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ABSTRACT
More and more organizations (commercial, health, government and
security) currently base their decisions on real-time analysis of fast
arriving, large volumes of data streams. For such analysis to lead
to actionable information in real-time and at the right time, the
most recent data needs to be processed within a speci�ed delay
target. E�ective solutions for analysis of such data streams rely on
two techniques, (1) incremental sliding-window computation of
aggregates, to avoid unnecessary recomputations and (2) intelligent
scheduling of computational steps and operations. In this paper,
we propose a solution that combines both of these techniques to
�nd highly correlated data streams in real-time, using the Pearson
Correlation Coe�cient as a correlation metric for two windows
of data streams. Speci�cally, we propose to partition a set of data
streams into micro-batches that capture the delay target, use sliding
windows within a range as the subsequences of values exhibiting
a certain level of correlation, utilize the idea of su�cient statis-
tics to incrementally compute the Pearson Correlation Coe�cient
of pairs of sliding windows, and adopt a deadline-aware priority
scheduling to detect the highly correlated pairs of data streams.
Our experimental results show that our scheme and in particular
our Price-DCS with warm start scheduling algorithm outperform
existing ones and enable high degree of interactivity in correlating
live data streams micro-batches.
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1 INTRODUCTION
Motivation More and more organizations (commercial, health,
government and security) currently base their decisions on real-
time analysis of business and operational data in order to stay
competitive. Towards this, they deploy a variety of monitoring
applications to analyze fast arriving, large volumes of data streams.
Data analysts explore such large volumes of data streams, typically
representing time series of raw measures, looking for valuable
insights and interesting events.

A common method to get a be�er understanding of the observed
behavior conveyed in a set of data streams is to �nd correlations in
the data streams [6]. �e correlation can be also used as a source
to �nding similarity measures faster [9], running threshold queries
[13], or reducing the size of the data, but preserving some of its
characteristics [7]. �e following example illustrates the practicality
of �nding correlated windows of data streams and using them as a
source of insights:

Example 1: Consider a data center, operating 10,000 computers,
which hosts an order of magnitude more virtual servers. A monitoring
system keeps track of 20 di�erent counters per computer - for CPU core
temperature, power supply voltage, memory and network utilization,
etc. Each computer reports its counters to the monitoring system every
60 seconds. Each batch of reported data contains 12 consecutive mea-
surements (taken 5 seconds apart). �e Operations team can timely
detect problematic servers and identify higher order dependencies by
�nding deviations from the average load per computer and negatively
correlated pairs of windows of data streams as the data arrives.

Challenges Finding correlations in data streams is a challenging
task. A way to address this challenge is to index the data series [2, 3,
15]. O�en the data is extremely large—it does not �t into memory or
data from earlier periods is of no interest anymore. Predominantly
the users are looking for pairs of highly (negatively) correlated
data streams over a short period of time. �e high number of data
streams implies an even bigger number of pairs—precisely n∗(n−1)

2
pairs for n data streams. �e time to explore completely all pairs
on one computer may be prohibitively long.

In our example the total number of counters (i.e., data streams),
which the IT specialists should analyze is 10, 000×20 = 200, 000. As
every computer reports its counters once every 60 seconds, a time
frame of 5 minutes will contain 60 measurements per counter. �is
means that there will be a total of 60 × 200, 000 = 12, 000, 000 num-
bers generated every �ve minutes of uptime of the data center. �e
number of di�erent pairs is equal to the number of combinations
of 2 counters

C200000
2 =

200000!
2!(200000 − 2)! = 19, 999, 900, 000 (1)

—almost 20 billion pairs. Traversing the data and calculating the
correlation is computationally expensive and induces signi�cant
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delay in the production of results. �is further complicates data
analysis during which a user looks for incremental results and
demands fast answers. �e challenge is exacerbated when the
demand is for answers in real-time and for a large set of live data
streams.
Objective �is real example clearly illustrates the need to develop
algorithms that (1) quickly identi�es windows of highly correlated
data streams and (2) provides results in real-time. In our previous
work on data exploration, we addressed the former and proposed
two novel algorithms, iBRAID and PriCe [10]. In this paper, we
address the la�er by proposing a real-time framework, which iden-
ti�es correlated data streams and provides incremental results in
real-time. Our solution is based on our prior work that uses the
Pearson Correlation Coe�cient as a metric of correlation of two
windows of data streams and on the hypothesis that production of
results by a speci�c deadline can be achieved by integrating caching
and real-time scheduling principles.
Contributions In this paper we make the following contributions:

• We propose a framework for detecting correlated live data
streams in which real-time data analytical processing is
performed in micro-batches whose inter-arrival rate de-
�nes the processing deadline. (Sec. 2)

• We develop Detection of Correlated Streams (DCS) which is
a mode of operation that utilizes the information of data
stream intervals to reduce the processing time in examining
individual pairs of data streams for correlations. Speci�-
cally, DCS combines the concept of early termination and
pruning to identify the data streams in interest. Further-
more, DCS distinguishes its execution into cold start and
warm start depending on whether or not the immediately
previous micro-batch execution identi�ed correlated pairs
of streams. (Sec. 3)

• We present an experimental evaluation of DCS applied to
iBRAID and PriCe. Our results using a real dataset show
that DCS enhanced the performance of detecting corre-
lated pairs by up to 1.8 times. Furthermore, they show
the advantage of Price-DCS with warm start compared to
Price-DCS with cold start, and assesses two variations of
warm start, which exploit di�erently prior knowledge of
number of correlated windows in pairs. (Sec. 4)

2 SYSTEM MODEL
Without loss of generality, we consider a (monitoring) system that
receives data from n data streams. Each data point in a data stream
is a tuple t consisting of a timestamp ts and a numeric value val
(t = (ts,val )). �e timestamp captures the moment in time, when
the tuple was produced.

�e data is produced at high velocity. �e di�erent streams
produce the consecutive tuples at the same rate, and they are all
synchronized. However, there are techniques to determine missing
values, also to synchronize data, which arrives at di�erent rates,
but they are beyond the scope of this paper.

�e real-time analytical processing is performed inmicro-batches.
De�nition 2.1. A micro-batch is a group of synchronized tuple

subsequences over a set of data streams de�ned by a timestamp
interval I .

In our system, eachmicro-batch, whether of the same or di�erent
data streams, is of the same size, i.e., contains the same number
of tuples with consecutive timestamps within the interval. �e
inter-arrival time of two consecutive micro-batches specify the
maximum computational time for processing a micro-batch.

De�nition 2.2. �e inter-arrival time is the delay target or dead-
line d by which the last result can be produced while analyzing a
micro-batch.

In real-time processing, ideally, the deadline d equals to the
interval (d = I ) so that there is no delay gap in processing between
two consecutive micro-batches. However, it is expected to be a
bit longer due to various overheads in the system, including any
pre-processing of micro-batches.

In this paper, we focus on analytical processing that �nds cor-
related data streams in real-time, using the Pearson Correlation
Coe�cient (PCC) as a correlation metric for two sliding windows
of data streams.

De�nition 2.3. Given two numeric data streams x and y of equal
lengthm, the PCC is calculated with the following formula:

corr (x ,y) =
m∑
i=1

(xi − µx ) (yi − µy )

σxσy
(2)

where µx is the average (or mean) of the values of x , µy is the mean
of the values of y, σx and σy are the standard deviations of the
values of x and y, respectively.

De�nition 2.4. Two sliding windows of the same rangew with
a slide of 1 are correlated when the PCC is more than a given
threshold τ (PCC ≥ τ ).

De�nition 2.5. A pair of data streams in a micro-batch is corre-
lated when it contains at least A correlated sliding windows with
threshold τ .

�e windows, which meet the criterion, may be consecutive or
strati�ed over the interval de�ning a micro-batch.

3 DCS FRAMEWORK
In this section, we discuss our contribution DCS that enables the
fast detection of correlated live streams. DCS extends our work on
data exploration, where we focused on generating early results, to
meet real-time constraints. First, we formally de�ned our problem.
�en, a�er reviewing the basic algorithms iBRAID and PriCe from
our prior work, we discuss how these are enhanced by DCS. Finally,
we introduce the concept of cold start and warm start of analysis to
exploit the results of the proceeding analyses.

3.1 Problem Statement
We begin by formalizing the algorithmic problem that lays in the
epicenter of DCS.

PROBLEM (Real-time Correlation Detection (RCD)):Given a micro-
batch B of a set of data streams DS with an arrival interval I , per-
fectly synchronized and with no missing tuples, and a deadline d ,
detect the number of correlated pairs of data streams, each of which
has A correlated sliding windows with a PCC threshold of τ , by the
deadline d .
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�e optimum will be the number of identi�ed correlated pairs in
a micro-batch to be equal to the actual, total number of correlated
pairs. Hence, our optimization goal in DCS is to maximize the
number of identi�ed number of pairs within a deadline. Formally,
the ratio of number of determined correlated pairs to the total
number of correlated pairs is close to 1 and the metric:

DCS-Precision =
# identi f ied correlated pairs

Total # correlated pairs
(3)

3.2 Base Algorithms
3.2.1 iBRAID. It is a round-robin scanning algorithm that uses

incremental computation of PCC. It analyzes the pairs of data
streams in a micro-batch sequentially, starting from the �rst tuple
for all data streams. It calculates the su�cient statistics—sum of the
elements in each window, the sum of the squares of the elements of
each window, and the inner crossproduct of the elements of the two
windows for which the correlation is calculated—that are needed to
calculate the PCC e�ciently [11]. Next, it calculates the PCC for all
pairs of windows, starting from the �rst tuple. Once this is done, the
windows are slid further by one tuple, the su�cient statistics are
updated incrementally - the �rst tuple is expired/subtracted from
them, and the new tuple is added. �e PCC is calculated again for
all pairs. �en, it keeps analyzing all data streams by a single tuple,
augment the su�cient statistics incrementally, and recalculate the
PCC. �is is done until the whole micro-batch is analyzed.

iBRAID has four key advantages: (1) it is accurate, (2) easy to
implement, (3) does not cause “starvation” among the pairs, and (4)
it reduces the computations by half due to the usage of the su�cient
statistics. iBRAID is experimentally shown to perform well for data
streams whose data is uniformly distributed and for low correlation
thresholds (τ < 0.5).

3.2.2 PriCe. It is a more informed scanning algorithm; it uses
a priority function to analyze the pairs of windows while reusing
partial PCC computations as iBRAID. It analyzes themost promising
pair �rst, which is the one with the highest priority function value:

Pr = PCC ∗ (M/totalExp)/C (4)
where PCC is the most recent calculated correlation for a pair of

sliding windows that belong to the same pair of data streams,M is
the number of correlated sliding windows found the corresponding
pair of data streams so far, totalExp is the total number of analyzed
pair of sliding windows, and C is the cost of analyzing a pair of
sliding windows in number of computations. �e default values
are PCC = 1,M = 0, totalExp = 1, and C = 1.

�e cost in the priority function is the number of operations
needed to calculate the su�cient statistics for a pair of sliding
windows. For example, if a pair of data streams shares one data
stream with another pair, then, the more advanced one (i.e., the one
that has a higher timestamp in the interval) has already calculated
the sums and the sum of the squares for the tuples of that data
stream. �is leaves the lagging behind pair with lower cost to slide
its windows, since the more advanced one has already computed
some of the su�cient statistics for that shared data stream.

PriCe gives the highest priority to the pair of data streams that
has a history of high number of correlated slidingwindows analyzed
and high recent calculated PCC. �is captures the idea of space

locality and temporal locality: where space locality is captured by
the recently calculated PCC, and temporal locality is captured by
the ratio of the number of correlated sliding windows to the total
number of analyzed pairs of sliding windows.

3.3 DCS
Our contribution DCS enhances iBRAID and PriCe by reducing
the amount of processing needed to detect correlated pairs of data
streams and by avoiding unnecessary computations. It is based
on the concepts of early termination and pruning. �e �rst en-
hancement is while analyzing a pair of data streams, we can stop
analyzing that pair, as soon as we �nd A, the speci�ed number
of correlated sliding windows. In this way, we save processing
time, which enables us to analyze other pairs of data streams before
reaching the deadline d (i.e., the arrival of the next micro-batch).

�e second enhancement on iBRAID and PriCe is in the form
of pruning of pairs of data streams and works as follow. Given a
micro-batch, we know ahead of time the exact number of sliding
windows within the micro-batch interval based on the number of
tuples in that interval and the window range (i.e., this equals I -w +
1). We also know the maximum possible number of pairs of sliding
windows that can be correlated in a pair of data streams. To give
an extreme example, if a pair of data streams is perfectly correlated
(i.e., identical data streams), then the number of correlated pairs of
windows would be exactly: (I -w + 1). �us, we keep analyzing the
pair until we reach a timestamp where the number of remaining
sliding windows to be analyzed is less than what that pair needs to
correlate to meet theA criterion. To formalize, we simply terminate
the analysis process of a pair if the following condition holds:

(A − correlatedWindows) > (I − slidingWindowPosition)

where A is the criterion of the number of correlated windows,
correlatedWindows are the total number of windows that are corre-
lated in a pair of streams according to PCC τ . In other words, I is
the interval of the data streams, and slidingWindowPosition is the
pair’s analysis location in the interval.

3.4 Cold/Warm Start
When the very �rst micro-batch arrives at the system, the system
has no knowledge about any correlated pairs of streams. How-
ever, this is not the case a�er the analysis of any micro-batch that
produces a set of correlated pairs of data streams. �is raises the
question of how to exploit the results of past micro-batch analy-
ses, for example, in picking the �rst pair in a new micro-batch to
analyze. As opposed to iBRAID, this question has a major impact
on PriCe, since its answer can be used in the initialization of the
parameters of its priority function.

We call the case of a micro-batch analysis that starts with no
knowledge of correlated pairs of streams, as cold start and as warm
start, otherwise. In cold start, PriCe’s priority function is initialized
to its default values (as discussed above).

In warm start, there are multiple ways to approach the priority
function initialization. In this paper, the priority function is initial-
ized based on the results of the latest micro-batch analysis. Warm
start has two variations, warm (High) and warm (Low). In warm
(High), we utilize the same parameters of the correlated pairs used
by the immediately previous micro-batch. �e rational behind this
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variation is to keep analyzing closely those pairs that already exhib-
ited the highest correlation in the previous micro-batch, potentially
indicating critical problematic behavior.

In warm (Low), we focus on the pairs that were not processed at
all due to the lack of any correlated windows (i.e., not chosen for
analysis due to their low correlation) at the beginning of PriCe’s exe-
cution. Speci�cally, we propose to jump start such pairs by altering
their previous number of correlated windows (i.e., the parameter
that re�ects this information) to have the valueA. �is will increase
their priority, preventing their starvation and giving them another
chance to be analyzed in the new micro-batch. �e rational behind
this variation is to allow such pairs another chance, potentially
identifying problematic behavior, which remained undetected in
the previous micro-batch.

4 EXPERIMENTS AND ANALYSIS
In this section we present initial results from the evaluation of the
impact of combining DCS with iBRAID and PriCe as well as of the
cold and warm starts.

4.1 Experimental Framework
Algorithms In our evaluation, we used three baselines: a Random
scheduler that picks pairs of data streams to explore randomly and
with no preference, and our base algorithms iBRAID and PriCe.
�ese algorithms were enhanced with the DCS mode: Random-DCS,
iBRAID-DCS, and PriCe-DCS.

Testbed We implemented all the discussed algorithms and their
variations in C++ 11. We ran the experiments on a computer with
2 Intel CPUs, running at 2.66GHz, and 96GB of RAM memory. �e
operating system used was CentOS 6.5 and the compiler was GCC
version 4.8.2.

Metrics We evaluated the performance of the algorithms in terms
of execution cost and precision.

Execution Cost: We measured the latency in number of operations
performed to produce a result (i.e., number of correlated pairs of
data streams). We used the number of operations as it provides the
asymptotic e�ciency of the algorithms compared to one another.
�is does not depend on factors such as the hardware characteristics
and the operating system of the computer, which the experiments
are run on, nor the e�ciency of the compiler / virtual machine,
which compiles and/or executes the code.

Precision: �is is our optimization criterion (Eq. 3). We exam-
ined how our algorithms meet real-time deadlines and how many
correlated pairs could they detect under such requirement.

Dataset Yahoo Finance Historical Data [4]: �e dataset we have
used in our experiments consists of 318 data streams. �ose re�ect
the trading of 53 companies on the NYSE for the last 28 years.
�is gives us a total of 50403 di�erent pairs to analyze. �e data
granularity is a day, which includes the price of the stock of the
company at opening, the price at the end of the day (closing), the
highest price for the day, the lowest price for the day, the amount of
shares traded that day, and the adjusted close (calculated according
to the standards of the CRSP, Center for Research in Security Prices).
�e length of each data stream is about 7100 tuples. �ose tuples
are divided into micro-batches.

Table 1: Experimental Parameters

Parameter Value(s) Parameter Value(s)
PCC τ [0.75, 0.90] w 8
A [112, 225, 450] # data streams 72
I 900 (180 seconds) # micro-batches 4

Experiments We ran three experiments to measure the execution
cost, the precision of cold start and of warm start for two PCC
threshold τ ’s, 75% and 90%, and for three di�erent values of A, 112,
225 and 450. �e values of A correspond to the 1/8, 1/4 and 1/50
of the micro-batch interval. �e micro-batch interval is set to 900
tuples to simulate an inter-arrival time of 180 seconds, where each
tuple is produced each 200 milliseconds. Finally, we experimented
with three deadlines corresponding to 25%, 50% and 75% of the total
operations needed to determined all the correlated pairs in a micro-
batch, i.e., achieve total precision. �e experimental parameters are
summarized in Table 1.

4.2 Experimental Results
In this section, we present the results of three experiments that
we conducted to evaluate the performance and the ability of our
algorithms to detect the correlated pairs in data streams in real-time.

Experiment 1 (Figs. 1–3) In our �rst experiment, we measured
the execution cost or latency in number of operations of each algo-
rithm to detect the speci�ed numberA of correlated pairs of sliding
windows in four consecutive mini-batch.

As expected, Random, iBRAID, and PriCe have the same number
of operations due to exhaustive processing of the pairs. �ese do
not useA for either early termination nor pruning. �us, with �xed
number of data streams, intervals, and window range, the number
of operations induced by the three algorithms is identical. �ey
will always consume the same amount of operations regardless of
the other parameters (i.e., PCC τ and A). �e impact of DCS mode
on all three algorithms is clearly visible in all �gures.

In Figure 1, we notice that the higher the PCC τ , the more op-
erations are executed by the algorithms. �is is due to the fewer
number of windows that are highly correlated according to the PCC
τ . �is results in more latency in capturing them by the algorithms.
On the other hand, in case of lower PCC τ , we see thatDCS early ter-
minates the analysis process as it reaches theA criterion of number
of correlated sliding windows. We also observe that iBRAID-DCS
consistently underperformed the other DCS algorithms in latency.
�is is a consequence of the iBRAID scheduling scheme, where it
processes all the pairs in a round-robin fashion to avoid starvation.
�is leads to having a pair pruned at a late stage of the analysis.

In Figure 2, we notice that iBRAID-DCS showed higher latency
in the cases where PCC τ = 0.75. �is is counter intuitive. To clearly
state the reason, we observe that the lower theA criterion, the later
the pruning will occur in case of no high correlated windows were
processed. With that in mind, we say that the pairs of data streams
in Figure 2 in the case of PCC τ = 0.75 has produced high amount
of correlated windows, enough to delay the pruning towards the
end, but not enough to terminate the analysis early. �erefore, the
performance of iBRAID-DCS was lower with low PCC τ .
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Figure 1: �e cost in number of operations for 4 consecutive
micro-batches (the correlation criterion A = 112).
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Figure 2: �e cost in number of operations for 4 consecutive
micro-batches (the correlation criterion A = 225).

Our last claim is also supported by our experimental results in
Figure 3, which shows clearly that with higher A we were able to
reach a be�er performance than lower A. �e reason is that with
A = 450, if a pair encounters no correlated windows yet, it can be
pruned by midway of the analysis process.

Finally, DCS mode of operation was able to enhance the perfor-
mance of the algorithms up to 1.8 times (Figure 3).

Experiment 2 (Figs. 4–13) In this experiment, we studied the
detection rate of each algorithmwith respect to a given deadline. We
set the deadline to be 25%, 50%, and 75% of the processing duration
of each interval and measured the percentage of the number of
correlated pairs each algorithm was able to detect. �e results are
shown for the deadlines 25% (Fig. 4–9), 50% (Fig. 10–Fig.11), and
75% (Fig. 12–Fig.13).

In general, we notice that DCS mode of operation in all cases
for all algorithms outperforms the original algorithms. �is is
a�ributed to the pruning and early termination features of DCS,
which allows the algorithms to analyze other pairs and detect more
correlated data streams.

In Figures 4 and 5, we noticed that iBRAID and iBRAID-DCS
showed low percentage of detected correlated pairs of data streams.
�is is due to the nature of iBRAID scheduling, while we see clearly
that Random-DCS and PriCe-DCS have comparable performance.
We a�ribute this to the fact that with low A and low PCC τ , we are
expecting higher pairs to be correlated earlier. �us, Random-DCS
has shown be�er performance at two micro-batches (2nd and 3rd).
We also note that the average detection percentage for Random-DCS
with A=112 for all PCC τ at the deadline 25% is 56%.
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Figure 3: �e cost in number of operations for 4 consecutive
micro-batches (the correlation criterion A = 450).

In Figures 6 and 7, we see that PriCe scheduling exhibits the
e�ectiveness of its priority function in capturing more correlated
pairs at an early deadline, more speci�cally when PCC τ is high.
�at means, it elect the pairs to explore more intelligently than
the other two algorithms. Also, we notice that with high A and
early deadline, iBRAID-DCS fails to declare and detect any pair of
data streams as a correlated one. We also note that the average
detection percentage for Random-DCS with A=225 for all PCC τ at
the deadline 25% is 48%.

In Figures 8 and 9, we see the same observation as in Figures 6
and 7, however, we realize that PriCe-DCS has mostly detected all
the correlated pairs of data streams, and this is due to the scheduling
nature of PriCe and the aggressive pruning at high A. �e Random-
DCS fails to meet that, since it picks pairs in an unpredictable way,
and this delays the analysis duration for each pair, hence, delaying
its pruning.

In Figures 10 and 11, we notice that PriCe-DCS has outperformed
all the other algorithms, also, we see iBRAID-DCS detecting some
pairs with. �is for the obvious reason of having more processing
time to advance the sliding windows and capture more correlated
windows, which contributes to reaching the criterionA and declare
the pair as a correlated one. For A = 112 and A = 450, we noticed
the same observation as in Figures 10 and 11.

Finally towards the end of the micro-batch analysis process, we
see clearly in Figures 12 and 13 that all the algorithms are detecting
pairs with an overall relatively higher percentage than the earlier
deadlines, and this is expected with more time to analyze the pairs
of data streams. We also observe the e�ect of pruning clearly on
all algorithms under DCS mode. �is is a result of the A criterion
being very high, which leads to early pruning for non promising
pairs of data streams. �us, all the correlated pairs of data streams
were detected earlier than the 75% deadline. With A = 112 and A =
225, we noticed the same observations.
Experiment 3 (Figs. 14–15) Our previous two experiments show
that PriCe-DCS exhibits the best performance overall. In our last
experiment, we studied how cold, warm (Low), and warm (High)
starts (see Section 3.4) a�ect the detection of correlated pairs of
streams with respect to deadlines when using PriCe-DCS. As in the
experiments above, we experimented with the values of PCC τ , A
and deadline d , shown in Table 1. All experiments produced similar
results; due to space limitation we report here only the �rst one.

In Figures 14 and 15, we show the percentage of detected cor-
related pairs at the 50% deadline. �is experiment was conducted
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Figure 4: �e % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A = 112 and t = 0.75).
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Figure 5: �e % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A = 112 and t = 0.90).

0% 
10% 
20% 
30% 
40% 
50% 
60% 
70% 
80% 
90% 

100% 

1st 2nd 3rd 4th%
	o
f	C

or
re
la
te
d	
Pa
irs
	o
f	

St
re
am

s

Micro-batches

Random iBRAID PriCe Random	DCS iBRAID	DCS PriCe	DCS

Figure 6: �e % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A = 225 and t = 0.75).

with A=112. We notice that PriCe-DCS in warm (high) start outper-
formed the rest of the starting techniques. �is clearly indicates
that using the exact history (i.e., from previous micro-batches in-
tervals) of number of correlated windows for each pair of data
streams is the most e�ective way to initialize the priority function
when starting the analysis of each micro-batch. Trying to analyze
the pairs that were sti�ed in previous micro-batches will result in
degrading the detection of the correlated pairs in early stages.
Take Away: Our experimental evaluation showed that PriCe-DCS
with warm start is the best policy for determining highly correlated
live data streams.
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Figure 7: �e % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A = 225 and t = 0.90).
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Figure 8: �e % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A = 450 and t = 0.75).
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Figure 9: �e % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A = 450 and t = 0.90).

5 RELATEDWORK
�eprocessing of data and fast discovery of correlated subsequences
of time series is tackled in two scenarios with respect to the produc-
tion of data—dynamic, when the data is processed as it is produced
[12] and static, when the data is collected upfront and it forms
the search space for �nding the correlated subsequences [5, 8, 11].
�e la�er is beyond the scope of our work. In this section we
discuss state-of-the-art on computationally cheap identi�cation of
correlated data streams.
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Figure 10: �e% of correlated pairs of streams detected by all
algorithms at 50% of the interval I (the correlation criterion
A = 225 and t = 0.75).
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Figure 11: �e% of correlated pairs of streams detected by all
algorithms at 50% of the interval I (the correlation criterion
A = 225 and t = 0.90).
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Figure 12: �e% of correlated pairs of streams detected by all
algorithms at 75% of the interval I (the correlation criterion
A = 450 and t = 0.75).

In BRAID [11] the authors propose a technique to �nd correlated
pairs of subsequences. �eir work extends to the point that the two
subsequences might not start at the same point in time—there might
be a lag between them, i.e., the subsequences are of the same length,
but one of them starts l timestamps a�er the other one. �e BRAID
variants navigate the data space sequentially and preemptively.
�ey calculate the PCC of each pair of subsequences with lag 0
as they navigate the space and use these values to average out (or
“smoothen”) the PCC for larger lags. �e authors use powers of 2
in order to build a multilevel “smoothened” PCC as a geometric
progression of the lag. Our work can be extended to support lagged
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Figure 13: �e% of correlated pairs of streams detected by all
algorithms at 75% of the interval I (the correlation criterion
A = 450 and t = 0.90).
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Figure 14: �e percentage of correlated pairs of streams de-
tected by PriCe-DCS using thewarm (high), warm (Low), and
cold start at the deadline 50% start with A = 112 and t = 0.75
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Figure 15: �e percentage of correlated pairs of streams de-
tected by PriCe-DCS using thewarm (high), warm (Low), and
cold start at the deadline 50% start with A = 112 and t = 0.90

pairs of subsequences at the cost of keeping inmemory the su�cient
statistics from the timestamps at which each of the subsequences
starts.

Our work is in some respect related to interactive data explo-
ration. In fact our iBRAID and PriCe algorithms were designed to
support interactive data exploration. �e authors of [5] propose
an extension to SQL, which allows the de�nition of new types
of queries. �ose cannot be expressed easily with the traditional
operators such as GROUPBY and COUNT – queries, which run
arithmetic operators over ranges of data entries. �ey also propose
a sampling-guided, data-driven search space navigation technique



BIRTE ’17, August 28, 2017, Munich, Germany R. Alseghayer et al.

for interactive data exploration. �ey build a grid over the search
space and calculate a number of a�ributes for each cell of the space.
In their example, they use the SDSS dataset, and the a�ributes they
calculate for each cell are, for example, average brightness of the
cell and the number of stars in the cell. �ese a�ributes are precom-
puted o�ine. �ey use a best-�rst heuristic and a priority queue
to navigate the order of exploration of the cells. �e algorithms
we propose also prioritize the exploration of pairs of subsequences,
which are more likely to produce results. Unlike [5], we use the
smallest step possible for advancement of the subsequences - one
timestamp. �e granularity of the grid might impact signi�cantly
the search space navigation. We also do not precompute any data.

RainMon [12] proposes a 3-stage technique to mine bursty data
streams. �e received ticks are �rst decomposed, in order to obtain
a smoothed representation of the data. In the next stage, called
summarization, the received data goes through incremental princi-
pal component analysis in order to outline the long-term trends in
the streams and to identi�es anomalies, if there are any. In the last
stage, named Prediction, the system forecasts trends, relying on
the output from the summarization stage. In our work, we do not
make predictions and our approach uses the data as it is delivered
to identify correlated data streams.

A framework for identi�cation of highly correlated pairs of data
streams is also presented in StatStream [14]. One of the assump-
tions of the work is that only an approximation of the PCC is
su�cient to identify the pairs of highly correlated DS. Based on
this assumptions, the authors proposed a two fold approach to
e�ciently identify the pairs of interest. �ey employ a computa-
tionally cheap discrete Fourier transformation (DFT) technique to
calculate an approximation of the PCC. Furthermore, they proposed
an n-dimensional grid structure, which stores the DFT statistics
and PCC approximations of each stream, whereby neighboring
cells re�ect highly correlated streams. �is is the springboard for
identi�cation of the highly correlated pairs of DS. However, if the
DS mimic white noise, DFT is known for its poor performance on
DS, which mimic white noise, whereby the required number of DFT
coe�cients to precisely represent the DS is high and requires a lot
of computations. Our work di�ers in the calculation of PCC. We
also calculate the PCC incrementally over sliding windows, but our
framework calculates it precisely for each pair, over each sliding
window. Our studies showed that once a pair of DS is selected as
being highly correlated due to a high value of the approximated
PCC, a precise calculation of the PCC is required to prove the hy-
pothesis. �is operation requires two passes on the data. Similarly
to StatStream, our framework supports sliding windows on data
streams. We evaluate the possibilities to extend our framework to
support landmark windows and damped windows in the future.

StatStream was further improved to handle “uncooperative” data
streams in [1], but it still calculates an approximation of PCC only.
�e proposed technique employs structured random vectors. �e
experimental results show that the proposed technique outperforms
linear scan and the discrete Fourier transformations, proposed in
StatStream [14]. Our framework, like this work, updates the re-
quired statistics in �xed amount of time. Unlike it, DCS calculates
PCC of the pairs of DS precisely for each sliding window and avoids
the need to be calculated later and at a higher cost, once a pair is
selected as being “promising”.

6 CONCLUSIONS
In this paper we presented a number of priority-based search algo-
rithms for real-time detection of correlated data streams. Our work
aims to assist analysts in �nding pairs of data streams, in which
windows of tuples exhibit certain levels of correlation.

Our solution, called DCS for Detection of Correlated Streams, is
a mode of operation that uses the Pearson Correlation Coe�cient
as a metric of correlation of two sliding windows of data streams
and employs pruning to avoid examining pairs of data streams that
cannot be part of the result. DCS utilizes early termination and
distinguishes its execution into warm and cold start depending on
whether or not the immediately previous micro-batch execution
identi�ed correlated pairs of streams. In warm start, DCS uses the
results of the preceding micro-batch analysis as part of the initializa-
tion of the new micro-batch’s analysis. Our real data experimental
evaluation shows that our DCS mode of operation enhanced both
iBRAID and PriCe algorithms. In particular, when DCS mode is used
with PriCe, PriCe-DCS outperforms the other algorithms up to 1.8
times. Also, we studied the cold and warm start when analyzing a
micro-batch based on the results of the analysis of the prior micro-
batches. We found that PriCe-DCS with warm start outperformed
the rest of the algorithms.
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