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Abstract A constantly growing amount of high-quality information resides in databases
and is guarded behind forms that users fill out and submit. The Hidden Web comprises
all these information sources that conventional web crawlers are incapable of discovering.
In order to excavate and make available meaningful data from the Hidden Web, previous
work has focused on developing query generation techniques that aim at downloading all
the content of a given Hidden Web site with the minimum cost. However, there are circum-
stances where only a specific part of such a site might be of interest. For example, a politics
portal should not have to waste bandwidth or processing power to retrieve sports articles
just because they are residing in databases also containing documents relevant to politics.
In cases like this one, we need to make the best use of our resources in downloading only
the portion of the Hidden Web site that we are interested in. We investigate how we can
build a focused Hidden Web crawler that can autonomously extract topic-specific pages
from the Hidden Web by searching only the subset that is related to the corresponding area.
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In this regard, we present an approach that progresses iteratively and analyzes the returned
results in order to extract terms that capture the essence of the topic we are interested in.
We propose a number of different crawling policies and we experimentally evaluate them
with data from four popular sites. Our approach is able to download most of the content
in search in all cases, using a significantly smaller number of queries compared to existing
approaches.

Keywords Hidden Web - Focused - Crawling - Topic-sensitive - Query selection

1 Introduction

An ever-increasing amount of high-quality information on the Web today is accessible
through Web pages which extract information from data sources such as databases or con-
tent management systems. The access to this information is guarded by search interfaces that
generate requests. Therefore the information is hidden from conventional crawlers, which
base their operation upon a static link structure of the Web and are incapable of discovering
dynamically generated sites. For this reason, these pages are collectively termed the Hidden
Web (or the Deep Web).

The amount of available information in the Hidden Web is believed to be at least an order
of magnitude larger than the currently searchable WWW [6, 7, 12, 18]. Moreoit is of higher
quality than that available in ordinary web pages, as it has been carefully reviewed, edited or
annotated before being stored in a database or a content management system. Furthermore,
it presents a high degree of structure and may span a multitude of topics, ranging from sports
and politics to different medical treatments of a particular disease [5, 14].

In order to facilitate the discovery of information on the Web, search engines and
content-aggregation systems could greatly benefit from approaches that would allow them
to collect and download the content of Hidden Web sites. They will be able to clean,
aggregate and make available data from several sources. Having information from the Hid-
den Web in one place, can be of great benefit to both users, as they can have a one-stop
shop for their information needs, and for the search engines, as they can serve their users
better.

As the data behind a Hidden Web site is reachable by search engine crawlers only through
dynamically issued queries to its search interface, the database community has spent much
effort investigating ways of digging them out. In most cases [2, 4, 13, 21, 23, 27, 28] previ-
ous work has focused on generating queries that are able to download all of (or as much as
possible) a given Hidden Web site, with the minimum amount of resources spent, e.g., the
queries issued. For example, the technique in [21] iteratively issues queries to Hidden Web
sites and can download about 90 % of some sites using about 100 queries.

Although such approaches can work well for cases where we are interested in doing a
comprehensive crawl of a Hidden Web site, there are cases where we may be interested
only in a specific portion of the information buried there. For example, a search engine that
specializes in traveling may benefit from picking only news articles that pertain to traveling
from a general-purpose news database. A portal regarding politics may want to identify the
politics-related articles from a blogs database and leave out the sports-related ones. Or, a
mobile application focusing on night-life in San Francisco may want to pull only the related
articles from all the postings on events in the wider Northern California area.
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1.1 Problem description

In this paper, we study the problem of building a topic-sensitive Hidden Web crawler that
can automatically retrieve pages relevant to a particular topic from a given Hidden Web site.
More specifically, given a description of a topic, we aim to collect the part of a Hidden Web
site’s content that is similar to this description.

One way to achieve this goal would be to employ previously-developed techniques [2,
21, 23] to retrieve the majority of a Hidden Web site and then keep only the content that we
are interested in. Since this approach may lead to downloading a number of pages that we
are ultimately not interested in, it may also lead to depletion of server resources, measured
in time, money, bandwidth or even battery life in the case of a mobile setting. To this end,
the goal of our crawler is to retrieve from a Hidden Web site as many pages related to a
given topic as possible with the minimum amount of resources, whether that is quantified
as a number of queries allowed or the available bandwidth.

Our main idea is to issue queries to the Hidden Web site that are very relevant to the topic
that we are interested in, proceeding in an iterative fashion. We pick terms for our queries
from the documents which we have already crawled, after evaluating their closeness with
our topic in search, and then use a ranking function to select the most promising ones. In
that way, we manage to generate a set of keywords that are able to download the contents
of a Hidden Web site at a low cost.

1.2 Short description of results

In summary, this paper makes the following contributions:

—  We formalize the problem of focused Hidden Web crawling, i.e. downloading the pages
of a Hidden Web site that pertain only to a given topical area of interest.

—  We present an approach for performing focused Hidden Web crawling. Our key idea
is to identify candidate keywords from the crawled documents that are relevant to the
topic of interest using repetitive feedback.

—  We propose a number of different evaluation policies that can be used to decide which
of the crawled documents may contain proper candidate queries that we can issue next.
As we show in our experimental section our policies result in much better production
of good keywords than the baseline approach.

—  We experimentally evaluate our approach using the different policies on four real Hid-
den Web sites using two different metrics and we showcase the merits of each of the
policies. Our crawler manages to retrieve the desired content in all tested setups using
only a small part of the resources a generic Hidden Web crawler requires.

The rest of this paper is organized as follows. Section 2 reviews related work and provides
the necessary background. Section 3 formalizes the problem investigated here and presents
the details of our approach. A comprehensive set of experiments using a wide dataset and
different evaluation metrics is presented in Section 4 and Section 5 concludes this paper.

2 Related work

Research on the Hidden Web has emerged during the last decade. In [23], Raghavan et al.
introduced the problem of crawling the Hidden Web with a generic operation model of a
task-specific Hidden Web crawler and a prototype implementation of this model, namely
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HiWE (Hidden Web Exposer). Their efforts focus mostly in overcoming the challenge
of automatically parsing, processing and interacting with HTML forms. The visual layout
of form elements, such as the distance between two input elements, is one of the methods
used. Their approach requires human assistance in order to ensure that the crawler issues
queries relevant to the particular task, and they only consider search interfaces with mul-
tiple attributes forms. In [5], Bergholz et al. perform syntactic analysis to HTML forms in
their approach of automatically identifying Hidden Web resources. Their crawler is domain-
specific and is initialized with pre-classified documents and relevant keywords, i.e., they do
not deal with the issue of automatic form filling. DeepBot [1] is very similar to HiWE.
The visual layout is also used here, along with text similarity heuristics, so that Hidden Web
site interfaces can be associated with domains and queries can then be executed on them. To
overcome the complexities related to the client-side, such as JavaScript code and sessions,
DeepBot uses Microsoft Internet Explorer’s API. The queries issued are not produced
automatically.

After associating an interface with a domain, using the preconfigured domain definitions,
the crawler begins a specific data collection task utilizing its corresponding predefined input
terms. In [30], Zhang and Chang notice that query forms tend to reveal a “concerted struc-
ture”. They hypothesize the existence of a hidden syntax that query interfaces follow, and
build an ambiguous grammar and a best-effort parser to cope with it. Barbosa and Freire
propose FFC [3] and ACHE [4], two frameworks aiming to automate the process of dis-
covering Hidden Web entry points from which templates can then be generated. The latter,
attempts to overcome two limitations of the former, which retrieved highly heterogeneous
forms and required significant effort for tuning and training. Our work assumes that the
entry point of a given Hidden Web site has already been discovered.

Google’s approach on surfacing the Hidden Web is outlined in [18]. Good surfacing can-
didates are elected after probing forms and examining if the results retrieved are sufficiently
distinct from each other. A comparison of their algorithm, named ISIT, with approaches
that generate URLs for each entry in the Cartesian product of all input values of a form,
or combine a smaller set of the available inputs - since forms often tend to be large - is
provided, that shows that the proposed approach is highly effective. In order to generate
input values t#f/idf scores are used. The problem of automatically producing meaningful
queries that can return large fractions of a document collection has been examined numerous
times. Barbosa and Freire [2] suggested that terms present in a document collection will be
appropriate candidates for submission to the corresponding interface. Thus, they sample the
collection to select a set of high-frequency keywords and use those to construct queries with
high coverage. Among the issues they study is the usefulness of stop words in their queries,
which tend to be extremely effective in some of the document collections examined but are
ignored in others. In [21], a theoretical framework for analyzing the process of generating
queries for a document collections as well as examining the obtained result is provided. In
addition, the framework is applied to the problem of Hidden Web crawling and the effi-
ciency of the approach is quantified. Three policies, namely random, generic-frequency and
adaptive are examined. The first two use a set of words from a 5.5-million-Web-page corpus
whereas the last one discovers new terms by utilizing the result pages. The results indi-
cate that the adaptive policy, which is the most interesting one due to its automatic nature,
leads to more effective crawling. Wu et al. [27] suggest that the goal of query selection
algorithms is to find a Weighted Minimum Dominating Set in the corresponding attribute-
value graph. Since this is a well known NP-hard problem, they propose a greedy link-based
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query selection method that traverses the database graph by following some “hub” nodes.
Their approach can only function in the context of highly structured document collections,
such as DBLP ! and IMDB ? that are used in their experimental setup. In [17] and later on
in [26], Lu et al. incorporate sampling methods in an effort to select appropriate keywords
and retrieve the entire database. They sample a database and then select terms that are effi-
cient for this sampled part, using greedy methods. Their results suggest that the selected
queries are effective for the full database as well. Our work differs from these efforts as we
retrieve only portions of a Hidden Web site that are relevant to a specific topic, instead of
simply maximizing the coverage of the underlying web database.

Ipeirotis et al. [14] propose a technique of classifying databases through probing. They
train a rule-based document classifier using a set of preclassified documents, count the
number of matches the database achieves for each query they issue, and use this num-
ber along with the classifier to categorize the database. By following this approach, no
retrieval of documents from the database at all is needed for the categorization. In a later
work [13], Ipeirotis and Gravano create content summaries of web-accessible text databases.
They use focused probing to query the database, retrieve a sample and eventually cate-
gorize it. They also present an approach of locating the most topically-specific databases
for a given query. Their results indicate that the proposed techniques offer very effective
content-summary construction and database selection. This work is however more relevant
to generic Hidden Web crawling, since the categorization they perform is for the whole
database. Yang et al. [29] introduce the idea of using a “query document”, from which
phrases regarding a certain topic can be extracted in order to retrieve relevant content from
a database. These phrases are complemented with extra information with the use of external
resources such as Wikipedia. In order to rank candidate phrases they employ a td/idf based
scoring. Their approach targets the retrieval of a small number of relevant documents of
high quality information as opposed to gathering the thematically close documents in their
entirety.

Chakrabarti et al. [8] study ways to selectively search for pages on a specific set of
topics that represent a relatively narrow segment of the Web. A comprehensive process for
discovering topic-specific resources from the Web is presented. A classifier and a distiller
are used for the evaluation of crawled pages based on their hypertext. The former learns
to recognize relevance from examples embedded in a topic taxonomy whereas the latter
identifies topical vantage points on the Web. However, their methodology is only applicable
on the publicly indexable web, since hyperlinks are not used at all on the Hidden Web. Since
then, many similar efforts have been proposed, but again only for the surface web. Diligenti
et al. [9] attempt to improve the efficiency with which content related to a certain category
can be found, by modeling the links and the content of documents that are closely linked
with target pages.

In [20], associations between web pages and predefined categories are identified by using
term-classification rules compiled by machine learning algorithms.

These approaches however, deal with topic-sensitive crawling of the publicly indexable
Web, whereas we target the Hidden Web.

!l www.informatik.uni-trier.de/~ley/db/

2www.imdb.com/?
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3 Topic-sensitive hidden web crawling

At a high level, the purpose of a generic focused (or topic-sensitive) web crawler [8] is to
collect pages from the Web that pertain to a given topic. To this end, an evaluation of the
content of each downloaded page during crawling is necessary, in order to decide whether
the page is relevant to a particular topic or not. In the former case, its out-links are pos-
sibly good candidates whereas in the latter, its descendants will most likely be a waste of
resources. Hence, a topic-sensitive crawler aims at examining as small of a subset of the
total search space as possible, by discarding pages irrelevant to the topic of the search.

An illustration of this process for the publicly indexable Web is provided in Figure 1.
Colored boxes represent pages with content relevant to our topic of interest, whereas white
boxes represent irrelevant ones. To maximize its efficiency and use the available resources
wisely, a topic-sensitive crawler has to follow only those paths of the figure that lead to
colored boxes.

The case is very different however for the Hidden Web and its dynamically generated
sites, so the method described in [8] cannot be employed. In order to retrieve the content
of such a site, one has to issue queries to its entry point, i.e., a search interface with one or
more fields.

To access pages from a Hidden Web site we typically need to apply the following steps:

1. First, submit a query through the interface provided by the site, that characterizes what
we want to locate. The most common search interface is a text search box, such as the
one illustrated in Figure 2a. This is the interface a site provides to its users and enables
them to enter a search term and perform a full text-search in its underlying index. Other
sites may choose to offer more advanced search capabilities using a structured query
interface with a subset of the content attributes, e.g., title, author and date.

2. Then, we receive a result index page, that contains links and possibly additional infor-
mation of the pages that matched the submitted query. The results of a query submitted
in this site are illustrated in Figure 2b. As it is shown, the results usually are sorted
in order of relevance with the term in search, and are also paginated in an effort to
minimize the bandwidth used for each request the server accepts.

3. Finally, after identifying a promising page in the results, we are able to follow the link
and visit the actual Web page.

Figure 1 Topic-sensitive crawling in the publicly indexable web
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Figure 2 The search interface of
a Hidden Web site (a), a result
page for the query ’Barack’ (b),
and a relevant page from the
results (c)
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Therefore, it is evident that crawling the Hidden Web requires the submission of queries
that will surface the dynamically generated content of each site. Our approach aims at crawl-
ing in a topic-sensitive manner so we must first elaborate on what constitutes a “topic”,
since the definition may be different depending on the application at hand.

If we are interested in loosely collecting Web pages concerning football for instance,
then any page that contains the words “football”, “quarterback” and “touchdown” may be
relevant to the topic. Alternatively, in cases when we are interested in discerning more accu-
rately between topics, e.g., external affairs vs. internal politics, a more elaborate mechanism
using a category network may be used [25].

Our work does not depend on how exactly we detect whether a particular page belongs
to a given topic. Instead, we make two assumptions regarding the topic definition that allow
for a variety of different topic detection techniques to be employed. First, we generally
assume that a topic can be described by a distribution of keywords. This is essentially the
same assumption that most text classifiers are based on, and other topic-sensitive crawlers
adopt [29]. Second, we assume that not all of the keywords in the distribution are known
beforehand, as in this case the problem becomes trivial since the crawler would simply
have to iterate over all of the relevant keywords. We should note that not knowing all of
the keywords is the typical practical scenario. In our football example above, we may know
that “quarterback” or “touchdown” are good initial keywords, but we may not necessarily
know that “huddle” or “fumble” are also good keywords for the crawler to use.

In our work, we typically provide the crawler with a small set of keywords that are
relevant to begin with, and the crawler discovers more keywords to use as it progresses
through the Hidden Web site, by choosing to feed off of pages that pertain to the topic in
search and discard those that do not.

3.1 A Topic-sensitive hidden web crawling approach

Due to the dynamically generated nature of the Hidden Web content, the task of a corre-
sponding crawler is to automatically submit queries to a site and retrieve pages by following
the links included in the results. One of the biggest challenges in implementing such a craw-
ler is that we need to pick the most appropriate terms that will retrieve the pages pertaining
to the desired topic in the most effective way. If the crawler can pick terms that are very
well-suited to the topic we are interested in, it will also be able to retrieve pages that belong
to the topic at hand. If instead, the crawler issues queries with irrelevant terms, it will only
manage to waste processing nodes and bandwidth, downloading pages that are of no inter-
est to users. Moreover, this potentially will degrade the quality of the search engine that
employs the crawler.

Figure 3 presents a Hidden Web site as a set of pages S which constitute the crawler’s
search space. These pages might cover a vast area of topics, most of which may possibly be
irrelevant to our search. We represent pages of different topics using different shapes and
colors in Figure 3. The results of each potential query g; can be considered as a subset of
S, which contains the pages that the site would produce as a result. In practice, we are only
interested in downloading pages relevant to a specific topic, e.g., the squares in Figure 3.

Algorithm 1 outlines our approach for a Topic-Sensitive Hidden Web crawler. In order
to bootstrap the algorithm, we consider an initial description of the topic, which can either
be one or more terms, or one or more documents that are relevant to the topic. This
occurs in the first step of the algorithm, where we initialize a pool of words termed Word
Collection with an exemplary document, d;. The next step (2) extracts terms from the
Word Collection, and is issued periodically, in order to reduce the number of required
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Algorithm 1 A Topic-Sensitive Hidden-Web Crawler
WordCollection = d;; (1)

while (available resources) do
// extract the terms and build the WordCollection
if (ent + + mod N) == 0 then

T (WordCollection) = ExtractTerms(WorldCollection); (2)
end if
// select a term to send to the site
q; = selectTerm(WordCollection); (3)
// send query and acquire result index page
R(q;) = submitAndDownload(q;); (4)
// download and evaluate the pages of interest
update(WordCollection); (5)

end while

computations. The extraction is done by calculating the #//idf weight for every term of the
collection. The role of the Word Collection in our approach is explained in detail in
Section 3.2. Step (3) picks the best of the terms that were extracted in the previous step
and has not been used this far, while Step (4) uses this term to issue a query and retrieves
the result index page. Finally, Step (5) downloads the Hidden Web pages that were included
in the results and had not been previously downloaded. Moreover, it evaluates the contents
of the results using one of the policies (p;) presented in this work. The evaluation process
of this step is responsible for the maintenance of the collection of words used for keyword
extraction and thus, it depends heavily on the policy that is to be followed. The different
policies are explained in Section 3.3. Depending on our limitations regarding time, storage

Figure 3 Representing a Hidden Web site as a set
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or bandwidth, we can restrict the number of the algorithm’s iterations. For example, we can
stop its execution after submitting a fixed number of queries or reaching a particular amount
of retrieved documents.

3.2 Word collection

In this section we outline how we initialize and maintain the Word Collection that
serves as a pool of candidate queries for our algorithm.

This pool initially comprises the terms of a “query document” d; which serves as an
example of the topical area we are interested. More thoroughly, this is a document which
consists of text that is close to the topic in search and essentially, describes this topic. Thus,
if for instance we wanted to crawl for sports articles from a news site, we could provide
the algorithm with a “query document” (or snippet, or a small set of keywords) that would
consist of a few sport-related articles.

However, the Word Collection cannot remain static during the execution of the
algorithm for a variety of reasons. First, the input document given to the algorithm may
not be enough for the extraction of all (or enough) terms that are needed for the retrieval
of a sufficient amount of Web Pages. No matter how good that initial document may be
in capturing the essence of the topic in search, it can only manage to provide a limited
number of terms. Second, the initial Word Collection may be too specific, in a way
that the terms extracted would not be general enough to capture the whole topical area
of the document. For instance, if those sport-related articles mentioned earlier, were taken
from a WNBA fan-site, the terms extracted from the Word Collection would retrieve
results concerning women'’s sports and basketball. We are interested in matching the input
document with a broad topic, in order to retrieve all the related Web Pages. Therefore, it
is necessary to broaden our Word Collection during the execution of our algorithm.
Finally, to successfully retrieve the maximum amount of Web Pages from a Hidden Web site,
it is essential that we adapt to its terminology. For instance, we cannot retrieve but a subset
of Web sites that index multilingual content if all the words in our Word Collection
are in English.

It becomes clear that for effective Topic-Sensitive Hidden Web Crawling, the pool of
words that is used for term extraction must be enriched continuously and adapt to the site in
search. To address this issue, we exploit the contents of the results as potential parts of the
Word Collection. Each result page is evaluated using one of the policies described in
Section 3.3 and the contents of the ones relevant to the topic in search are added to the Word
Collection. Inthisregard, the Word Collection getsenriched with plenty of appro-
priate terms that can be issued as queries. Furthermore, since the Word Collection is
updated with content directly from the site in search, it can provide the algorithm with terms
that not only are relevant to a specific topic, but also have a higher significance for that
particular site.

In order to select the most appropriate keywords from the terms of the Word
Collection, we use the tf/idf term weighting system, which addresses the issue of mea-
suring the general importance of a term in a collection and allows us to distinguish those
terms that are characteristic of our topic in search. A rare term that occurs frequently in a
document is often more useful than a common term which appears with similar frequency in
the document. This property is utilized by 1f/idf both accurately as well as effectively [24].
Suppose a term ¢ occurs n; , times in a web page p which has a total of N, terms. Then
the term frequency (¢f) of ¢ in this page is ¢tf (¢, p) = ’;\’,—: Now, suppose that in a total
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of D web pages, term ¢ occurs in d; of them. The inverse document frequency (idf) of
tisidf(t) = log(d%). The #f/idf weight is given by the product of these two measures:
tf/idf(w, p) = tf(w, p) xidf(w).

Figure 4 illustrates how the Collection gets enriched during the execution of our
approach. The words that already exist there are sorted according to their #f/idf score, and
the best one not used so far is picked (debate) for submission. By issuing a query with this
term, we retrieve new results containing words that are possibly helpful for the remaining
of the process. After evaluating the retrieved content, some words that are likely to be of
assistance are appended to the Word Collection (presidential), while some that are probably
irrelevant are discarded (fox). The decision is based on one of the result evaluation policies
that are detailed in Section 3.3.

3.3 Result evaluation policies

In this section we provide the details of the various evaluation policies that we employ in
our work. These policies are used in order to decide if each page contained in the results is
relevant to the topic in search, and therefore will be helpful later. The content of the pages
that are considered in-topic are added to the Word Collection, and consequently take part in
the keyword selection process.

We examine the following policies:

—  Perfect: We use the categorization information directly from the site in search. Each
document of the web sites that are used in our experimental evaluation is classified into
topics, so this policy takes advantage of this knowledge. Of course such information
is not available in most cases. In our work, we will use this policy as a benchmark to
determine how well the rest of the policies can do relative to this one, that has accurate
information regarding the topic that every result document belongs to.

debate, elections,
romney, obamacare, TF/IDF
candidate,...

debate

repetitive feedback

presidential, fox,
obama, republican,
foreign, Qaeda,...

evaluate
relevance

Figure 4 The process of maintaining and enriching the Word collection
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Do-nothing: We accept all of the returned pages as in-topic. This policy updates the
Word Collection with the content of every page the crawler manages to discover.
As the first few terms are extracted from the input document, it is expected that the first
queries which will be submitted will be meaningful and so the corresponding result
pages will have a high chance of being in-topic. However, since the results are not
filtered it is also expected that a lot of out-of-topic content will find its way to the Word
Collection and worsen the term selection process significantly. Thus, this policy
can also be used as a comparison point for the other policies.

Classifier based policies: This family of policies examines the effects the presence of a
classifier has to the crawling process. The classifier needs to go through a training phase
before it can be used. We feed the classifier with samples of documents belonging to a
certain topic and then are able to test if other documents should be classified under this
topic or not. Therefore, it is clear that this method can only be used for topics that the
classifier is already trained for. Obviously, the better the classifier is trained, the less
erroneous pages will be added to the Word Collection. We examine the effect the
presence of three different type of classifiers have:

— NaiveBayes: The NaiveBayes classifier assumes that all attributes of a data
set are independent of each other. This assumption, which in most cases is
false, does not prevent the classifier from achieving high classification accu-
racy, while it is also ideal for domains with a large number of attributes, since
it simplifies the learning phase. Text classification is such a domain and sim-
ple Bayesian classifiers have been proven to be surprisingly successful when
classifying text [10].

— SMO: Sequential Minimal Optimization (SMO) is an algorithm used for
training Support Vector Machines (SVMs), whose solution involves a large
quadratic programming (QP) optimization problem. SMO breaks this prob-
lem into a series of smallest QP problems which are solved analytically and
manages to speed up and simplify the training of an SVM [22].

— J48: This policy creates a C4.5 decision tree using J48, an open source Java
implementation in the weka data mining tool [11]. Decision tree algorithms
use a training set to build tree data structures that can be used to classify new
cases. Each internal node of the tree structure contains a test based on one of
the attributes of the set, the result of which determines which branch should
be followed. C4.5 provides high classification accuracy and outperforms other
main-memory algorithms as far as speed is concerned [16].

CosineSimilarity: We examine the cosine similarity of every result page with the initial
exemplary document and accept only a small percentage of the closest ones. In that
way, we ensure that the pool of words will be enriched only with terms closely related
to the topic defined by our input. The cosine similarity is:

Ax B
IEYERIPL
where A and B are the #f7idf vectors of the two documents that are compared. This pol-
icy is clearly superior to the NaiveBayes policy in terms of adaptability, since it requires

no training. However, since this method depends heavily on the query document, it is
important to examine the effect of the quality of the latter in its decision making.

similarity(A, B) = cos(0) =

@ Springer



World Wide Web (2016) 19:605-631 617

4 Experimental evaluation

We start our experimental evaluation by presenting the datasets used in our experiments
and the choices we made regarding the values of the crawler parameters. Then, we proceed
with an extensive set of experiments on the performance of the proposed policies, discussed
in Section 3.3. We first examine the effectiveness of the crawler using the total number of
queries issued as a metric. Next, we consider the total pages downloaded during the crawl-
ing process, both relevant and irrelevant, as an evaluation criterion. Then, we investigate
the behavior of the crawler when utilizing only specific parts of results to generate new
queries. In Section 4.6, we present the actual queries issued during crawling and the pre-
cision achieved. After that, we present results for all of our policies for a variety of topics
to evaluate them without domain bias. Next, we test the effect the size of the “query docu-
ment” has on the CosineSimilarity policy, investigate the impact of noise on our proposed
policies, and examine if any improvement can be achieved by exploiting the NOT operator.
Finally, we compare our results with that of a generic Hidden Web crawler.

4.1 Datasets used and calibration of key crawler parameters

In order to evaluate our method we used a variety of large human-generated datasets which
are listed below:

—  The Open Directory Project (dmoz)®, a multilingual open content directory of World
Wide Web links. The listings of the site are grouped into categories (which may include
various sub-categories) depending on their topic. Dmoz indexes approximately 5 mil-
lion links that cover a broad area of topics. Each link is accompanied with the site’s title,
a brief summary and its categorization. The links are searchable through a keyword-
search interface and dmoz enforces an upper limit on the number of returned results
(10,000 results). We considered the titles and summaries of each indexed link of the
dmoz website as documents.

—  The public non-beta Stack Exchange sites*; Stack Exchange is a group of sites cover-
ing many different fields that offer the opportunity to ask and answer questions related
to the topic each site covers. The Stack Exchange sites contain a total of 391,522 ques-
tions over twenty different topics. In order to further examine the performance of our
algorithms, we enforced an upper limit of 1,000 results per query for this dataset. We
considered the titles and questions of the Stack Exchange sites as documents.

— The New York Times Annotated Corpus® which contains over 1.8 million articles
written and published by the New York Times between January 1, 1987 and June
19, 2007. These articles are manually summarized and tagged by library scientists.
The tags that are assigned concern the topic of the article - among other things -
and use a controlled vocabulary that is applied consistently across articles. The title
of each article along with its synopsis were used in our experimental setup. As each
article may have more than one tags concerning its topic, we consider an article
belongs to all of them. For this dataset we imposed a limit of 10,000 returned results
per query.

— A collection of Geo-coded Tweets®. We used over 28 million of the most recent tweets
of the dataset and since there was no topical taxonomy provided, we considered each
tweet’s country of origin as its topic. In order to enhance the process of discovering
the country of origin and examine the behavior of our crawler when utilizing structured
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information, we considered only terms included in the ‘city’ field of each document as
potential submission terms.

The tweet itself, its sender and its city of origin were considered as documents and
we did not impose a limit on the return results per query.

For each data collection studied here, we used an initial exemplary document to serve as
a representative of the topic in search. In the following, we used random documents from
the respective topics to serve as “query documents”. We do not report on how selecting a
different initial document affects performance, as we experimentally confirmed the findings
of [21]; i.e., the selection of the first document does not significantly affect the returned
results. However, we do study how the size of initial query documents affects performance
in Section 4.8.

Furthermore, the presence of a text corpus is necessary, in order to perform the #f/idf mea-
surements and extract the best keywords for each topic. For this purpose we used random
documents from the four aforementioned datasets.

We employed Apache Lucene [19] to index and query over the datasets using the
Standard Analyzer and the default stop words filter.

For our experiments, we set variable N of Algorithm 1 to 7. That is, we update the Word
Collection of Algorithm 1 every 7 queries. We experimentally tested different values
for N and we found that 7 is essentially the breaking point after which we would observe a
significant degradation in terms of the performance of our algorithms. Additionally, during
the operation of the CosineSimilarity policy, we kept the top 1 % of the returned documents,
after the submission of every query, for future use in the term-extraction process. We opted
for this specific 1 % in order to hold approximately the same number of returned documents
as the other competing policies .

4.2 Evaluation of the policies over the same topic

We start our evaluation by studying the effectiveness of the policies proposed in Section 3.3
in retrieving pages of a given topic from dmoz, Stack Exchange,NYT Corpus and the Geo-
coded Tweets.

We show the fraction of documents returned from dmoz, Stack Exchange and Geo-coded
Tiveets as a function of the queries issued in Figures 5, 6 and 7, respectively, and the fraction
of documents returned from the NYT Corpus as a function of the total results obtained
during the crawling process, in Figure 7. Using both these metrics in our results, i.e., the
total number of queries issued and the total number of links retrieved, we provide a clear
picture on the amount of resources that each policy needs to consume and ensure that the
queries issued by our proposed policies take into account both these factors. Regarding the
Geo-coded Tweets, due to the alternative nature of our approach which utilizes only specific
parts of the structured results, we present these results separately.

3http://www.dmoz.org
“http://stackexchange.com/

SThe New York Times Annotated Corpus, Linguistic Data Consortium, Philadelphia, http://catalog.ldc.
upenn.eduw/LDC2008T19

Ohttp://istc-bigdata.org/index.php/our-research-data- sets/
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Figure 5 Results of the six policies for topic sports of dmoz

4.3 Using number of queries as a metric

In this section, we report results for the topic Sports of dmoz and for the topic Wordpress of
Stack Exchange for which we measured the amount of individual queries it took to download
pages from.

For the topic Sports, dmoz contains a total of 90,693 pages. As Figure 5 shows, all six
policies behaved identically for the first seven queries, where only the initial document
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Figure 6 Results of the six policies for topic wordpress of Stack exchange
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is being used for keyword extraction. Do-nothing’s performance was enormously affected
after those first few queries, when the Word Collection started to utilize all the returned
results for enrichment, since as the name of the policy implies, no action was taken to filter
them. As a consequence, Do-nothing performed badly overall, as expected. Policies Perfect
and NaiveBayes behaved quite similarly, with the first one managing to retrieve a slightly
bigger percentage of Sports-related documents. This can be explained given the fact that the
two policies led to a high percentage of common queries issued (28 %). After 210 queries,
the Perfect policy retrieved 86. 43 % of the total relevant documents, while the NaiveBayes
policy managed to collect 83.42 % of them. The other two classifier based policies, namely
smo and j48 performed slightly worse.

The CosineSimilarity policy managed to outperform all five other policies by retriev-
ing 89.66 % of the documents categorized under the Topic Sports after issuing about 180
queries. 19 % of the terms used for query submission were common with the Perfect policy
and 20 % of them were common with the NaiveBayes policy. This implies that CosineSi-
milarity did a better exploration of the keyword space compared to the other policies and it
found keywords leading to more relevant documents earlier, compared to the Perfect policy
which took about 220 queries to achieve the same performance.

We also retrieved all the documents of the Stack Exchange sites relevant to the Wordpress
publishing platform. There was a total of 17,793 questions categorized under this topic. The
results are illustrated in Figure 6. After 564 queries, the Perfect policy retrieved 85 % of the
total relevant documents, the smo 82 %, the NaiveBayes 81 %, and the j48 and CosineSimi-
larity policies managed to collect 74 % of them. The Do-nothing policy behaved well below
those numbers again. The significant amount of additional queries needed for the retrieval
of documents from this dataset is explained by the much smaller upper limit of returned
documents per query we enforced in this dataset.

4.4 Using pages downloaded as a metric

In this section we report results for the topic US Election Campaign 2004 of the NYT Cor-
pus for which we measured the amount of total pages downloaded, i.e., both relevant and
irrelevant, during the crawling process.

This topic contains a total of 36,388 articles that are related to the 2004 American
Presidential Elections.

The results are presented in Figure 7 where it is shown that retrieving 70 % of the
documents related to the 2004 campaign required the download of 277,146, 462,262, and
473,195 pages for the policies Perfect, CosineSimilarity and j48, respectively. The other two
classifier-based policies behaved a little worse with 493,649 pages for smo and 573,439 for
NaiveBayes. Do-Nothing collected half of the relevant documents only after downloading
524,857 pages totally.

4.5 Utilizing specific attributes

Here, we report results for crawling over the Geo-coded Tweets with a query document con-
sisted entirely of tweets from France. For this dataset, we followed an alternative approach
and utilized only specific parts of the results, i.e., we enriched the Word Collection
using the values of the attribute ‘city’. The results are presented in Figure 8. We can see that
after 350 queries all five policies that filter the results managed to retrieve between 74 %
and 77 % of the relevant pages. The reason for almost identical behavior of our policies lies
in the fact that only the part of the results concerning the city of the retrieved tweet was
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Figure 7 Results of the six policies for topic Campaign-2004 of NYT Corpus

added to the Word Collection. This led to very similar sets of terms that were selected
for all policies, which naturally resulted to practically identical performance.

4.6 Queries issued and topic precision

In order to investigate more closely the performance of our policies, we further examined
the actual queries issued when using each one of them. We present a sample of queries for
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Figure 8 Results of the six policies for country France of the Geo-coded Tweets
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each policy together with the precision achieved, i.e., the fraction of in-topic documents, in
Figure 9.

We should note that there is a lot of overlap in the results of each term. Although
every policy manages to discover meaningful terms that return a good number of results,
a large portion of them has been already discovered by previous queries. Additionally, the
Do-nothing policy is the most successful in finding “popular” terms. Most of the terms
illustrated in Figure 9 returned the maximum of 10,000 results, while the average after 210
queries was 8,650. This is due to the fact that the Word Collection of this policy was
eventually enriched with terms from every possible topic of the Open Directory Project. The
NaiveBayes policy was second with 7,927, the Perfect policy third with 7,530, the smo pol-
icy fourth with 7,488, the CosineSimilarity policy fifth with 7,426, and the j48 policy last
with 7,401 results per query.

Using the dmoz categorization information for every downloaded document, we also
measured the precision of the different policies as shown in Figure 9. Overall, the Perfect
policy was the most successful one since it is allowed to use the class information. Of course,
in practice such information is not available and thus this policy serves as a benchmark in
terms of classification precision.

The Do-nothing policy accepts every document it downloads as relevant to the topic in
search, so its errors are equal to the total number of links retrieved minus the links that were
actually in-topic.

The rest of the policies depend on the quality of the results that are used for the Word
Collection enrichment, and thus the number of evaluation errors they commit. How-
ever, the impact of all errors is not the same for our algorithm. An in-topic document that is
classified as irrelevant is not added to the Word Collection and does not affect the term
extraction process. On the other hand, an irrelevant document that “sneaks” its way into the
Word Collection, may cause the selection of inappropriate terms for query submis-
sion. For the NaiveBayes policy 45 % of the documents added to the Word Collection,
were actually categorized under another topic in the dmoz classification taxonomy. The
same stands for 48 % of the ones added with the j48 policy, and 31 % of the ones added
with the smo policy.

Finally, the CosineSimilarity used mostly documents belonging to topics different than
Sports (72.9 %).

However, this did not affect the policy in a negative way. The retrieved documents,
despite this fact, had very high cosine similarities with the query document, so naturally, the
Word Collection was not altered in an undesirable way. As a result, the CosineSimila-
rity policy outperformed the other policies in terms of recall as we showed in the previous
section.

4.7 Comparison of policies under different topics of dmoz

In this section, we present the performance of the policies Perfect, NaiveBayes and Cosi-
neSimilarity over five different topical areas belonging to the classification taxonomy dmoz
uses. This allows us to examine the performance of our crawler when retrieving docu-
ments belonging to both well and ill-defined topics of the same Hidden Web site. We
used the following categories: Computers (103,336 documents), Recreation (91,931 doc-
uments), Shopping (87,507 documents), Society (218,857 documents) and Sports (90,639
documents).
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| No | Term | Precision || Term | Precision |
1 results 42.83% results 42.83%
2 statistics 43.61% statistics 43.61%
3 roster 71.36% roster 71.36%
10 men 27.26% schedules 10.31%
15 scores 27.89% church 0.00%
20 players 30.62% coaching 17.89%
25 hockey 41.85% methodist 0.00%
30 tennis 7.43% beliefs 10.11%
40 rugby 14.43% stellt 0.00%
60 sport 3.82% bietet 0.00%
100 | competition 12.28% nach 0.00%

(a) Perfect (b) Do-nothing

| No | Term | Precision || Term | Precision |
1 results 42.83% results 42.83%
2 statistics 43.61% statistics 43.61%
3 roster 71.36% roster 71.36%
10 schedules 10.31% basketball 46.36%
15 standings 67.96% scores 43.09%
20 baseball 38.29% records 31.96%
25 records 8.38% field 38.15%
30 | membership 1.52% race 29.50%
40 county 0.39% squad 26.95%
60 fc 5.45% swimming 20.31%
100 standing 26.66% division 13.17%

(c) NaiveBayes (d) smo

| No | Term | Precision || Term | Precision |
1 results 42.83% results 42.83%
2 statistics 43.61% statistics 43.61%
3 roster 71.36% roster 71.36%
10 player 30.54% tables 5.61%
15 | coaching 21.86% player 24.36%
20 sports 17.59% players 33.70%
25 players 28.98% hockey 44.08%
30 calendar 23.13% baseball 32.20%
40 united 19.24% race 14.56%
60 junior 16.64% conference 1.73%
100 | standing 11.57% competitive 11.61%
(e) 448 (f) CosineSimilarity

Figure 9 Terms issued when using the different policies
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Figure 10 illustrates the behavior of our approach for these five different categories of
dmoz using the Perfect policy. Topics computers and sports proved to be the easiest to
retrieve while society needed a significantly bigger amount of queries to surpass the 80 %
barrier. This is due to the fact that society is a much larger category compared to the rest.
More specifically, topic Computers returned 92.17 % of the total documents after 210
queries. Topics Sports and Recreation discovered 86.43 % and 80.76 %, respectively, with
the same amount of queries. Finally for the topics Shopping and Society the policy collected
77.82 % and 62.06 %, respectively.

The results for the topics in discussion using the NaiveBayes policy are presented in
Figure 11. This policy is performing slightly worse than Perfect for each of the five topics.
The ordering of the topics is, however, a little different, since the NaiveBayes policy behaved
very poorly for the topic Recreation, which was ranked fourth below the topic Shopping.
More explicitly, after 210 queries, topics Computers collected 89.81 % of the documents,
topic Sports 83.42 %, topic Shopping 73.34 %, topic Recreation 70.86 % and topic Society
54.86 %. This is due to the fact that Recreation is a much broader topic than the rest and thus
Perfect can benefit more by knowing the topic of the documents beforehand. The other two
classifier-based approaches, namely smo and j48, produced slightly and significantly worse
results than NaiveBayes, respectively. Their performance is depicted in Figures 12 and 13.

Figure 14 shows the results for the CosineSimilarity policy. Topics Computers and Sports
were again first with 91.84 % and 89.66 %, respectively, after issuing 210 queries. Topic
Recreation collected 83.55 % of the related documents, while topics Shopping and Society
returned 79.02 % and 62.97 %, respectively, after the same amount of queries. The Cosi-
neSimilarity policy performed slightly better than the Perfect policy in 4 of the 5 topics
examined, Computers being the only exception. Additionally, it out-scored the classifier
based policies for every one of the five different topics. Topic Recreation behaved better
than Shopping after the 87th query, as it did with the Perfect policy after the 162nd query.
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Figure 11 NaiveBayes policy on different topics of dmoz

4.8 Impact of query document size

The CosineSimilarity policy depends heavily on the input document, since it does not use
it to only extract the first few queries to be issued, but to evaluate the result documents
retrieved as well. Therefore, we examine here the impact of the size of the initial document
on the behavior of this policy. The other three policies use the initial document only for the
first step of the process, so they are not affected as much by the size of the initial document.
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Figure 12 smo policy on different topics of dmoz
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Figure 15 illustrates the results for CosineSimilar

ity under three different sized “query

documents” when crawling for Computer related documents from dmoz. We see that as the
size limits the performance worsens. However, even for a very small “query document” we
can still get very good results. More specifically, using an input document that consists of

1,000 titles and summaries of links indexed by dmoz,
91.14 % of the relevant documents after 190 queries
and summaries, the policy discovered 87.77 % of the

the CosineSimilarity policy retrieved
. In comparison, with only 100 titles
documents with the same number of

queries. With an input document of 50 titles and summaries, it retrieved a sizeable 86.67 %
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Figure 14 CosineSimilarity policy on different topics of dmoz
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Figure 15 Impact of the input document size using CosineSimilarity on topic Computers

of them. Therefore, the CosineSimilarity policy behaves fairly good even with relatively
small “query documents”.

4.9 Impact of noise

The download polices presented in our approach feature the insertion of new terms in our
pool of words as we iteratively issue queries and retrieve results. Although we have designed
our approach to include words that are as relevant to the topic that we are interested in as
possible, the inclusion of words that may be irrelevant to the topic description is unavoidable
in some cases. In this experiment, our goal is to quantify the effect that a few potential bad
selections of terms has on the performance of our Hidden Web crawler.

To this end, we repeated the experiment of Section 4.3 with the addition that in each
policy we would pick a random word 10 % of the time instead of always picking the best
word according to each of the policy’s view of the data (i.e. the word’s tf/idf score). We
report the results in Figure 16. The horizontal axis represents a policy, and the vertical
axis the percentage of the topic covered by each policy. We represent with blue bars the
policies that had a noise level of zero (i.e. they performed identically to Section 4.3) and
with red the policies with 10 % noise. For the policies with noise, we report the average
percentage they covered after repeatedly running them for 10 times. We also report the 95 %
confidence interval on the graphs in order to determine how confident we are in the observed
performance since we introduced noise. All policies were allowed to issue 450 queries. As
Figure 16 shows, the “noisy” policies still manage to retrieve a significant number of results,
albeit fewer compared to their “non-noisy” counterparts. This is, of course, expected as
most of the random term queries are not returning interesting results and are simply wasting
resources. However, none of the “noisy” policies caused the crawler to drift away from the
topic that the crawler was interested in.
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Figure 16 Impact of noise on all our proposed policies on topic Wordpress of StackExchange

4.10 Impact of the NOT operator

The upper limit that dmoz enforces on the number of returned results plays a significant part
in the performance of our approach. We can only retrieve a subset of the documents that a
query matches and have to submit new queries to retrieve the rest of them. In order to deal
with this issue, we examined the use of the NOT operator as part of our queries. For every
term that has returned a number of documents smaller than the upper limit, we can be sure
that we have retrieved every document that contains it. Thus, by excluding this term from all
future submissions, using the NOT operator, we can avoid downloading the same content and
retrieve results that otherwise would be unreachable due to the maximum results limitation.

It is clear however, that we cannot apply the same policy for terms that have returned the
maximum number of links, because in that way we would exclude from our search the rest
of their matching documents. Since a lot of the terms our policies generate do actually reach
that limit, it was expected that the impact of the NOT operator would not be significant.
We tested this approach with the Perfect and CosineSimilarity policies for the topic Sports
of dmoz and noticed little improvement for the former and very limited for the latter. The
results are illustrated in Figure 17.

4.11 Comparison to previous work

In the previous sections, we presented the performance of our policies over a set of different
datasets. More specifically, we examined four datasets: dmoz, stack exchange, new york
times and twitter.

Prior works focusing on crawling pages from the Hidden Web are presented mostly in
[2, 18, 21]. In those works, the authors present methods that optimize for a much different
metric than ours. More specifically, the authors in [2, 21] are interested in downloading as
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Impact of the NOT operator on Topic Sports of dmoz
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Figure 17 Impact of the NOT operator using policies Perfect and CosineSimilarity on topic Sports of dmoz

much of the Hidden Web site as possible, while the authors in [18] aim at generating good
distinct URLs that will download valid Hidden Web pages.

Such policies could potentially be employed to address the specific problem that we
discuss in this paper, but with two caveats. First, since such policies do not optimize for
a specific topic that we would be interested in, we would have to download the whole (or
as much as possible of) the Hidden Web site at hand and then analyze the pages in order
to determine which ones are relevant to our topic. This involves a lot of wasted resources,
which is what our policies are attempting to address. Second, the performance of these
policies (in terms of the percentage of topic covered) essentially depends not only on the
size of the topic relative to the size of the Hidden Web site but also on the limit in the number
of results. This is because when the topic we are interested in is a small fraction of the
overall site, a generic policy will have to download more of the site in order to achieve good
topic coverage. At the same time, when the number of returned results is capped at a smaller
number, a generic policy cannot benefit from the accidental submission of a frequent word
that happens to return many topically-relevant documents.

To this last point, the frequency-based policies in [2, 21] are very similar to our do-
nothing policy. Taking as an example Figures 5 and 6, we can observe that the do-nothing
policy does not fare very well in terms of topic coverage compared to the other ones. In
addition, the do-nothing policy is worse in the Stack Exchange dataset compared to the
dmoz dataset due to the fact that we limited the Stack Exchange experiment to return only
1k results compared to 10k in dmoz (the proportion of the topic to the collection is relatively
similar in both datasets).

In effect, by generating more focused queries that are more likely to return pages that
pertain to the topic of interest, we managed to significantly reduce the wasted resources of
a generic Hidden Web crawler.
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5 Conclusion and future work

We examined how we can build a focused Hidden Web crawler that, given a query document,
can retrieve effectively those documents that are relevant to a certain topic. By avoiding to
download irrelevant pages, we limit the crawling requirements in terms of both hardware
and network resources. Our approach uses the #f/idf weighting system to extract appropriate
terms. We also proposed and evaluated a number of policies that measure the relevance of
the returned documents with the topic in search. Our experimental evaluation indicates that
our suggested algorithm has great potential for harnessing topic-specific documents. In the
context of our work, we managed to successfully retrieve the majority of the documents
related to a number of topics from four Hidden Web sites, by issuing a significantly smaller
amount of queries than what it would be required to retrieve the site in its entirety.

In the future, we plan to examine if diverse query formulations will further reduce the
overhead in the process. Moreover, we will continue adjusting our approach to handle more
complex query interfaces. Finally, another potential direction for future work is to build a
crawler for the Hidden Web that focuses on downloading recently updated content. In that
way, the crawler will achieve to further cut down its requirements in resources, since it will
be able to avoid downloading the same documents over and over again.

Acknowledgements This work has been partially supported by SocWeb and Sucre FP7 EU projects. A
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