted. It gives the historical correlation information (i.e.,
data from micro-batches earlier than the most recent one) a weight, and then
gives a higher weight to the most recent correlation information. Then, the
total of both becomes the new parameter M. The goal behind this policy is
to consider higher the most recent information along the exploration process
as opposed to older ones.

Shared Stream. Its focus is on the group of pairs, that were not correlated in
the previous micro-batch but share a data stream that was part of a correlated
one in the preceding micro-batch. The idea in this policy is that a data stream
that is correlated with another one, might be correlated with a third different
stream as well. Thus, this policy picks a pair from this group of non-correlated
pairs according to PriCe-DCS and explores it. Shared Streams starts all those
pairs, and then, carries on using PriCe-DCS.

X% Probing. This policy explores the first few windows for all the pairs in a
round-robin fashion. This is done to set the utility function with actual current
values instead of artificial hand-crafted ones. After those few windows, PriCe-
DCS kicks in and continues the exploration process using the utility function
that had its parameters filled with actual data through the probing process.

198 R. Alseghayer et al.

The rational behind this policy is to take advantage the good properties of
iBRAID-DCS during the starting phase. In some respect, this policy is a
hybrid of iBRAID-DCS and PriCe-DCS.

P-Alternating. This policy mimics the multilevel queue scheduling, whereby
the pairs are explored in a round-robin fashion between two groups. Those
are the previously correlated pairs and the non-correlated ones. This is to
give the pairs that were not correlated in the previous micro-batch a chance
to be persistently processed. It picks a pair from the non-correlated ones
and processes it using PriCe-DCS, then, it picks a pair from those that were
correlated. It does that until the end of the micro batch (i.e., not only the
starting phase), and carries on in this fashion by picking the pair from each
group of pairs according to the utility function. By doing this, the hope is
to alleviate the effect of starvation for those pairs, that were not correlated
in the previous micro-batch in a persistent way, for they might exhibit some
correlation beyond the starting phase.

4 Experiments and Analysis

In this section we present the evaluation of the DCS framework and its algo-
rithms. Furthermore, we evaluate the nine different policies with PriCe-DCS,
and how each policy addresses different exploration requirements. For consis-
tency, we used the same dataset and settings as in [13].

4.1 Experimental Framework

Algorithms. We compared a baseline algorithm Random against our two
algorithms iBRAID and PriCe, along with their DCS variants Random-DCS,
iBRAID-DCS, and PriCe-DCS. Also, we studied the nine different policies that
modify PriCe-DCS default behavior.

Testbed. We implemented all the discussed algorithms and policies in C++ 11.
We ran the experiments on a computer with 2 Intel CPUs, running at 2.66 GHz,
and 96 GB of RAM memory. The operating system used was CentOS 6.5 and
the compiler was GCC version 4.8.2.

Metrics. We evaluated the performance of the policies in terms of detection-
recall, overlapping-recall, and diversity. We also measure the cost, which is used
to determine the deadlines in our experiments. Those metrics are discussed next.

Cost: This is our efficiency metric. We measured the deadline latency as the
number of operations performed to detect correlated pairs of data streams. We
used the number of operations as it provides the asymptotic efficiency of the
policies compared to one another. This does not depend on factors such as the
hardware characteristics and the operating system of the computer, on which
the experiments are run, nor the efficiency of the compiler. We examined how
the policies meet deadlines and how many correlated pairs they could detect
under such a requirement.

DCS: Detection of Correlated Data Streams 199

Table 1. Experimental parameters

Parameter Value(s) Parameter Value(s)

PCC τ [0.75, 0.90] w 8

A [112, 225, 450] # data streams 72

I 900 (180 s) # micro-batches 4

Detection-Recall: This is our detection optimization criterion (Eq. 2). It
reflects how capable the policy is in detecting correlated pairs out of the total
actual correlated pairs. Thus, it is a ratio of the number of detected correlated
pairs to the total number of correlated pairs.

Overlapping-Recall: An overlapping pair is a detected correlated pair in a
given micro-batch, which was also detected as correlated in the immediately
preceding micro-batch. In this metric, we find the ratio of the detected overlap-
ping pairs to the total number of overlapping pairs in a micro-batch. Note that
this metric does not apply to the very first micro-batch.

Diversity: We measure how many new pairs (i.e., not seen as a result in the
most recent micro-batch) are detected in each micro-batch. This is our explo-
ration vs exploitation criterion.

Dataset. Yahoo Finance Historical Data [15]: The dataset we have used in
our experiments consists of 318 data streams. Those reflect the trading of 53
companies on the NYSE for the last 28 years. This gives us a total of 50,403
different pairs to analyze. The data granularity is a day, which includes the price
of the stock of the company at opening, the price at the end of the day (closing),
the highest price for the day, the lowest price for the day, the amount of shares
traded that day, and the adjusted close (calculated according to the standards
of the CRSP, Center for Research in Security Prices). The length of each data
stream is about 7,100 tuples. Those tuples are divided into micro-batches.

Experiments. We ran four experiments in total. The first two evaluate our
base algorithms, and the latter two assess the ability of our proposed policies
to detect and diversify the correlated pairs of data streams using PriCe-DCS.
We conducted the experiments for two PCC threshold τ ’s, 75% and 90%, and
for three different values of A, 112, 225 and 450. The values of A correspond to
the 1/8, 1/4 and 1/2 of the micro-batch interval. The micro-batch interval is set
to 900 tuples to simulate an inter-arrival time of 180 seconds, where each tuple
is produced each 200 ms. Finally, we experimented with three deadlines corre-
sponding to 25%, 50%, and 75% of the total operations needed to determined
all the correlated pairs in a micro-batch, i.e., achieve total detection-recall. The
experimental parameters are summarized in Table 1. In all experiments, we have
divided the dataset into four mutually exclusive groups, and we ran our exper-
iments on all of them, we found that the results are similar. Thus, we reported
the results of one of those groups. Moreover, we did pick 10% for the X% Non-
Correlated as a middle point between the policies Untouched and Alternating.

200 R. Alseghayer et al.

Fig. 1. The cost in number of operations for 4 consecutive micro-batches (A = 112).

Fig. 2. The cost in number of operations for 4 consecutive micro-batches (A = 225).

4.2 Experimental Results

In this section, we present the results of four experiments that we conducted
to evaluate the ability of the policies to detect and diversify in real-time the
correlated pairs in data streams.

Experiment 1 (Figs. 1, 2 and 3). In our first experiment, we measured the
execution cost or latency in number of operations of each algorithm to detect
the specified number A of correlated pairs of sliding windows in four consecutive
micro-batches.

As expected, Random, iBRAID, and PriCe have the same number of opera-
tions due to exhaustive processing of the pairs. These do not use A for either early
termination nor pruning. Thus, with fixed number of data streams, intervals,

DCS: Detection of Correlated Data Streams 201

Fig. 3. The cost in number of operations for 4 consecutive micro-batches (A = 450).

and window range, the number of operations induced by the three algorithms is
identical. They always consume the same amount of operations regardless of the
other parameters (i.e., PCC τ and A). The impact of DCS mode on all three
algorithms is clearly visible in all figures.

In Fig. 1, we notice that the higher the PCC τ , the more operations are
executed by the algorithms. This is due to the fewer number of windows that
are highly correlated according to the PCC τ . This results in higher latency in
detecting them by the algorithms. On the other hand, in case of low PCC τ ,
we see that DCS terminates the analysis process early, as soon as it reaches
the A criterion of number of correlated sliding windows. We also observe that
iBRAID-DCS consistently underperforms the other DCS algorithms in latency.
This is a consequence of the iBRAID scheduling scheme, where it processes all
the pairs in a round-robin fashion to avoid starvation. This leads to having a
pair pruned at a late stage of the analysis.

In Fig. 2, we notice that iBRAID-DCS exhibited higher latency in the cases
where PCC τ = 0.75. This is counter intuitive. To clearly state the reason, we
observe that the lower the A criterion, the later the pruning will occur in case
of no high correlated windows were processed. With that in mind, we say that
the pairs of data streams in Fig. 2 in the case of PCC τ = 0.75 has produced
high amount of correlated windows, enough to delay the pruning towards the
end, but not enough to terminate the analysis early. Therefore, the performance
of iBRAID-DCS was lower with low PCC τ .

Our last explanation is also supported by our experimental results in Fig. 3,
which show clearly that with high A, the DCS mode is able to reach a better
performance than low A. The reason is that with A = 450, if a pair encounters
no correlated windows yet, it can be pruned by midway of the analysis process.

Finally, DCS mode of operation was able to enhance the performance of the
algorithms up to 1.8 times (Fig. 3).

202 R. Alseghayer et al.

Fig. 4. The % of correlated pairs of streams detected by all algorithms at 25% of the
interval I (A = 112).

Fig. 5. The % of correlated pairs of streams detected by all algorithms at 25% of the
interval I (A = 225).

Experiment 2 (Figs. 4, 5, 6, 7 and 8). In this experiment, we studied the
Detection-Recall of each algorithm with respect to a given deadline. We set the
deadline to be 25%, 50%, and 75% of the processing duration of each interval
and measured the percentage of the number of correlated pairs each algorithm
was able to detect. The results are shown in Figs. 4, 5 and 6 for the deadline
25%, in Fig. 7 for the deadline 50%, and in Fig. 8 for the deadline 75%.

In general, we notice that DCS mode of operation in all cases for all algo-
rithms outperforms the original algorithms. This is attributed to the pruning
and early termination features of DCS, which allow the algorithms to analyze
other pairs and detect more correlated data streams.

DCS: Detection of Correlated Data Streams 203

Fig. 6. The % of correlated pairs of streams detected by all algorithms at 25% of the
interval I (A = 450).

Fig. 7. The % of correlated pairs of streams detected by all algorithms at 50% of the
interval I (A = 225).

In Fig. 4, we notice that iBRAID and iBRAID-DCS detected lower percent-
age of correlated pairs of data streams than PriCe and PriCe-DCS, while PriCe
and PriCe-DCS have comparable performance. We attribute this to the fact that
with a low value of A, we are expecting the required A number of correlated pairs
to be detected quickly by PriCe and PriCe-DCS, while the round-robin schedul-
ing of iBRAID and iBRAID-DCS, which process all the pairs one pair at a time,
is not affected by the value of A. We also notice that Random performed slightly
better than Random-DCS in the 2nd micro-batch, and this is due to the random
scheduler nature that picks a pair in a random fashion. In addition, we observe
that the average detection percentages for Random with A = 112 for all PCC τ
at the deadline 25% is 18% comparing to 52% for PriCe.

204 R. Alseghayer et al.

Fig. 8. The % of correlated pairs of streams detected by all algorithms at 75% of the
interval I (A = 450).

In Fig. 5, we see that PriCe scheduling demonstrated the effectiveness of
its priority function in capturing more correlated pairs at an early deadline,
especially when PCC τ is high. That means, it elects the pairs to explore more
intelligently than the other two algorithms. We also notice that with high value
of A and early deadline, iBRAID-DCS fails to detect any correlated pair of data
streams. With respect to Random and Random-DCS, we observe the same as in
Fig. 4, where Random performed slightly better than Random-DCS due to the
random scheduler nature. We also note that the average detection percentage for
Random-DCS with A = 225 for all PCC τ at the deadline 25% is 12% compared
to 57% for PriCe.

In Fig. 6, the observations are as similar as they are in Fig. 5, however, we
realize that PriCe-DCS has detected more than 87% the correlated pairs of data
streams, and this is due to the priority scheduling of PriCe and the aggressive
pruning at high A. The Random-DCS fails to meet that, since it picks pairs in
an unpredictable way, and this delays the analysis duration for each pair, hence,
delaying its pruning.

In Fig. 7, we note that PriCe-DCS outperforms all the other algorithms. This
is for the obvious reason of having more processing time to advance the sliding
windows and capture more correlated windows between a pair of data streams.
As a result, it reaches the criterion A (=225) of declaring the pair as a correlated
one quickly. For A = 112 and A = 450, our observations are similar as in Fig. 7.

Finally, towards the end of the micro-batch analysis process, we see clearly in
Fig. 8 that all the algorithms are detecting pairs with an overall relatively higher
percentage than the earlier deadlines, and this is expected with more time to
analyze the pairs of data streams. We also observe the effect of pruning clearly
on all algorithms under DCS mode. This is a result of the A criterion being
very high, which leads to early pruning for non promising pairs of data streams.

DCS: Detection of Correlated Data Streams 205

Fig. 9. The % of correlated pairs of streams detected by all policies at 25% of the
interval I (A = 112).

Fig. 10. The % of correlated pairs of streams detected by all policies at 50% of the
interval I (A = 112).

Thus, all the correlated pairs of data streams were detected earlier than the 75%
deadline. The same holds for A = 112 and A = 225.

Experiment 3 (Figs. 9 and 10). Our previous two experiments show that PriCe-
DCS exhibits the best performance overall. In our third experiment, we studied
the detection-recall of each policy with respect to a given deadline. We set the
deadline to be 25%, 50%, and 75% of the processing duration of each interval
and measured the percentage of the number of correlated pairs each policy was
able to detect. We experimented with the values of PCC τ and A, shown in
Table 1. All experiments produced similar results; thus, we report the results for
the deadline 25% and 50% only.

206 R. Alseghayer et al.

Figure 9 shows the detection-recall for the 25% deadline with A = 112. We
notice that PriCe-DCS with policy P-Alternating outperforms the rest with
PCC τ = 0.90. On the other hand, the 1% Probing outperforms the rest when
PCC τ = 0.75. This is attributed to the fact that with higher PCC τ values it
is highly likely to have fewer correlated windows in a given pair, and vice versa.
Having that in mind, with lower PCC τ , exploring the initial 1% of a pair, can
lead to an indication of whether the pair is correlated or not. On the other hand,
when the pair has scarce correlated windows, it is expected that with persistent
exploration of non-correlated pairs, to find new correlation discoveries. Note that
the first micro-batch always starts with a Blind policy, as there are no historical
information about the data streams.

Figure 10 shows the detection-recall for the 50% deadline with A = 112. It is
clear that they exhibit similar behavior overall, except for the 2nd micro-batch,
where the policy P-Alternating won by a negligible margin over the X% Probing
policies.

Experiment 4 (Table 2). In this experiment, we studied the impact of histori-
cal information on the effectiveness of detecting correlated pairs. This includes
the trade-off between exploration and exploitation in the approach for detect-
ing correlated pairs. We use the metrics detection-recall, overlapping-recall, and
diversity to illustrate that impact.

In Table 2, we show the results for the algorithm PriCe-DCS with Blind pol-
icy as a baseline. In addition, we show the results of PriCe-DCS with Informed
and Untouched as the most exploitative starting phase varieties. This means
that they keep detecting the same pairs of data streams that they already have
detected. We also show the winners from Experiment 3 (i.e., 1% Probing, 5%
Probing, and P-Alternating).

One can notice that the P-Alternating PriCe-DCS achieved the highest
detection-recall on average for both deadlines. This is expected due to the per-
sistent processing of the non-correlated and correlated pairs in a round-robin
fashion. In addition, although Informed PriCe-DCS achieved high overlapping-
recall on average, P-Alternating has the highest of all for both deadlines. This
is to be expected because Informed PriCe-DCS does not alter the parame-
ters of the utility function, instead, it carries all the information of pairs from
previous micro-batches as they are, and in the case of P-Alternating, the per-
sistent processing of the already correlated pairs manifests itself in the highest
overlapping-recall.

Finally, the explorative policies (i.e., Blind) achieved the highest diversity in
detecting correlated pairs than the exploitative ones (i.e., Informed, Untouched,
and P-Alternating), in fact, they have achieved the lowest diversity on aver-
age. This can be explained because the exploitative policies have some kind of
informative approach on how to analyze the data streams, whether this is from
previous micro-batches or some other source. Thus, they will keep exploring the
pairs that were already correlated in previous micro-batches.

Take Away: In our first two experiments, we found that PriCe-DCS outper-
formed all other algorithms. In the third, we found that PriCe-DCS with X%

DCS: Detection of Correlated Data Streams 207

Table 2. Results of Experiment 4

Batches 25% Deadline 50% Deadline

1st 2nd 3rd 4th Avg. 1st 2nd 3rd 4th Avg.

Full Correlated 429 580 236 234 – 429 580 236 234 –

Full Overlapped – 364 215 181 – – 364 215 181 –

PriCe Blind Correlated 163 184 103 88 – 231 298 135 130 –

Overlapped – 70 67 54 – – 140 98 84 –

Unseen Before 163 114 36 34 – 231 158 37 46 –

Detection-Recall 0.380 0.317 0.436 0.376 0.377 0.538 0.514 0.572 0.556 0.545

Overlap-Recall – 0.192 0.312 0.298 0.267 – 0.385 0.456 0.464 0.435

Diversity 1 0.620 0.350 0.386 0.589 1 0.530 0.274 0.354 0.540

PriCe Informed Correlated 163 126 111 99 – 231 232 144 141 –

Overlapped – 81 99 87 – – 144 136 118 –

Unseen Before 163 45 12 12 – 231 88 8 23 –

Detection-Recall 0.380 0.217 0.470 0.423 0.373 0.538 0.400 0.610 0.603 0.538

Overlap-Recall – 0.223 0.460 0.481 0.388 – 0.396 0.633 0.652 0.560

Diversity 1 0.357 0.108 0.121 0.397 1 0.379 0.056 0.163 0.399

PriCe Untouched Correlated 163 126 111 99 – 231 232 144 141 –

Overlapped – 81 99 87 – – 144 136 118 –

Unseen Before 163 45 12 12 – 231 88 8 23 –

Detection-Recall 0.380 0.217 0.470 0.423 0.373 0.538 0.400 0.610 0.603 0.538

Overlap-Recall – 0.223 0.460 0.481 0.388 – 0.396 0.633 0.652 0.560

Diversity 1 0.357 0.108 0.121 0.397 1 0.379 0.056 0.163 0.399

PriCe 1% Probing Correlated 179 203 124 135 – 295 323 178 156 –

Overlapped – 123 101 90 – – 178 129 111 –

Unseen Before 179 80 23 45 – 295 145 49 45 –

Detection-Recall 0.417 0.350 0.525 0.577 0.467 0.688 0.557 0.754 0.667 0.666

Overlap-Recall – 0.338 0.470 0.497 0.435 – 0.489 0.600 0.613 0.567

Diversity 1 0.394 0.185 0.333 0.478 1 0.449 0.275 0.288 0.503

PriCe 5% Probing Correlated 121 143 114 124 – 281 278 173 182 –

Overlapped – 110 100 96 – – 184 145 134 –

Unseen Before 121 33 14 28 – 281 94 28 48 –

Detection-Recall 0.282 0.247 0.483 0.530 0.385 0.655 0.479 0.733 0.778 0.661

Overlap-Recall – 0.302 0.465 0.530 0.433 – 0.505 0.674 0.740 0.640

Diversity 1 0.231 0.123 0.226 0.395 1 0.338 0.162 0.264 0.441

PriCe P-Alternating Correlated 163 224 131 182 – 231 375 202 191 –

Overlapped – 108 124 130 – – 209 187 173 –

Unseen Before 163 116 7 52 – 231 166 15 18 –

Detection-Recall 0.380 0.386 0.555 0.778 0.525 0.538 0.647 0.856 0.816 0.714

Overlap-Recall – 0.297 0.577 0.718 0.531 – 0.574 0.870 0.956 0.800

Diversity 1 0.518 0.053 0.286 0.464 1 0.443 0.074 0.094 0.403

Probing is the best policy for detecting correlated live data streams for low val-
ues of PCC τ . On the contrary, PriCe-DCS with P-Alternating is the best policy
for detecting correlated live data streams for high values of PCC τ . In the last
experiment, we found that P-Alternating, Informed and Untouched policies are
more suitable for exploiting the space of exploration, and for finding correlated
pairs regardless of diversity. However, Blind policy does detect more diverse
pairs across micro-batches along the exploration process.

208 R. Alseghayer et al.

5 Related Work

The processing of data and fast discovery of correlated subsequences of time
series is tackled in two scenarios with respect to the production of data: (1)
static, when the data is collected upfront and it forms the search space for
finding the correlated subsequences [14,16,17], and (2) dynamic, when the data
is processed as it is produced [5–8,18]. The former is beyond the scope of our
work. In this section, we focus on the latter, and in particular the state-of-the-art
of computationally cheap identification of correlated data streams.

RainMon [5] proposes a 3-stage technique to mine bursty data streams. The
received signals are first decomposed, in order to obtain a smoothed represen-
tation of the data. In the next stage, called summarization, the received data
goes through incremental principal component analysis in an effort to outline
the long-term trends in the streams and to identify anomalies, if there are any.
In the last stage, named Prediction, the system forecasts trends, relying on the
output from the summarization stage. In our work, we do not make predictions
and use the data as it is delivered to identify correlated data streams.

A framework for identification of highly correlated pairs of data streams is
also presented in StatStream [6]. One of the assumptions of the work is that only
an approximation of the PCC is sufficient to identify the pairs of highly corre-
lated data streams. Based on this assumptions, the authors proposed a twofold
approach to efficiently identify the pairs of interest. They employ a computa-
tionally cheap Discrete Fourier Transformation (DFT) technique to calculate
an approximation of the PCC. Furthermore, they proposed an n-dimensional
grid structure, which stores the DFT statistics and PCC approximations of each
stream, whereby neighboring cells reflect highly correlated streams. This is the
springboard for identification of the highly correlated pairs of data streams.
However, DFT is known for its poor performance on data streams, which mimic
white noise, thereby the required number of DFT coefficients to precisely repre-
sent the data streams is high, which induces significant amount of computations.
Our work differs in the calculation of PCC. Furthermore, we calculate PCC
incrementally over sliding windows, and our framework calculates it precisely
for each pair, over each sliding window. Our studies showed that once a pair of
data streams is selected as being highly correlated due to a high value of the
approximated PCC, a precise calculation of the PCC is required to prove the
hypothesis. This operation requires two passes on the data. Similarly to Stat-
Stream, our framework supports sliding windows on data streams. We evaluate
the possibilities to extend our framework to support landmark windows and
damped windows in the future.

StatStream was further improved to handle “uncooperative” data streams
in [7], but it still calculates an approximation of PCC only. The proposed tech-
nique employs structured random vectors. The experimental results show that
the proposed technique outperforms linear scan and the Discrete Fourier Trans-
formations, proposed in StatStream [6]. Our framework, similarly to this work,
updates the required statistics in fixed amount of time. However, it differs in
PCC calculations, whereby DCS calculates PCC of the pairs of data streams

DCS: Detection of Correlated Data Streams 209

precisely for each sliding window and avoids the need to be calculated later and
at a higher cost, once a pair is selected as being “promising”.

Detecting similarities between data streams can be achieved through cor-
relation identification techniques. Four different distance measures for similar-
ity of data streams were proposed in [18]: “Autocorrelation Distance (ACD)”,
“Markovian Distance (MD)”, “Local Distance Distribution” and “Probabilistic
Local Nearest Neighbor”. ACD is the version of similarity metric used in our
work (PCC), but used for self-correlation, i.e., when a data stream is correlated
to itself, whereby one of the windows starts with a lag from the other one. All
discussed methods are used to find the first nearest neighbor (1NN) of given
data stream only. Our approach, however, identifies all pairs of correlated data
streams and is not limited to 1NN only.

Anomaly detection over data streams can also be used as a correlation iden-
tification method. A solution is presented in [8] uses the MD approach, listed
above. Specifically, the presented solution relies on a twofold approach, whereby
data streams clustering is combined with Markov chain modeling. The former
identifies groups (or clusters) of similar data streams. The latter conveys a pos-
sibility for the system to identify anomalies in the data streams in each cluster.
In the context of the system, anomalies are considered to be transitions in the
Markov chains, which have probability below a certain predefined threshold. Our
work may not only be adjusted to identify anomalies, whereby an anomaly is a
pair of windows with PCC below a certain threshold, but it also provides ana-
lysts with insights about the data. This is done by employing cheap incremental
computations, avoiding computationally expensive operations such as building
Markovian transition matrices.

6 Conclusions

In this paper, we presented the complete Detection of Correlated Data Streams
(DCS) framework, which offers effective solutions for detecting the correlation
of data streams within a micro-batch of a fixed time interval for specific analysis
requirements. Specifically, we first discussed our novel PriCe-DCS algorithm,
which combines (1) incremental sliding-window computation of aggregates and
(2) intelligent scheduling, driven by a utility function. Then we discussed how the
DCS framework facilitates the implementation of different policies that tune the
utility function in order to meet the exploration and exploitation requirements
of analysis tasks.

We implemented and evaluated nine policies that initialize/tune the utility
function of PriCe-DCS. Other policies could potentially be specified. As opposed
to the policies that address explorative objectives, such as Blind and X% Prob-
ing, the policies that address an exploitative objective, such as P-Alternating,
Informative, and Untouched, use the result of the preceding micro-batch analyses
as part of the initialization of the analysis of the current micro-batch.

Our experimental evaluation using real world dataset showed that the policies
that address explorative objectives (i.e., Blind and X% Probing) detected more

210 R. Alseghayer et al.

unique correlated data streams. It also revealed that for low PCC τ , PriCe-DCS
with X% Probing outperformed the rest of the policies in terms of detection-
recall, and for high PCC τ values, PriCe-DCS with P-Alternating performed
the best.

Acknowledgment. This paper was partially supported by NSF under award CBET-
1609120, and NIH under Award U01HL137159. The content is solely the responsibility
of the authors and does not represent the views of NSF and NIH.

References

1. Kalinin, A., Cetintemel, U., Zdonik, S.: Searchlight: enabling integrated search and
exploration over large multidimensional data. PVLDB 8(10), 1094–1105 (2015)

2. Orang, M., Shiri, N.: Improving performance of similarity measures for uncertain
time series using preprocessing techniques. In: ACM SSDBM, pp. 31:1–31:12 (2015)

3. Zacharatou, E.T., Tauheedz, F., Heinis, T., Ailamaki, A.: RUBIK: efficient thresh-
old queries on massive time series. In: ACM SSDBM, pp. 18:1–18:12 (2015)

4. Lee, D., Sim, A., Choi, J., Wu, K.: Novel data reduction based on statistical simi-
larity. In: ACM SSDBM, pp. 21:1–21:12 (2016)

5. Shafer, I., Ren, K., Boddeti, V.N., Abe, Y., Ganger, G.R., Faloutsos, C.: RainMon:
an integrated approach to mining bursty timeseries monitoring data. In: ACM
SIGKDD, pp. 1158–1166 (2012)

6. Zhu, Y., Shasha, D.: StatStream: statistical monitoring of thousands of data
streams in real time. In: VLDB, pp. 358–369 (2002)

7. Cole, R., Shasha, D., Zhao, X.: Fast window correlations over uncooperative time
series. In: ACM SIGKDD, pp. 743–749 (2005)

8. Jankov, D., Sikdar, S., Mukherjee, R., Teymourian, K., Jermaine, C.: Real-time
high performance anomaly detection over data streams: grand challenge. In: ACM
DEBS, pp. 292–297 (2017)

9. Zoumpatianos, K., Idreos, S., Palpanas, T.: Indexing for interactive exploration of
big data series. In: ACM SIGMOD, pp. 1555–1566 (2014)

10. Idreos, S., Papaemmanouil, O., Chaudhuri, S.: Overview of data exploration tech-
niques. In: ACM SIGMOD, pp. 277–281 (2015)

11. Feng, K., Cong, G., Bhowmick, S.S., Peng, W.C., Miao, C.: Towards best region
search for data exploration. In: ACM SIGMOD, pp. 1055–1070 (2016)

12. Petrov, D., Alseghayer, R., Sharaf, M., Chrysanthis, P.K., Labrinidis, A.: Interac-
tive exploration of correlated time series. In: ACM ExploreDB, pp. 2:1–2:6 (2017)

13. Alseghayer, R., Petrov, D., Chrysanthis, P.K., Sharaf, M., Labrinidis, A.: Detection
of highly correlated live data streams. In: BIRTE, pp. 3:1–3:8 (2017)

14. Sakurai, Y., Papadimitriou, S., Faloutsos, C.: BRAID: stream mining through
group lag correlations. In: ACM SIGMOD, pp. 599–610 (2005)

15. Yahoo Inc.: Yahoo finance historical data (2016)
16. Kalinin, A., Cetintemel, U., Zdonik, S.: Interactive data exploration using semantic

windows. In: ACM SIGMOD, pp. 505–516 (2014)
17. Mueen, A., Nath, S., Liu, J.: Fast approximate correlation for massive time-series

data. In: ACM SIGMOD, pp. 171–182 (2010)
18. Mirylenka, K., Dallachiesa, M., Palpanas, T.: Data series similarity using

correlation-aware measures. In: ACM SSDBM, pp. 11:1–11:12 (2017)

	DCS: A Policy Framework for the Detection of Correlated Data Streams
	1 Introduction
	2 DCS Framework
	2.1 System Model
	2.2 Optimization Objective
	2.3 Base Algorithms

	3 Detection Policies
	4 Experiments and Analysis
	4.1 Experimental Framework
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

