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ABSTRACT

More and more organizations (commercial, health, government and
security) currently base their decisions on real-time analysis of fast
arriving, large volumes of data streams. For such analysis to lead
to actionable information in real-time and at the right time, the
most recent data needs to be processed within a specified delay
target. Effective solutions for analysis of such data streams rely on
two techniques, (1) incremental sliding-window computation of
aggregates, to avoid unnecessary recomputations and (2) intelligent
scheduling of computational steps and operations. In this paper,
we propose a solution that combines both of these techniques to
find highly correlated data streams in real-time, using the Pearson
Correlation Coefficient as a correlation metric for two windows
of data streams. Specifically, we propose to partition a set of data
streams into micro-batches that capture the delay target, use sliding
windows within a range as the subsequences of values exhibiting
a certain level of correlation, utilize the idea of sufficient statis-
tics to incrementally compute the Pearson Correlation Coefficient
of pairs of sliding windows, and adopt a deadline-aware priority
scheduling to detect the highly correlated pairs of data streams.
Our experimental results show that our scheme and in particular
our Price-DCS with warm start scheduling algorithm outperform
existing ones and enable high degree of interactivity in correlating
live data streams micro-batches.
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1 INTRODUCTION

Motivation More and more organizations (commercial, health,
government and security) currently base their decisions on real-
time analysis of business and operational data in order to stay
competitive. Towards this, they deploy a variety of monitoring
applications to analyze fast arriving, large volumes of data streams.
Data analysts explore such large volumes of data streams, typically
representing time series of raw measures, looking for valuable
insights and interesting events.

A common method to get a better understanding of the observed
behavior conveyed in a set of data streams is to find correlations in
the data streams [6]. The correlation can be also used as a source
to finding similarity measures faster [9], running threshold queries
[13], or reducing the size of the data, but preserving some of its
characteristics [7]. The following example illustrates the practicality
of finding correlated windows of data streams and using them as a
source of insights:

Example 1: Consider a data center, operating 10,000 computers,
which hosts an order of magnitude more virtual servers. A monitoring
system keeps track of 20 different counters per computer - for CPU core
temperature, power supply voltage, memory and network utilization,
etc. Each computer reports its counters to the monitoring system every
60 seconds. Each batch of reported data contains 12 consecutive mea-
surements (taken 5 seconds apart). The Operations team can timely
detect problematic servers and identify higher order dependencies by
finding deviations from the average load per computer and negatively
correlated pairs of windows of data streams as the data arrives.

Challenges Finding correlations in data streams is a challenging
task. A way to address this challenge is to index the data series [2, 3,
15]. Often the data is extremely large—it does not fit into memory or
data from earlier periods is of no interest anymore. Predominantly
the users are looking for pairs of highly (negatively) correlated
data streams over a short period of time. The high number of data
streams implies an even bigger number of pairs—precisely w
pairs for n data streams. The time to explore completely all pairs
on one computer may be prohibitively long.

In our example the total number of counters (i.e., data streams),
which the IT specialists should analyze is 10, 000 20 = 200, 000. As
every computer reports its counters once every 60 seconds, a time
frame of 5 minutes will contain 60 measurements per counter. This
means that there will be a total of 60 x 200,000 = 12, 000, 000 num-
bers generated every five minutes of uptime of the data center. The
number of different pairs is equal to the number of combinations
of 2 counters

200000!
C200000 - " - 19,999,900, 000 (1)
21(200000 — 2)!

—almost 20 billion pairs. Traversing the data and calculating the
correlation is computationally expensive and induces significant
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delay in the production of results. This further complicates data
analysis during which a user looks for incremental results and
demands fast answers. The challenge is exacerbated when the
demand is for answers in real-time and for a large set of live data
streams.

Objective This real example clearly illustrates the need to develop
algorithms that (1) quickly identifies windows of highly correlated
data streams and (2) provides results in real-time. In our previous
work on data exploration, we addressed the former and proposed
two novel algorithms, iBRAID and PriCe [10]. In this paper, we
address the latter by proposing a real-time framework, which iden-
tifies correlated data streams and provides incremental results in
real-time. Our solution is based on our prior work that uses the
Pearson Correlation Coefficient as a metric of correlation of two
windows of data streams and on the hypothesis that production of
results by a specific deadline can be achieved by integrating caching
and real-time scheduling principles.

Contributions In this paper we make the following contributions:

e We propose a framework for detecting correlated live data
streams in which real-time data analytical processing is
performed in micro-batches whose inter-arrival rate de-
fines the processing deadline. (Sec. 2)

e We develop Detection of Correlated Streams (DCS) which is
a mode of operation that utilizes the information of data
stream intervals to reduce the processing time in examining
individual pairs of data streams for correlations. Specifi-
cally, DCS combines the concept of early termination and
pruning to identify the data streams in interest. Further-
more, DCS distinguishes its execution into cold start and
warm start depending on whether or not the immediately
previous micro-batch execution identified correlated pairs
of streams. (Sec. 3)

e We present an experimental evaluation of DCS applied to
iBRAID and PriCe. Our results using a real dataset show
that DCS enhanced the performance of detecting corre-
lated pairs by up to 1.8 times. Furthermore, they show
the advantage of Price-DCS with warm start compared to
Price-DCS with cold start, and assesses two variations of
warm start, which exploit differently prior knowledge of
number of correlated windows in pairs. (Sec. 4)

2 SYSTEM MODEL

Without loss of generality, we consider a (monitoring) system that
receives data from n data streams. Each data point in a data stream
is a tuple t consisting of a timestamp ts and a numeric value val
(t = (ts, val)). The timestamp captures the moment in time, when
the tuple was produced.

The data is produced at high velocity. The different streams
produce the consecutive tuples at the same rate, and they are all
synchronized. However, there are techniques to determine missing
values, also to synchronize data, which arrives at different rates,
but they are beyond the scope of this paper.

The real-time analytical processing is performed in micro-batches.

Definition 2.1. A micro-batch is a group of synchronized tuple
subsequences over a set of data streams defined by a timestamp
interval I.
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In our system, each micro-batch, whether of the same or different
data streams, is of the same size, i.e., contains the same number
of tuples with consecutive timestamps within the interval. The
inter-arrival time of two consecutive micro-batches specify the
maximum computational time for processing a micro-batch.

Definition 2.2. The inter-arrival time is the delay target or dead-
line d by which the last result can be produced while analyzing a
micro-batch.

In real-time processing, ideally, the deadline d equals to the
interval (d = I) so that there is no delay gap in processing between
two consecutive micro-batches. However, it is expected to be a
bit longer due to various overheads in the system, including any
pre-processing of micro-batches.

In this paper, we focus on analytical processing that finds cor-
related data streams in real-time, using the Pearson Correlation
Coeflicient (PCC) as a correlation metric for two sliding windows
of data streams.

Definition 2.3. Given two numeric data streams x and y of equal
length m, the PCC is calculated with the following formula:

m

corr(x,y) = Z W @)

Ox O,
i=1 x=y

where piy is the average (or mean) of the values of x, 1y is the mean
of the values of y, ox and oy are the standard deviations of the
values of x and y, respectively.

Definition 2.4. Two sliding windows of the same range w with
a slide of 1 are correlated when the PCC is more than a given
threshold 7 (PCC > 7).

Definition 2.5. A pair of data streams in a micro-batch is corre-
lated when it contains at least A correlated sliding windows with
threshold 7.

The windows, which meet the criterion, may be consecutive or
stratified over the interval defining a micro-batch.

3 DCS FRAMEWORK

In this section, we discuss our contribution DCS that enables the
fast detection of correlated live streams. DCS extends our work on
data exploration, where we focused on generating early results, to
meet real-time constraints. First, we formally defined our problem.
Then, after reviewing the basic algorithms iBRAID and PriCe from
our prior work, we discuss how these are enhanced by DCS. Finally,
we introduce the concept of cold start and warm start of analysis to
exploit the results of the proceeding analyses.

3.1 Problem Statement

We begin by formalizing the algorithmic problem that lays in the
epicenter of DCS.

PROBLEM (Real-time Correlation Detection (RCD)): Given a micro-
batch B of a set of data streams DS with an arrival interval I, per-
fectly synchronized and with no missing tuples, and a deadline d,
detect the number of correlated pairs of data streams, each of which
has A correlated sliding windows with a PCC threshold of 7, by the
deadline d.
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The optimum will be the number of identified correlated pairs in
a micro-batch to be equal to the actual, total number of correlated
pairs. Hence, our optimization goal in DCS is to maximize the
number of identified number of pairs within a deadline. Formally,
the ratio of number of determined correlated pairs to the total
number of correlated pairs is close to 1 and the metric:

# identified correlated pairs

DCS-Precision =
recision Total # correlated pairs

®)

3.2 Base Algorithms

3.2.1 iBRAID. 1t is a round-robin scanning algorithm that uses
incremental computation of PCC. It analyzes the pairs of data
streams in a micro-batch sequentially, starting from the first tuple
for all data streams. It calculates the sufficient statistics—sum of the
elements in each window, the sum of the squares of the elements of
each window, and the inner crossproduct of the elements of the two
windows for which the correlation is calculated—that are needed to
calculate the PCC efficiently [11]. Next, it calculates the PCC for all
pairs of windows, starting from the first tuple. Once this is done, the
windows are slid further by one tuple, the sufficient statistics are
updated incrementally - the first tuple is expired/subtracted from
them, and the new tuple is added. The PCC is calculated again for
all pairs. Then, it keeps analyzing all data streams by a single tuple,
augment the sufficient statistics incrementally, and recalculate the
PCC. This is done until the whole micro-batch is analyzed.

iBRAID has four key advantages: (1) it is accurate, (2) easy to
implement, (3) does not cause “starvation” among the pairs, and (4)
it reduces the computations by half due to the usage of the sufficient
statistics. iBRAID is experimentally shown to perform well for data
streams whose data is uniformly distributed and for low correlation
thresholds (7 < 0.5).

3.2.2  PriCe. Tt is a more informed scanning algorithm,; it uses
a priority function to analyze the pairs of windows while reusing
partial PCC computations as iBRAID. It analyzes the most promising
pair first, which is the one with the highest priority function value:

Pr = PCC * (M/totalExp)/C 4)

where PCC is the most recent calculated correlation for a pair of
sliding windows that belong to the same pair of data streams, M is
the number of correlated sliding windows found the corresponding
pair of data streams so far, totalExp is the total number of analyzed
pair of sliding windows, and C is the cost of analyzing a pair of
sliding windows in number of computations. The default values
are PCC =1, M =0, totalExp=1,and C = 1.

The cost in the priority function is the number of operations
needed to calculate the sufficient statistics for a pair of sliding
windows. For example, if a pair of data streams shares one data
stream with another pair, then, the more advanced one (i.e., the one
that has a higher timestamp in the interval) has already calculated
the sums and the sum of the squares for the tuples of that data
stream. This leaves the lagging behind pair with lower cost to slide
its windows, since the more advanced one has already computed
some of the sufficient statistics for that shared data stream.

PriCe gives the highest priority to the pair of data streams that
has a history of high number of correlated sliding windows analyzed
and high recent calculated PCC. This captures the idea of space
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locality and temporal locality: where space locality is captured by
the recently calculated PCC, and temporal locality is captured by
the ratio of the number of correlated sliding windows to the total
number of analyzed pairs of sliding windows.

3.3 DCS

Our contribution DCS enhances iBRAID and PriCe by reducing
the amount of processing needed to detect correlated pairs of data
streams and by avoiding unnecessary computations. It is based
on the concepts of early termination and pruning. The first en-
hancement is while analyzing a pair of data streams, we can stop
analyzing that pair, as soon as we find A, the specified number
of correlated sliding windows. In this way, we save processing
time, which enables us to analyze other pairs of data streams before
reaching the deadline d (i.e., the arrival of the next micro-batch).

The second enhancement on iBRAID and PriCe is in the form
of pruning of pairs of data streams and works as follow. Given a
micro-batch, we know ahead of time the exact number of sliding
windows within the micro-batch interval based on the number of
tuples in that interval and the window range (i.e., this equals I - w +
1). We also know the maximum possible number of pairs of sliding
windows that can be correlated in a pair of data streams. To give
an extreme example, if a pair of data streams is perfectly correlated
(i.e., identical data streams), then the number of correlated pairs of
windows would be exactly: (I - w + 1). Thus, we keep analyzing the
pair until we reach a timestamp where the number of remaining
sliding windows to be analyzed is less than what that pair needs to
correlate to meet the A criterion. To formalize, we simply terminate
the analysis process of a pair if the following condition holds:

(A — correlatedWindows) > (I — slidingWindowPosition)

where A is the criterion of the number of correlated windows,
correlatedWindows are the total number of windows that are corre-
lated in a pair of streams according to PCC . In other words, I is
the interval of the data streams, and slidingWindowPosition is the
pair’s analysis location in the interval.

3.4 Cold/Warm Start

When the very first micro-batch arrives at the system, the system
has no knowledge about any correlated pairs of streams. How-
ever, this is not the case after the analysis of any micro-batch that
produces a set of correlated pairs of data streams. This raises the
question of how to exploit the results of past micro-batch analy-
ses, for example, in picking the first pair in a new micro-batch to
analyze. As opposed to iBRAID, this question has a major impact
on PriCe, since its answer can be used in the initialization of the
parameters of its priority function.

We call the case of a micro-batch analysis that starts with no
knowledge of correlated pairs of streams, as cold start and as warm
start, otherwise. In cold start, PriCe’s priority function is initialized
to its default values (as discussed above).

In warm start, there are multiple ways to approach the priority
function initialization. In this paper, the priority function is initial-
ized based on the results of the latest micro-batch analysis. Warm
start has two variations, warm (High) and warm (Low). In warm
(High), we utilize the same parameters of the correlated pairs used
by the immediately previous micro-batch. The rational behind this
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variation is to keep analyzing closely those pairs that already exhib-
ited the highest correlation in the previous micro-batch, potentially
indicating critical problematic behavior.

In warm (Low), we focus on the pairs that were not processed at
all due to the lack of any correlated windows (i.e., not chosen for
analysis due to their low correlation) at the beginning of PriCe’s exe-
cution. Specifically, we propose to jump start such pairs by altering
their previous number of correlated windows (i.e., the parameter
that reflects this information) to have the value A. This will increase
their priority, preventing their starvation and giving them another
chance to be analyzed in the new micro-batch. The rational behind
this variation is to allow such pairs another chance, potentially
identifying problematic behavior, which remained undetected in
the previous micro-batch.

4 EXPERIMENTS AND ANALYSIS

In this section we present initial results from the evaluation of the
impact of combining DCS with iBRAID and PriCe as well as of the
cold and warm starts.

4.1 Experimental Framework

Algorithms In our evaluation, we used three baselines: a Random
scheduler that picks pairs of data streams to explore randomly and
with no preference, and our base algorithms iBRAID and PriCe.
These algorithms were enhanced with the DCS mode: Random-DCS,
iBRAID-DCS, and PriCe-DCS.

Testbed We implemented all the discussed algorithms and their
variations in C++ 11. We ran the experiments on a computer with
2 Intel CPUs, running at 2.66GHz, and 96GB of RAM memory. The
operating system used was CentOS 6.5 and the compiler was GCC
version 4.8.2.

Metrics We evaluated the performance of the algorithms in terms
of execution cost and precision.

Execution Cost: We measured the latency in number of operations
performed to produce a result (i.e., number of correlated pairs of
data streams). We used the number of operations as it provides the
asymptotic efficiency of the algorithms compared to one another.
This does not depend on factors such as the hardware characteristics
and the operating system of the computer, which the experiments
are run on, nor the efficiency of the compiler / virtual machine,
which compiles and/or executes the code.

Precision: This is our optimization criterion (Eq. 3). We exam-
ined how our algorithms meet real-time deadlines and how many
correlated pairs could they detect under such requirement.

Dataset Yahoo Finance Historical Data [4]: The dataset we have
used in our experiments consists of 318 data streams. Those reflect
the trading of 53 companies on the NYSE for the last 28 years.
This gives us a total of 50403 different pairs to analyze. The data
granularity is a day, which includes the price of the stock of the
company at opening, the price at the end of the day (closing), the
highest price for the day, the lowest price for the day, the amount of
shares traded that day, and the adjusted close (calculated according
to the standards of the CRSP, Center for Research in Security Prices).
The length of each data stream is about 7100 tuples. Those tuples
are divided into micro-batches.
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Table 1: Experimental Parameters

Parameter Value(s) Parameter Value(s)
PCC [0.75, 0.90] W 8
A [112, 225, 450] # data streams 72
I 900 (180 seconds) # micro-batches 4

Experiments We ran three experiments to measure the execution
cost, the precision of cold start and of warm start for two PCC
threshold 7’s, 75% and 90%, and for three different values of A, 112,
225 and 450. The values of A correspond to the 1/8, 1/4 and 1/50
of the micro-batch interval. The micro-batch interval is set to 900
tuples to simulate an inter-arrival time of 180 seconds, where each
tuple is produced each 200 milliseconds. Finally, we experimented
with three deadlines corresponding to 25%, 50% and 75% of the total
operations needed to determined all the correlated pairs in a micro-
batch, i.e., achieve total precision. The experimental parameters are
summarized in Table 1.

4.2 Experimental Results

In this section, we present the results of three experiments that
we conducted to evaluate the performance and the ability of our
algorithms to detect the correlated pairs in data streams in real-time.

Experiment 1 (Figs. 1-3) In our first experiment, we measured
the execution cost or latency in number of operations of each algo-
rithm to detect the specified number A of correlated pairs of sliding
windows in four consecutive mini-batch.

As expected, Random, iBRAID, and PriCe have the same number
of operations due to exhaustive processing of the pairs. These do
not use A for either early termination nor pruning. Thus, with fixed
number of data streams, intervals, and window range, the number
of operations induced by the three algorithms is identical. They
will always consume the same amount of operations regardless of
the other parameters (i.e., PCC 7 and A). The impact of DCS mode
on all three algorithms is clearly visible in all figures.

In Figure 1, we notice that the higher the PCC 7, the more op-
erations are executed by the algorithms. This is due to the fewer
number of windows that are highly correlated according to the PCC
7. This results in more latency in capturing them by the algorithms.
On the other hand, in case of lower PCC 7, we see that DCS early ter-
minates the analysis process as it reaches the A criterion of number
of correlated sliding windows. We also observe that iBRAID-DCS
consistently underperformed the other DCS algorithms in latency.
This is a consequence of the iBRAID scheduling scheme, where it
processes all the pairs in a round-robin fashion to avoid starvation.
This leads to having a pair pruned at a late stage of the analysis.

In Figure 2, we notice that iBRAID-DCS showed higher latency
in the cases where PCC 7 = 0.75. This is counter intuitive. To clearly
state the reason, we observe that the lower the A criterion, the later
the pruning will occur in case of no high correlated windows were
processed. With that in mind, we say that the pairs of data streams
in Figure 2 in the case of PCC 7 = 0.75 has produced high amount
of correlated windows, enough to delay the pruning towards the
end, but not enough to terminate the analysis early. Therefore, the
performance of iBRAID-DCS was lower with low PCC r.
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Figure 1: The cost in number of operations for 4 consecutive
micro-batches (the correlation criterion A = 112).
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Figure 2: The cost in number of operations for 4 consecutive
micro-batches (the correlation criterion A = 225).

Our last claim is also supported by our experimental results in
Figure 3, which shows clearly that with higher A we were able to
reach a better performance than lower A. The reason is that with
A = 450, if a pair encounters no correlated windows yet, it can be
pruned by midway of the analysis process.

Finally, DCS mode of operation was able to enhance the perfor-
mance of the algorithms up to 1.8 times (Figure 3).

Experiment 2 (Figs. 4-13) In this experiment, we studied the
detection rate of each algorithm with respect to a given deadline. We
set the deadline to be 25%, 50%, and 75% of the processing duration
of each interval and measured the percentage of the number of
correlated pairs each algorithm was able to detect. The results are
shown for the deadlines 25% (Fig. 4-9), 50% (Fig. 10-Fig.11), and
75% (Fig. 12-Fig.13).

In general, we notice that DCS mode of operation in all cases
for all algorithms outperforms the original algorithms. This is
attributed to the pruning and early termination features of DCS,
which allows the algorithms to analyze other pairs and detect more
correlated data streams.

In Figures 4 and 5, we noticed that iBRAID and iBRAID-DCS
showed low percentage of detected correlated pairs of data streams.
This is due to the nature of iBRAID scheduling, while we see clearly
that Random-DCS and PriCe-DCS have comparable performance.
We attribute this to the fact that with low A and low PCC 7, we are
expecting higher pairs to be correlated earlier. Thus, Random-DCS
has shown better performance at two micro-batches (2nd and 3rd).
We also note that the average detection percentage for Random-DCS
with A=112 for all PCC 7 at the deadline 25% is 56%.
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Figure 3: The cost in number of operations for 4 consecutive
micro-batches (the correlation criterion A = 450).

In Figures 6 and 7, we see that PriCe scheduling exhibits the
effectiveness of its priority function in capturing more correlated
pairs at an early deadline, more specifically when PCC 7 is high.
That means, it elect the pairs to explore more intelligently than
the other two algorithms. Also, we notice that with high A and
early deadline, iBRAID-DCS fails to declare and detect any pair of
data streams as a correlated one. We also note that the average
detection percentage for Random-DCS with A=225 for all PCC 7 at
the deadline 25% is 48%.

In Figures 8 and 9, we see the same observation as in Figures 6
and 7, however, we realize that PriCe-DCS has mostly detected all
the correlated pairs of data streams, and this is due to the scheduling
nature of PriCe and the aggressive pruning at high A. The Random-
DCS fails to meet that, since it picks pairs in an unpredictable way,
and this delays the analysis duration for each pair, hence, delaying
its pruning.

In Figures 10 and 11, we notice that PriCe-DCS has outperformed
all the other algorithms, also, we see iBRAID-DCS detecting some
pairs with. This for the obvious reason of having more processing
time to advance the sliding windows and capture more correlated
windows, which contributes to reaching the criterion A and declare
the pair as a correlated one. For A = 112 and A = 450, we noticed
the same observation as in Figures 10 and 11.

Finally towards the end of the micro-batch analysis process, we

see clearly in Figures 12 and 13 that all the algorithms are detecting
pairs with an overall relatively higher percentage than the earlier
deadlines, and this is expected with more time to analyze the pairs
of data streams. We also observe the effect of pruning clearly on
all algorithms under DCS mode. This is a result of the A criterion
being very high, which leads to early pruning for non promising
pairs of data streams. Thus, all the correlated pairs of data streams
were detected earlier than the 75% deadline. With A =112 and A =
225, we noticed the same observations.
Experiment 3 (Figs. 14-15) Our previous two experiments show
that PriCe-DCS exhibits the best performance overall. In our last
experiment, we studied how cold, warm (Low), and warm (High)
starts (see Section 3.4) affect the detection of correlated pairs of
streams with respect to deadlines when using PriCe-DCS. As in the
experiments above, we experimented with the values of PCC 7, A
and deadline d, shown in Table 1. All experiments produced similar
results; due to space limitation we report here only the first one.

In Figures 14 and 15, we show the percentage of detected cor-
related pairs at the 50% deadline. This experiment was conducted
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% of Correlated Pairs of
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5
®

2nd
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Figure 4: The % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A=112 and t = 0.75).

Random HiBRAID PriCe Random DCS % iBRAID DCS # PriCe DCS

% of Correlated Pairs of
Streams

st 2nd 3rd
Micro-batches

Figure 5: The % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A=112 and ¢ = 0.90).

Random ®iBRAID PriCe ™ RandomDCS # iBRAID DCS # PriCe DCS

% of Correlated Pairs of
Streams

1st 2nd 3rd ath
Micro-batches

Figure 6: The % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A=225andt = 0.75).

with A=112. We notice that PriCe-DCS in warm (high) start outper-
formed the rest of the starting techniques. This clearly indicates
that using the exact history (i.e., from previous micro-batches in-
tervals) of number of correlated windows for each pair of data
streams is the most effective way to initialize the priority function
when starting the analysis of each micro-batch. Trying to analyze
the pairs that were stifled in previous micro-batches will result in
degrading the detection of the correlated pairs in early stages.
Take Away: Our experimental evaluation showed that PriCe-DCS
with warm start is the best policy for determining highly correlated
live data streams.
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Figure 7: The % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A =225 and t = 0.90).
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Figure 8: The % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A =450 and t = 0.75).
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Figure 9: The % of correlated pairs of streams detected by all
algorithms at 25% of the interval I (the correlation criterion
A =450 and ¢ = 0.90).

5 RELATED WORK

The processing of data and fast discovery of correlated subsequences
of time series is tackled in two scenarios with respect to the produc-
tion of data—dynamic, when the data is processed as it is produced
[12] and static, when the data is collected upfront and it forms
the search space for finding the correlated subsequences [5, 8, 11].
The latter is beyond the scope of our work. In this section we
discuss state-of-the-art on computationally cheap identification of
correlated data streams.
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Figure 10: The % of correlated pairs of streams detected by all
algorithms at 50% of the interval I (the correlation criterion
A=225and = 0.75).
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Figure 11: The % of correlated pairs of streams detected by all
algorithms at 50% of the interval I (the correlation criterion
A=225and = 0.90).
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Figure 12: The % of correlated pairs of streams detected by all
algorithms at 75% of the interval I (the correlation criterion
A=450and t = 0.75).

In BRAID [11] the authors propose a technique to find correlated
pairs of subsequences. Their work extends to the point that the two
subsequences might not start at the same point in time—there might
be a lag between them, i.e., the subsequences are of the same length,
but one of them starts [ timestamps after the other one. The BRAID
variants navigate the data space sequentially and preemptively.
They calculate the PCC of each pair of subsequences with lag 0
as they navigate the space and use these values to average out (or
“smoothen”) the PCC for larger lags. The authors use powers of 2
in order to build a multilevel “smoothened” PCC as a geometric
progression of the lag. Our work can be extended to support lagged
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Figure 13: The % of correlated pairs of streams detected by all
algorithms at 75% of the interval I (the correlation criterion
A =450 and t = 0.90).
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Figure 14: The percentage of correlated pairs of streams de-
tected by PriCe-DCS using the warm (high), warm (Low), and
cold start at the deadline 50% start with A =112 and ¢t = 0.75
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Figure 15: The percentage of correlated pairs of streams de-
tected by PriCe-DCS using the warm (high), warm (Low), and
cold start at the deadline 50% start with A = 112 and ¢ = 0.90

pairs of subsequences at the cost of keeping in memory the sufficient
statistics from the timestamps at which each of the subsequences
starts.

Our work is in some respect related to interactive data explo-
ration. In fact our iBRAID and PriCe algorithms were designed to
support interactive data exploration. The authors of [5] propose
an extension to SQL, which allows the definition of new types
of queries. Those cannot be expressed easily with the traditional
operators such as GROUPBY and COUNT - queries, which run
arithmetic operators over ranges of data entries. They also propose
a sampling-guided, data-driven search space navigation technique
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for interactive data exploration. They build a grid over the search
space and calculate a number of attributes for each cell of the space.
In their example, they use the SDSS dataset, and the attributes they
calculate for each cell are, for example, average brightness of the
cell and the number of stars in the cell. These attributes are precom-
puted offline. They use a best-first heuristic and a priority queue
to navigate the order of exploration of the cells. The algorithms
we propose also prioritize the exploration of pairs of subsequences,
which are more likely to produce results. Unlike [5], we use the
smallest step possible for advancement of the subsequences - one
timestamp. The granularity of the grid might impact significantly
the search space navigation. We also do not precompute any data.

RainMon [12] proposes a 3-stage technique to mine bursty data
streams. The received ticks are first decomposed, in order to obtain
a smoothed representation of the data. In the next stage, called
summarization, the received data goes through incremental princi-
pal component analysis in order to outline the long-term trends in
the streams and to identifies anomalies, if there are any. In the last
stage, named Prediction, the system forecasts trends, relying on
the output from the summarization stage. In our work, we do not
make predictions and our approach uses the data as it is delivered
to identify correlated data streams.

A framework for identification of highly correlated pairs of data
streams is also presented in StatStream [14]. One of the assump-
tions of the work is that only an approximation of the PCC is
sufficient to identify the pairs of highly correlated DS. Based on
this assumptions, the authors proposed a two fold approach to
efficiently identify the pairs of interest. They employ a computa-
tionally cheap discrete Fourier transformation (DFT) technique to
calculate an approximation of the PCC. Furthermore, they proposed
an n-dimensional grid structure, which stores the DFT statistics
and PCC approximations of each stream, whereby neighboring
cells reflect highly correlated streams. This is the springboard for
identification of the highly correlated pairs of DS. However, if the
DS mimic white noise, DFT is known for its poor performance on
DS, which mimic white noise, whereby the required number of DFT
coefficients to precisely represent the DS is high and requires a lot
of computations. Our work differs in the calculation of PCC. We
also calculate the PCC incrementally over sliding windows, but our
framework calculates it precisely for each pair, over each sliding
window. Our studies showed that once a pair of DS is selected as
being highly correlated due to a high value of the approximated
PCC, a precise calculation of the PCC is required to prove the hy-
pothesis. This operation requires two passes on the data. Similarly
to StatStream, our framework supports sliding windows on data
streams. We evaluate the possibilities to extend our framework to
support landmark windows and damped windows in the future.

StatStream was further improved to handle “uncooperative” data
streams in [1], but it still calculates an approximation of PCC only.
The proposed technique employs structured random vectors. The
experimental results show that the proposed technique outperforms
linear scan and the discrete Fourier transformations, proposed in
StatStream [14]. Our framework, like this work, updates the re-
quired statistics in fixed amount of time. Unlike it, DCS calculates
PCC of the pairs of DS precisely for each sliding window and avoids
the need to be calculated later and at a higher cost, once a pair is
selected as being “promising”.

R. Alseghayer et al.

6 CONCLUSIONS

In this paper we presented a number of priority-based search algo-
rithms for real-time detection of correlated data streams. Our work
aims to assist analysts in finding pairs of data streams, in which
windows of tuples exhibit certain levels of correlation.

Our solution, called DCS for Detection of Correlated Streams, is
a mode of operation that uses the Pearson Correlation Coefficient
as a metric of correlation of two sliding windows of data streams
and employs pruning to avoid examining pairs of data streams that
cannot be part of the result. DCS utilizes early termination and
distinguishes its execution into warm and cold start depending on
whether or not the immediately previous micro-batch execution
identified correlated pairs of streams. In warm start, DCS uses the
results of the preceding micro-batch analysis as part of the initializa-
tion of the new micro-batch’s analysis. Our real data experimental
evaluation shows that our DCS mode of operation enhanced both
iBRAID and PriCe algorithms. In particular, when DCS mode is used
with PriCe, PriCe-DCS outperforms the other algorithms up to 1.8
times. Also, we studied the cold and warm start when analyzing a
micro-batch based on the results of the analysis of the prior micro-
batches. We found that PriCe-DCS with warm start outperformed
the rest of the algorithms.
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