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Abstract Data stream management systems (DSMSs)
offer the most effective solution for processing data streams
by efficiently executing continuous queries (CQs) over the
incoming data. CQs inherently have different levels of crit-
icality and hence different levels of expected quality of
service (QoS) and quality of data (QoD). Adhering to such
expected QoS/QoD metrics is even more important in cases
of multi-tenant data stream management services. In this
work, we proposeDILoS, a framework that, through priority-
based scheduling and load shedding, supports differentiated
QoS and QoD for multiple classes of CQs. Unlike existing
works that consider scheduling and load shedding separately,
DILoS is a novel unified framework that exploits the syn-
ergy between scheduling and load shedding.We also propose
ALoMa, a general, adaptive loadmanager that DILoS is built
upon.By its design,ALoMaperforms better than the state-of-
the-art alternatives in three dimensions: (1) it automatically
tunes the headroom factor, (2) it honors the delay target, (3) it
is applicable to complex query networks with shared opera-
tors. We implemented DILoS and ALoMa in our real DSMS
prototype system (AQSIOS) and evaluate their performance
for a variety of real and synthetic workloads. Our experimen-
tal evaluation of ALoMa verified its clear superiority over the
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state-of-the-art approaches. Our experimental evaluation of
the DILoS framework showed that it (a) allows the scheduler
and load shedder to consistently honor CQs’ priorities, (b)
significantly increases system capacity utilization by exploit-
ing batch processing, and (c) enables operator sharing among
query classes of different priorities while avoiding priority
inversion, i.e., a lower-priority class never blocks a higher-
priority one.
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1 Introduction

Motivation: Today the ubiquity of sensing devices as well
as mobile and web applications continuously generates a
huge amount of data which takes the form of streams. These
data streams are typically high volume, often high veloc-
ity (speed), and high variability (bursty). In order to meet
the near-real-time requirements of the monitoring applica-
tions and of the emerging “Big Data” applications [29],
incoming data streams need to be continuously processed
and analyzed. Data stream management systems (DSMSs)
(e.g., [1,3,5,7,13,17,18]) have become the popular solutions
to handle data streams by efficiently supporting continuous
queries (CQs). CQs are stored queries that execute contin-
uously, looking for interesting events over data streams as
data arrives, on the fly.

CQs are registered for different purposes and inherently
have different levels of criticality. For example, assume the
data feed of a personal health monitoring device such as Fit-
bit, Microsoft Band, and Apple’s iWatch. Also assume two
continuous queries: CQ1, that monitors the user’s heart rate
for the possibility of a heart attack due to dangerously high
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beats per minute (as appropriate for the particular user given
his/her age, physical condition and medical history), and
CQ2, that monitors the user’s overall activity level (using
the heart rate monitor, a pedometer and other sensors) in
order to nudge him/her to remain physically active. Clearly,
CQ1 is more critical than CQ2 and as such can demand a
higher priority than CQ2 in sharing the DSMS’ processing
capacity. Another example of CQs with different priorities
is in the financial sector. Assume three CQs that monitor
the transactions of credit card uses: CQ3 is used to detect
fraud (e.g., identity theft), CQ4 is used to notify users of
low credit balance remaining in their accounts, and CQ5

is trying to find good targeted advertisements for the credit
card users. Again, these three CQs have different levels of
criticality with CQ3 being more important than CQ4 which
is more important that CQ5. A third example is one where
CQs to detect a tsunami [4] would have higher priority than
those that detect, understand and predict El Nino and La
Nina [6]. Finally, multi-tenant DSMSs normally provide dif-
ferent service groups with different costs (e.g., gold, silver,
and bronze), which determine the priority of the queries sub-
scribed to each group and hence the quality guarantees, i.e.,
service level agreements (SLAs).

Many commercial mission critical and analytics appli-
cations require processing of queries with priorities. This
demand for priority-based query processing has motivated a
number of commercial database and data warehouse systems
to provide it. For example, EMC Greenplum has put effort
in supporting query priorities [35]. As another example, HP
Vertica allows defining multiple query resource pools with
different limits on memory usage, runtime priority, etc., each
for a group of queries [2].

Similar demand for priority-based query processing exists
for data stream management systems. Although support for
CQs with different priority levels in commercial DSMSs
is still limited, the priority of CQs has been discussed in
research prototypes such as Aurora [7],MavStream [17], and
IBM System S [5].

ProblemSpace: For the above reasons, we consider a DSMS
(Fig. 1), which supports multiple classes of service for CQs.
Each CQ submitted to this DSMS belongs to a query class
that is associated with a priority. The system admits queries
basedon its provisionedprocessing capacity and the expected
loads of the queries. However, due to the burstiness of data
streams, the incoming workload can be, at times, higher than
the system capacity, making the system overloaded. The two
important requirements for this multiple-CQ-priority DSMS
are:

– Guarantee an upper bound on the response time:
Most stream applications require an upper bound on the
response time, which is also referred to asQuality of Ser-

Fig. 1 AQSIOS system model

vice (QoS) in the worst case, or delay target. Each class
can require a different delay target; normally, a higher-
priority class requires a smaller delay target. Because of
this requirement, when the DSMS is overloaded, it has
to apply load shedding, i.e., drops an appropriate amount
of data to avoid processing it further.

– Minimize data loss with priority consideration: With
load shedding applied to honor delay targets, all classes
desire as little data loss, i.e., as high Quality of Data
(QoD), as possible. At the minimum, each CQ class
expects QoD according to their priorities.

Previous works have partially addressed these require-
ments, either through scheduling (e.g., [10,15]) or through
load shedding (e.g., [17,42]), yet these were only considered
in isolation. Clearly, enforcing worst-case QoS in overload
situations while providing prioritized QoD for query classes
requires the participation of both the scheduler and the load
manager (i.e., load shedder): The load manager decides how
much data to drop from each class, whereas the scheduler
decides how much processing time each query has, which
consequently governs how much data the class can process
in a period. The challenge of how to integrate scheduling
and load shedding in a way to consistently honor the prior-
ities of CQs still remains. Even if the load manager and the
scheduler are both aware of the CQs’ priorities and enforce
policies that seem to be consistent with each other, undesired
situations can still happen, as we demonstrate in the example
below.

Consider a simplified example of two CQs Q1 and Q2,
in which Q1 and Q2 have the same cost, yet Q1’s priority
is twice as high as Q2. Without going into the details of
the scheduling and load shedding policies, let us consider
a period during which the scheduler effectively executes 10
tuples of Q1 and 5 tuples of Q2 in every second, for a total
processing capacity of 15 tuples/s. The DSMS also has a
prioritized load shedder that, once detecting the excess load,
will drop twice as much load from Q2 as from Q1. Assuming
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that the input rate coming to both Q1 and Q2 is 9 tuples/s (for
a total of 18 tuples/s), the load shedder calculates the excess
rate to be 3 tuples/s and, following its policy, will drop 1
tuple from the input of Q1 and 2 tuples from the input of Q2.
We observe two problems. First, shedding 2 tuples from Q2

is not sufficient to control Q2’s load since 7 tuples/s is still
higher than Q2’s processing rate of 5 tuples/s. As such, the
response time of Q2 increases unboundedly and the system
would violate any delay target set for Q2. Second, shedding
from Q1 while it is running underloaded is a waste of the
system processing capacity and unnecessarily affects Q1’s
QoD.

The problems described above are due to the fact that
the load manager is not aware of the way the scheduler
is enforcing its priority policy and that the scheduler does
not recognize the level of capacity usage of each CQ to
fully utilize the system capacity. Motivated by this observa-
tion, we propose DILoS (Dynamic Integrated LoadManager
and Scheduler), a novel framework that exploits the synergy
between the load manager and the scheduler to enable con-
sistent and effective integration between the two modules in
the DSMS.

Intuitively, for our simplified example, DILoS allows the
loadmanager to recognize that Q2 is overloaded by 4 tuples/s
and Q1 is 1 tuple/s underloaded, so it drops 4 tuples from Q2

and nothing from Q1. At the same time, the load manager
reports the load status of each CQ to the scheduler. Hence, in
the next cycle the scheduler can choose to give the redundant
CPU time from Q1 to Q2, enabling Q2 to process up to 6
tuples/s. If such an adjustment is made, the loadmanager will
reduce the shedding of Q2 to 3 tuples, improving Q2’s QoD
while fully using the system capacity.

We proposed the idea of DILoS in a short paper in the
SMDB’11 workshop [37]. To the best of our knowledge, we
were the first to identify and analyze the problem of integrat-
ing a priority-aware scheduler and load manager in a DSMS.

Contributions:We make the following contributions in this
paper:

– We present formally and thoroughly DILoS, our novel
framework that allows consistent integration between the
scheduler and load manager in a DSMS to support mul-
tiple priority classes of CQs.

– We propose ALoMa, a new adaptive load management
scheme that enables the realization of DILoS. ALoMa is
also a general, practical DSMS load shedder that outper-
forms the state of the art in deciding when the DSMS is
overloaded and how much load needs to be shed.

– We showhowDILoS solves the congestion problem typi-
cally encounteredwhen there is operator sharing between
classes of different priority in a fully optimized query net-
work.

– We provide a thorough experimental evaluation and
analysis of DILoS in AQSIOS [21], our real DSMS pro-
totype. The results of our evaluation, with both complex
synthetic and real input rate patterns, show the robust-
ness of DILoS and confirm that DILoS achieves the goals
of (1) consistently supporting multiple levels of priori-
ties for CQs and (2) maximizing the utilization of the
system processing capacity to reduce the need for load
shedding.

Roadmap: Section 2 presents the basic concepts of our
assumed system model. Section 3 formally analyzes the
problem and presents the overview of our proposed DILoS
framework. Section 4 describes our ALoMa load manager,
and Sect. 5 presents an implementation of DILoS. Section
6 shows how DILoS solves the congestion problem under
inter-class sharing. We describe our experimental evaluation
in Sect. 7 and discuss the possibility of incorporating differ-
ent schedulers and load shedders into DILoS in Sect. 8. We
review the related work in Sect. 9 and conclude in Sect. 10.

2 Background

We consider a multi-tenant DSMS (Fig. 1) in which each
submitted CQ belongs to a priority class. We assume that
the query class priorities have been quantified into discrete
values, with higher value meaning higher priority.

Like most other DSMS architectures (e.g., [7,13,18]), our
assumed DSMS has a CQ processing engine, together with
a query optimizer, a scheduler, and a load manager/ shedder.
Each submitted CQ is compiled and optimized into a query
plan consisting of multiple relational operators (i.e., select,
project, join, or aggregates), one or more source operators,
and an output operator.

Each operator has one or more input queues depend-
ing on its type. Tuples produced by an operator will be
placed in the input queues of the next operators downstream.
Since CQs exist in the DSMS for a long time, their plans
are optimized together forming a query network, in which
a query can share with others some of its operators, such
as Q1 and Q2 in Fig. 1. In such a case, the intermediate
tuples produced by the shared operator will be placed in a
shared input queue for the two operators downstream. The
output of each CQ is continuously stored or streamed to
applications.

During execution, the scheduler is responsible for assign-
ing each operator a time slot to run. Like most other DSMS
schedulers, to reduce context switching overhead, the sched-
ulers allowsbatch processingby letting eachoperator process
up to a predefined number of tuples in its input queue during
each invocation.
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Definition 1 The response time of a tuple is the time elapsed
since the tuple enters the system until the related result is
output. The response time consists of processing time and
queuing time. Only tuples that are output by the query net-
work contribute to the measuring of response time.

Definition 2 The worst-case Quality of Service (worst-case
QoS) of a query is the highest response time tolerated by the
stream applications using the query. In this paper, the worst-
case QoS is also referred to as delay target, denoted by D.
We assume that all queries in the same class have the same
delay target.

The load manager takes action when the system gets over-
loaded, i.e., when the rate of the input load is higher than the
processing rate of the system. In such a case, the load shedder
drops a necessary amount to prevent the response time of the
system from increasing unboundedly.

Definition 3 TheQuality ofData (QoD)of a query is the per-
centage of output tuples retained after shedding, compared
to the case with no shedding.

A good load manager should maximize QoD (i.e., minimize
data loss) while controlling the response time.

3 DILoS: Dynamic integrated load manager and
scheduler

3.1 DILoS as a general priority-based scheduler-load
manager integration framework

At runtime, a priority-based scheduler applies its policy to
assign an execution time slot for each operator in the query
network. In general, the scheduler takes into account the pri-
orities of CQ classes by given a higher-priority class a higher
amount of time to execute the operators of the CQs belonging
to the class.

Definition 4 Let Ck denote the kth CQ class, with corre-
sponding priority Pk . At the class level, in a specific time
period T a scheduling policy can be represented by a func-
tion fT : fT (Pk) = Tk , such that

∑
k(Tk) ≤ T , where Tk is

the total time the class Ck receives during T.

Our example in Sect. 1 suggests that, in a specific period, the
loadmanager can act consistently with the scheduler’s policy
if it knows (1) the current incoming workload of each class
and (2) the maximum workload each class can handle (i.e.,
the processing capacity of the class).

We observed that, within a single class, the load manage-
ment tasks are the sameaswhat a general loadmanagerwould
do for a typical DSMS without CQ priority, i.e., monitoring
system load, calculating excess load based on the system

Fig. 2 Overview of the proposed DILoS framework

processing capacity, and applying load shedding fairly for
all CQs. In other words, each class can be viewed as a virtual
system.

Based on this observation, we propose the DILoS frame-
work in which each class has its own load manager instance.
Each class has an incomingworkload Lk and a system capac-
ity LCk proportional to Tk .We separate the scheduler into two
levels: a class scheduler and a set of local operator sched-
ulers. Each classCk has its local operator scheduler,which, in
each period T, schedules the operators of the CQs belonging
to Ck using the assigned time Tk . The class scheduler sched-
ules the CQ classes, i.e., determines the function fT (Pk) that
maps the priority ofCk to Tk (capacity distribution policy). In
general, the two-level scheduling can be just a logical separa-
tion: the DSMSmight not explicitly have the class scheduler,
in which case fT is defined implicitly through the time the
scheduler assigns for each operator of a class.

Figure 2 illustrates our DILoS framework. For simplicity,
we assume for now that there is no operator sharing between
classes of different priorities. We drop this assumption later
in Sect. 6.

The design of DILoS allows the load manager to follow
exactly the policy enforced by the scheduler. Within a class,
the load manager instance acts as if it is managing a DSMS
with all CQs having the same priority: it monitors the incom-
ing load, detects and shed the excess load to comply with the
worst-case QoS requirement of the class. The class’ priority
is reflected automatically: the class with higher priority is
scheduled with a larger time slot (bigger processing capac-
ity) and therefore will have a higher QoD (less data loss due
to load shedding) given the same workload.

In addition, the load manager also reports the capacity
usage (i.e., the ratio Lk

LC k
) of its class to the class scheduler.

Based on that information, the class scheduler can consider
adjusting its capacity distribution policy to better exploit the
system capacity. An example of such an adjustment is taking
the redundant capacity from one class and distributing it to
the classes in need.
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The advantage of DILOS’s synergy is not only that it
repairs the over-provisioning of system capacity for some
classes, but it also exploits batch processing to further
increase system capacity utilization. We explain further the
benefit of batch processing through an experiment presented
in Sect. 7.2.2.

3.2 Load management challenge

In order to successfully control the load in a CQ class, the
class’ load manager needs to (1) estimate the incoming load
of the class and (2) detect the real system capacity of the
class.
Estimate the incoming load of a class: In [42], the authors
present a method to estimate the total system load L. We can
apply this method with a small modification to estimate the
incoming workload of each class.

Definition 5 The incoming load of class Ck in a time unit,
denoted Lk , is given by:

Lk =
∑

i

(
rki × load_coe f ki

)
(1)

where rki denotes the input rate of the i th input stream of
classCk , and load_coefki is the load coefficient of the stream.

Definition 6 The load coefficient of the i th input stream of
class Ck , denoted load_coefki , in the case of a flat query (i.e.,
no shared operator), is given by:

load_coefki =
∑

j

⎛

⎝c j ×
∏

1≤m< j

selm

⎞

⎠ (2)

where c j is the processing cost per tuple of the j th operator
in the path from the input stream to the corresponding output,
and sel j is the operator’s selectivity. In the case of fan-out
query plans, i.e., with shared operators, it recursively sums
up the load coefficient of every sub-path along the way.More
information can be found in [42].

Since the input rates, costs and selectivities all change fre-
quently at runtime, Lk need to be recalculated in every period.
Detect the real system capacity of a class:This is one of the
biggest challenges in materializing DILoS. The state-of-the-
art load shedders estimate the system capacity of a DSMS by
using a headroom factor H, which is either assumed available
or manually tuned. This is not practical since the value of the
headroom factor can change during execution due to changes
in the system environment, as explained in Sect. 4.1. In the
case of our per-class load management, the actual capacity
portion each class obtains (LCk) is represented by a head-
room factor Hk , which is usually different from its expected

value of Tk
T . This deviation is partly due to the existence of

other tasks, either inside or outside the DSMS, sharing the
CPU time, and partly due to the scheduling details as we
will show later in our experiments. Because the existing load
shedders cannot tune H automatically, when serving as a
class’ load manager they would also not be able to recognize
the actual capacity portion that the class has. Therefore, they
would not be able to successfully control the load of the class
to honor its delay target.

In addition, we realize that there is also a lack of a load
manager that can both strictly honor the worst-case response
time and be applicable to all types of query networks. This
motivates us to develop a more practical load management
scheme for DSMSs in general and for DILoS in particular.
We present ALoMa, our new load management scheme, in
the next section.

4 Load shedding and ALoMa

In this section, we present one of the key contributions of this
paper, a practical and general load manager (load shedder).

4.1 The “when and how much” problem and state of the
art

The load shedding problem is typically defined by four ques-
tions: when to shed load, how much load to shed, where in
the query network to apply load shedding, and what data
should be shed. Among these, solutions for the two ques-
tions of “when and how much to shed” are crucial for all
load shedding schemes to work correctly, while approaches
for “where and what to shed” rely on a good estimation of
when and how much to shed and try to reduce the impact of
shedding by exploiting application-specific constrains.

It is therefore important to develop a good load manager
that can provide good answers to the questions of when and
how much to shed. Such a load manager is necessary for
both DILoS and any general purpose DSMS. Surprisingly,
few existing works have addressed these questions and none
has addressed them thoroughly.

A first attempt to answer the “when and how much ques-
tions”, used in Aurora [42] and implied in STREAM [14],
is to compute the coming load L (based on statistics about
operators’ costs and selectivities), compare it to the system
capacity LC (which is estimated by a headroom factor H),
and shed an amount equal to L-LC if L > LC . Although the
Aurora approach is theoretically sound, in practice it has the
following two problems:

1. Ad hoc selection of headroom factor: Aurora does not
provide a method to pick the correct headroom factor
and assumes one is available.
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2. Not delay-target aware: Aurora simply assumes that the
response time will be acceptable if the excess load is
shed. As pointed out in [44], Aurora does not have a self-
correcting mechanism to prevent the response time from
exceeding a delay target.

CTRL [44] is a control-based approach proposed to
addressed the second shortcoming of Aurora, i.e., not delay-
target aware. The CTRL approach counts the number of
tuples coming in and out of the system in each period and
keeps track of a virtual queue of tuples queued in the sys-
tem. The response time (which is called delay in the CTRL
paper) of the tuples coming to the system at the i th period
is then estimated by the following equation, called the delay
estimation model:

yi = c

H
qi−1 = c.T

H

∑

j<i

[
f j
in − f j

out

]
(3)

where yi is the response time at the i th period, q(i−1) is the
length of the virtual queue after the (i − 1)th period, c is the
processing cost per tuple, T is the length of the period, H is
the headroom factor, fin and fout is the input and output rate,
respectively.

Applying control theory on the above model, CTRL com-
putes the maximum number of tuples allowed to come in the
next period such that the response time converges quickly to
the delay target. The experimental results in [44] show that
CTRL can keep the response time around the target, which
theAurora approach cannot,while sheddingonly 1–2%more
data than Aurora.

CTRL, however, has also two major shortcomings:

1. Manual tuning of the headroom factor: In [44], the
authors manually try different values of H in Eq. 3 and
pick the value such that the estimated delay best matches
the real response time. This manual, offline tuning is
clearly not practical since the headroom factor is not con-
stant and can change during execution.

2. Not applicable in complex query networks: When the
query network has shared operators, join, or aggregation
operators (we call it complex), the one-to-onemapping of
an input tuple to an output tuple, which is the way CTRL
estimates the length of the virtual queue, is no longer
correct. Figure 3 gives an example of such a case, where
the result from the Select operator σ2 is shared by two
queries, and one of the operators is a Join (��1). In this
case, simply increasing the length of the virtual queue
by 1 for each incoming tuple from the two sources and
decreasing 1 for each tuple output or discarded would not
work.

Some other schemes have also been discussed, yet they
are not as complete as Aurora and CTRL. The scheme in

Fig. 3 A query network with joins and shared operators, for which the
delay estimation model of CTRL would not work

[30] is effectively the same as Aurora without taking into
account the headroom factor (i.e., assuming that the head-
room factor always equals 1). The schemes in [39] and [31],
like CTRL, monitor the input queue(s) to decide when the
system is overloaded, yet they do not discuss how the number
of queued tuples can be used to infer whether the system is
overloaded.

In order to enable the realization of DILoS as well as
to provide a more practical and flexible load manager for
DSMSs,we proposed a new scheme that has both the comple-
mentary strengths of CTRL and Aurora, while overcoming
their weaknesses. More specifically, the new scheme aims at
the following properties:

– Delay-target aware.
– No manually tuned headroom factor required.
– Applicable for all types of query networks.

4.2 ALoMa: Adaptive Load Manager

ALoMa has two basic components that interact with each
other: the statistics-based loadmonitor and the response time
monitor. The core idea behind ALoMa is to automatically
adjust the estimation of the system capacity (i.e., the head-
room factor) based on the actual response time provided by
the response time monitor. The load monitor estimates the
incoming load using the method in [42] (i.e., Eq. 1 when
there is only one class) and calculates the excess load. This
load estimation is based on the statistics on input rates and
operators’ costs and selectivities,which are continuously col-
lected in the DSMS during execution.

The system starts with some initial value of the headroom
factor that might be reasonable (for example, 0.8). Later on,
if the load monitor estimates that the system is overloaded
but the response time monitor still observes normal response
time, ALoMa decides that the system capacity should be
higher. On the contrary, if the response time monitor detects
that the response time is already higher than the delay target
but the incoming load is still less than the estimated capac-
ity, ALoMa decreases the estimated capacity. When the two
components agree with each other, the difference between
the estimated load and the system capacity is the amount of

123



Avoiding class warfare: managing continuous queries with differentiated classes of service 203

Fig. 4 Response time (a—top
plot) with increasing input rate
(b—bottom plot) and its imply
on system’s load state
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load that needs to be removed or can be added to the system.
Next we explain the intuition behind ALoMa’s decisions.

4.2.1 Observing the response time

One important part of developing ALoMa was to identify
what the response time implies about the system’s load sta-
tus, so we studied the response time of the system (Fig. 4a)
in response to step changes of the input rate (Fig. 4b). All
experiments were carried out on AQSIOS, our experimental
DSMS prototype described in Sect. 2. Note that the Y-axis in
Fig. 4a is in log scale. The input rate starts from 5000 tuples/s
and increases by 5000 tuples/s after every 20s.

From the 0th to 20th second, the response time remains
at around 120µs. One can think that this 120µs reflects the
processing cost per tuple and that the system will be over-
loaded with an input rate greater than 1 tuple/150µs (about
8300 tuples/s). However, we can observe that during the next
20 s when the input rate reaches the value of 10,000 tuples/s
the response time jumps to a higher value, but it remains con-
stant during that 20-s period. This trend continues in all of
the other 20-s periods before the 120th second. This means
there is no accumulation of queuing delay over time, and the
system is not overloaded until the input rate exceeds 35,000
tuples/s.

This phenomenon is due to batch processing. As the input
rate increases, more tuples are waiting every time an opera-
tor gets executed, so it can process more tuples in a batch
(up to a predefined batch size) and reduce the process-
ing cost per tuple. Therefore, the system can endure input
rates that are higher than the anticipated one. Figure 5 con-
firms our explanation by showing a huge fluctuation of the

Fig. 5 Cost fluctuation in response to changes of input rate, measured
on the AQSIOS system

processing cost per tuple as the input rate changes (we cir-
cle some of the points where the cost decreases significantly
as the input rate comes to a peak). On the other hand, this
decrease in processing cost results in higher response time
since every tuple has to wait for the others in the same
batch.

Note that there are some occasional overshoots in the
response time. This is due to events such as operating system
interrupts and can occur randomly at any point during the
execution time.

When the input rate exceeds 35,000 tuples/s in Fig. 4b, the
corresponding response time in Fig. 4a goes up dramatically
due to the accumulated queuing time and the system can be
considered to be overloaded. If the user-specified delay target
D (the horizontal line in Fig. 4a) is higher than the response
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time before this overloading point, which is usually the case
in practice, the system can be allowed to run in an overloaded
state as long as the response time is still below the target.

Let O denote the point after which the system starts to
be overloaded (i.e, the 120th second in Fig. 4). Based on
the above observation, we can map the response time to the
following three load states of the DSMS, each one requiring
a different action from the load manager:

– Normal: the system is not overloaded, the response time
is below or equal to the response time at the O point.

– Under-threshold overloaded (UT): the system is over-
loaded so the queuing time starts accumulating, the
response time is greater than that at the O point but still
less than the delay target.

– Over-threshold overloaded (OT): the system is over-
loaded and the response time is higher than the delay
target.

We explain later at the end of Sect. 4.2.3 how we find the
O point in practice.

4.2.2 Increasing and decreasing the capacity

When ALoMa decides that the estimated headroom factor H
should be increased, a straightforward answer is to set LC

(i.e., H) equal to L, since the system can withstand the load
of L without being overloaded.

However, consider the case when a high input rate is mea-
sured at time t to calculate the load L. At that time, it is
possible that the response time is still that of those tuples
coming at a much lower rate from the previous period. So
ALoMa would then make a mistake by setting LC equal to
L. The dynamic nature of ALoMa enables it to quickly cor-
rect the mistake, but a less aggressive solution will improve
its performance.

Given that the system environment is fairly stable, the
headroom factor usually fluctuateswith small amplitudes and
big, sudden changes just happen once in a while. Therefore,
when the gap between L and LC is small, we can be more
aggressive in moving LC toward L (i.e., when the gap is
small enough, we can set LC equal L). In such cases, the
impact of a mistake due to not-up-to-date statistics, if any, is
also small. On the other hand, if the gap is big, we should
be more conservative and move LC by a smaller fraction of
the gap, because the disagreement of the two components
(which leads to the decision to adjust LC ) is more likely to
be caused by the not-up-to-date statistics and the impact of
an error could be big.

We codify the above ideas into Eq. 4. Note that when the
gap between LC and L gets bigger, this formula moves LC

by a bigger absolute amount, but the ratio of that amount to
the gap is smaller.

LCnew = LC ± log2(z + 1)

z
|L − LC |

where z =
{ |L−LC |

LC
· 100 if |L−LC |

LC
· 100 ≥ 1

1 otherwise
(4)

4.2.3 The ALoMa algorithm

The pseudocode in Algorithm 1 shows the skeleton of
ALoMa. Periodically, the load monitor recomputes the
current incoming loadL, and the response timemonitor deter-
mines the current load state of the system (lines 2, 3).

Algorithm 1 ALoMa
1: BEGIN
2: L := load_monitor.compute_current_load()
3: state := response_time_monitor.detect_current_state()
4: if L > LC then
5: if state = normal then
6: Increase LC
7: else if state = OT then
8: Shed (L − LC ) more load
9: else {state = UT }
10: if (shedding is being applied)

and (response_time ≤ previous_response_time) then
11: Increase LC
12: Reduce shed amount by x%
13: end if
14: end if
15: else {L ≤ LC}
16: if state = OT then
17: if (response_time ≥ previous_response_time) then
18: Decrease LC
19: Shed x% more load
20: end if
21: else
22: if shedding is being applied then
23: Reduce shed amount by (LC − L)
24: end if
25: end if
26: end if
27: END

Load rate L > estimated capacity LC There are three cases
to consider when the current load rate L is greater than the
estimated capacity LC .

– If the state reported by the response time monitor is
normal, then the estimated capacity LC is increased fol-
lowing Eq. 4 (lines 5, 6).

– If the state is OT, ALoMa sheds an additional amount
equal to the difference between L and LC , because the
two components are agreeing with each other (lines 7, 8).

– If the state isUT, ALoMa further checks if load shedding
is being applied and the response time is not increasing
(line 10). If true,ALoMa is sheddingmore than necessary
and so it decides to increase LC (line 11). Also, because
the system at this time tends to be able to endure a load
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higher than L, although it is not clear how much higher,
ALoMa tries to reduce the shed load by x% (line 12).
ALoMa learns the result of this trial in the next cycle
and if the same situation is observed, it increases x . The
algorithm starts with x = 1%, which is the minimum
increase/decrease in the shedding amount that we used
in the system. x is increased by the binary logarithm of
k, which is the number of times the situation has been
observed in a sequence. More specifically, x is given by
Eq. 5

x = 1 + log2(k) (5)

Load rate L ≤ estimated capacity LC When the current
load rate L is smaller than or equal to the estimated system
capacity LC , we only need to consider whether or not the
delay target is violated (i.e., the system is in OT state).

– If the system is in OT state (line 16), ALoMa continues to
check whether the response time is not decreasing (line
17). If this is true, the estimated capacity LC needs to be
decreased toward L following Eq. 4 (line 18), since it is
likely higher than the correct value. Also, the fact that the
response time is higher than the delay target and is not
decreasing means that ALoMa needs to shed more data
to bring the response time back to the target. However,
since the load now is smaller than the estimated capacity,
it is not clear how much more data should be shed. We
also approach this by trying to drop an additional x%
(line 19), with x started as 1% and increased following
Eq. 5.

– If the system is not in OT state, which means the
two components are agreeing with each other, ALoMa
reduces (LC−L) from the current shedding amount being
applied, if any.

One question in this algorithm is how to recognize the pre-
cise O point to distinguish the normal state from the UT state
which is, unfortunately, impossible in practice. However, in
the design of ALoMa, the only purpose of recognizing the
UT state is to know whether or not to increase the estimated
capacity early (lines 5, 6). Therefore, a rough estimation of
this point is sufficient: The response time monitor signals
that the system is in UT state whenever the response time
doubles the smallest response time it observed so far. It is
not a problem if this estimated point is a little higher than the
actual value, because once the system enters the overloaded
state, the response time increases very quickly and exceeds
this higher value no later than it does the correct one. Thus,
the load manager can stop increasing the estimated capacity
just in time. It is also fine if the estimation point is lower than
the real one, as there is a provision for the estimated capac-

ity to be increased when the system is overloaded, should it
be smaller than the real one (line 11). We can periodically
refresh the smallest response time by doubling the current
value and updating it with the smallest observed one since
then.

Note that we are assuming a feasible delay target which
is higher than the O point. However, the algorithm still holds
if the delay target is smaller than the O point but still higher
than the response timewhen the system is very lightly loaded
(e.g., before the 20th second in Fig. 4, which approximates
the processing cost per tuple). In such a case, the UT state
will never happen, and the system capacity is not fully used.
If the delay target is smaller than the lightly loaded response
time, the load shedder cannot honor it unless shedding every-
thing. But this means the original provisioned capacity is not
sufficient and no load shedder can deal with it.

4.2.4 Summary of ALoMa’s properties

Advantages: As confirmed later through experiments,
ALoMa achieves the stated goals, i.e., being applicable to
all types of query networks and able to honor the delay tar-
get without requiring any manually tuned headroom factor.
In addition, ALoMa offers another advantage (compared to
CTRL): ALoMa does not assume the fairness of the operator
scheduler while CTRL does. This fact comes directly from
the design of each approach: CTRL estimates the response
time based on the number of tuples in the virtual queue, while
ALoMa bases its decision on the real response time at each
output. Therefore, if the scheduler is priority-based, CTRL
will only control the average response time across all queries
to the delay target, so the querywith lower prioritymight suf-
fer from a response time much higher than the delay target.
ALoMa, on the other hand, will make sure that the response
times of all queries honor the delay target. We summarize
in Table 1 the properties of ALoMa compared to the two
state-of-the-art approaches, i.e., CTRL and Aurora.

Overhead: At every load management cycle, ALoMa needs
to (1) recompute the total load of the system and (2) adjust

Table 1 ALoMa’s properties compared to the state of the art

ALoMa Aurora
[VLDB’03]

CTRL
[VLDB’06]

Automatically tune
headroom factor

√

Honor delay target
√ √

Applicable to complex
query networks (including
shared operators)

√ √

Independent of scheduler’s
fairness

√ √
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the headroom factor and calculate the amount of load to drop.
The time complexity of (1) is O(Op), where Op is the num-
ber of operators in the query network, and the cost of (2)
is a small constant (a few numeric calculations). ALoMa, as
well as CTRL andAurora, uses the statistics on response time
and operator costs and selectivities, which has time complex-
ity of O(T*Op) where T is the number of incoming tuples.
However, a typical DSMS system would still need to collect
these statistics for a variety of purposes such as scheduling,
query optimizing, and performance auditing. Therefore, it is
reasonable to exclude these costs from ALoMa’s overhead.

Worst-case: As with any adaptive technique, the worst-
case scenario of ALoMa is when the headroom factor (i.e.,
its adaptivity object) goes up and down very frequently,
causing a value of the headroom factor to become stale
before ALoMa has even learned it. Such an unstable envi-
ronment would be hostile to any adaptive load management
techniques.

The worst-case workload for ALoMa, as well as any load
management scheme, is when the system is so overloaded
that it calls for 100% shedding (we know the system still
needs to spend some CPU cycles on dropped tuples). If such
a case persists, load shedding is no longer a sufficient solution
and the system has to be either scaled out or re-provisioned.

5 DILoS implementation

In this section, we present an implementation of DILoS that
uses ALoMa, our proposed adaptive load manager.

5.1 Load manager

We create one instance of ALoMa to be the local load man-
ager of each class. ALoMa’s self-tuning ability allows the
ALoMa instance to automatically recognize theactual capac-
ity portion LCk (represented by Hk) that the corresponding
class obtains. Consequently, each ALoMa instance man-
ages to control the load of its class as if it is managing a
virtual system. After calculating the load that exceeds the
capacity portion of the class, the ALoMa instance sheds
this excess load from the class by specifying the calculated
shedding rate uniformly across the source operators of the
class. Figure 6 illustrates this implementation, in which the
dark operators are the source operators with a load shedder
embedded.

5.2 Scheduler

In this implementation, we use a two-level, class-based
DSMS scheduler proposed in [10], called CQC. As indicated
in Sect. 3.1, although the physical separation of the scheduler

Fig. 6 Per-class load management with ALoMa without inter-class
sharing

into two levels is not required in our general DILoS frame-
work, it is easier for an actual two-level scheduler to develop
a capacity redistribution policy.

CQC is a class-based scheduler that supports CQ classes
with different priorities, essentially giving more execution
time to the class of higher priority. At the class level, a
Weighted Round Robin (WRR) scheduler allocates to each
query class Ck a time quota Tk such that Tk = Pk∑

i (Pi )
× T .

At the operator level, there is a set of slightly modified HR
(Highest Rate) [40] schedulers. Each modified HR scheduler
is in charge of the set of operators that belong to a spe-
cific class. The modified HR scheduler aims to preserve the
goal of the original priority-based HR scheduler to minimize
the average response time, yet eliminates starvation within a
class. More details on CQC can be found at [10].

5.3 Capacity redistribution

After every period, each ALoMa instance reports to the class
scheduler the capacity usage uk = Lk

LC k
of the class. In order

for the scheduler to adjust its decisions based on each class’
capacity usage, we extend its policy to incorporate capac-
ity redistribution. Intuitively, the class scheduler recognizes
the available capacity from classes that are running under-
loaded and distributes this capacity to the classes that are
overloaded following a “highest priority first” rule. Specif-
ically, for each class Ck the scheduler calculates: demandk ,
which is the additional percentage of the system capacity the
class needs in order to process all of its current load without
shedding, and supplyk , which is the percentage of the system
capacity the class can share with others without itself being
overloaded.

Let uk denote the capacity usage of class Ck , and LCk

and L0
Ck = Pk∑

i (Pi )
denote its current capacity and its initial
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expected capacity portion, respectively. Values demandk and
supplyk are computed as follows:

demandk =
{
(uk − 1) × LCk if uk < 1
0 otherwise

supplyk

=
{
(1 − uk) × LCk − 5% × L0

Ck if ui < 1 − 5%×L0
C k

LC k

0 otherwise

Note that in order to increase the system stability, the sched-
uler does not take all of the estimated redundant capacity from
a class, but conservatively leaves 5% of its original capac-
ity portion. This small amount of 5% of a class’ original
capacity is reserved so that the often small perturbations of
input load do not overload a class and lead to a new capacity
re-distribution. Using a higher percentage would increase the
stability of the capacity distribution anddecrease the possibil-
ity of a class having to shed tuples when input load suddenly
increases. Yet, a higher percentage means the system capac-
ity is not used as fully. Other customizations for this trade-off
can be trivially incorporated intoDILoS (e.g., higher percent-
age may be used for critical classes).

The scheduler calculates budget = ∑
k supplyk , and

redistributes the system capacity as follows:

1. For a class k, after the redistribution, either demandk is
satisfied (is 0) or it has at least its original capacity (i.e.,
original quota).

2. If the original priority of class i is higher than class j,
then demandi must be satisfied using the available budget
before demand j .

3. Any remaining budget, after satisfying all demands, is
returned to the classes whose quotas are less than their
original quotas. This proceeds from the highest to the
lowest class.

The capacity portion of each class resulted from this redis-
tribution, denoted Lnew

Ck
, is the expected capacity portion of

the class in the next period. As such, the scheduler calculates

the time quota T new
k for the next period as T new

k = Lnew
Ck

LC k
×Tk .

The sum of time quotas should not change before and after
the redistribution.

In order to help each load manager to quickly adapt to the
new value of the capacity portion, the scheduler also changes
the headroom factor of each load manager, as given in Eq.
6. This new value set by the scheduler does not need to be
perfectly accurate because the load manager is able to auto-
matically adjust it.

Hnew
k = T new

k

Tk
× Hk (6)

5.4 Overhead of DILoS

The overall overhead of DILoS includes the cost of the sta-
tistics collection and the cost of redistributing the system
capacity among classes. As discussed in Sect. 4.2.4, a typical
DSMS system needs to collect these statistics for a variety of
purposes. Therefore, themere cost addedbyDILoS is the cost
of redistributing the system capacity among the classes. This
cost actually depends on the specific policy incorporated. For
the specific implementation presented in this paper, the redis-
tributing requires one pass to compute demandi and supplyi ,
and another pass to distribute the total budget. Therefore, this
process has time complexity of O(C) where C is the number
of priority classes. Because C usually ranges from a few to
tens, and the redistributing only happen once after several
scheduling cycles, this cost is negligible. In fact, as shown
in our experiments, this extra cost of DILoS is obscured by
the benefit it brings: significantly more data can be processed
(i.e., much less shedding).

6 Inter-class sharing in DILoS

In a fully optimized query network, there can be sharing
between classes of different priority. We explain in this sec-
tion the congestion problem caused by this inter-class sharing
and show how DILoS solves this problem.

6.1 Congestion problem

Given a prioritized scheduler such as CQC, intuitively the
shared segment between a query of high priority and a query
of lower priority should remain in the high-priority class in
order not to affect its performance. Figure 7 illustrates this,
in which a query of class 1 (higher priority) shares a seg-
ment with a query of class k (lower priority), and the shared
segment remains in class 1.

However, this still could lead to a situation when the per-
formance of the high-priority query is negatively affected,
which is due to the congestion at the end of the shared
segment. The intermediate tuples produced by the shared
segment are placed in a shared queue for the downstream
operators to read from. While the downstream operator
belonging to the high-priority class can consume these tuples
fast enough to keep up with the production rate, the opera-
tors belonging to the low-priority class, however, are much
slower. Therefore, the intermediate tuples accumulate and
once they fill the queue, the upstream segment has to stop
processing and wait, causing the corresponding high-priority
queries also to be blocked. Note that this problem persists
even if each downstream operator has its own input queue for
the intermediate tuples instead of using a shared queue: the
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upstream shared segment still needs to postpone its process-
ing if one of the queues becomes full.

6.2 Handling inter-class sharing in DILoS

Interestingly, this problem can be solved with an appropriate
employment of load management: as long as the low-priority
class is not overloaded, i.e., it can keep up with the incoming
workload including the input fed by the shared segment, there
will be no congestion of intermediate tuples at the end of the
shared segment.

Claim 1 If the load manager manages to keep the response
time of the low-priority class to its delay target, the number
of tuples accumulating in the shared queue is no higher than
the ratio R between the delay target of the low-priority class
and the average processing cost per tuple at that low-priority
class.

Proof (By contradiction) Let d be the delay target and c the
average processing cost per tuple at the lower-priority class.
We define R = d/c.

Assume that the load manager satisfies the delay target d
and there are S > R tuples accumulating in the shared queue.

It is known that the response time of an output tuple is
equal to its processing time plus its waiting time. With S
tuples in the shared queue (waiting to be processed by the
low-priority class), the waiting time of a new tuple entering
the queue, which is to be processed by that class, is going to
be S ∗ c and its response time t is going to be greater than
S∗c. Since S > R and R = d/c, then t > d. This contradicts
the fact that the load manager can control the response time
of the class to be no more than the delay target (t <= d). �	
A direct consequence of Claim 1 is that, with ALoMacon
enabled, which can guarantee the delay target, as long as the
shared queue size is big enough to contain R tuples, the high-
priority class is not affected by the congestion problem. This
is a reasonable assumption for the queue size, since this ratio
is normally within tens to hundreds (in our setup it is around
25–50) and can be either estimated in advance or dynamically
extended during execution. Clearly, with the seamless inte-
gration of ALoMa, DILoS inherently solves the congestion
problem that exists with any class-based scheduler, allowing
inter-class sharing for a more optimized query network.

When there is sharing between a higher-priority class and
a lower-priority class, theALoMa instancewhich is in charge
of the lower-priority class views the first operator(s) in the
class after the shared segment as the source operator(s) of
the class, so the shared segment is excluded from the lower-
priority class from a load management perspective. In our
current implementation in this paper, we embed load shed-
ding into the source operators,whichmeans this operator also
has a shedder embedded. Figure 7 illustrates this method,

Fig. 7 per-class load manager, with class 1 (high priority) sharing a
segment with class k (lower priority)

in which the shared segment is moved completely to the
higher-priority class (class 1), while the load manager of the
low-priority class (class k) behaves as if query Qk1 starts
from the dark operator after the shared segment.

Such a sharing can be trivially applied to more compli-
cated cases when a segment is shared among several classes:
The shared segment will belong to the highest priority class
and all the load managers of the other classes will consider
the corresponding first operators after the shared segment as
sources of their classes.

The above approach for inter-class sharing guarantees the
original benefit of the high-priority class: Sharing should not
affect its performance negatively. At the same time, although
it does not appear to benefit directly from the sharing, there
is a potential advantage for it: when the load of the lower-
priority class becomes lighter thanks to sharing, it can have
some redundant capacity to share with the high-priority class
when necessary.

The effect on the lower-priority class, however, is twofold.
It is clear that when the high-priority class has enough capac-
ity to process all of its incoming load, the lower-priority
class takes advantage of the shared processing to reduce its
own incoming load. However, once the high-priority class
becomes overloaded, it will apply the shedding at all of its
sources, including the shared ones, which results in the loss
of QoD for the low-priority class even if the class is not
overloaded.We believe that such a case is rare, for the higher-
priority class should be provisioned with higher capacity
(relative to its load) than lower-priority ones. We can also
apply differentiated shedding between shared and not shared
segments.

This discussion about handling inter-class sharing assumes
that the load shedder randomly drops tuples. If a semantic
load shedder is used, it assumes that all the classes sharing
a query segment consider the same semantics for the tuples
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coming into the segment (i.e., there is no case when, for
example, a tuple is important to a higher-priority class but
not important to a lower-priority class).

7 Experimental evaluation

We evaluated our proposed schemes (the ALoMa load
manager and an implementation of DILoS) in AQSIOS,
our DSMS experimental platform developed on top of the
STREAM code base [13]. We divide our experiments into
two sets: one evaluating ALoMa, our adaptive load manager,
as a stand-alone DSMS loadmanager in comparison with the
state of the art, and the other evaluating the DILoS frame-
work (with ALoMa as the local load management in each
class). All experiments were run 5 times, and we report the
averages.

7.1 ALoMa evaluation

7.1.1 Experiment settings

We experimentally evaluated the performance of ALoMa
compared with two existing schemes, namely CTRL [44]
and Aurora [42] (Sect. 4.1).
Query networks: We use three query networks as described
below:

– QN-flat: is a flat query of 8 select and project operators
together with a source operator and an output operator.
We add delay to the operators to increase the processing
cost per tuple, so that the total cost of this query network is
approximate to that of QN-complex. This QN-flat query
network is similar to the one used in the CTRL paper
[44]1. We use this query network in our experiments to
create a setting where CTRL can achieve its best per-
formance. The simple, flat query network enables the
correct calculation of the virtual queue in CTRL, even
though such a query network is not representative of real
applications.

– QN-complex: is a big query network containing 1140
operators. The query network contains 60 identical
groups of 4 queries, with select, project, source and input
operators. The queries in the same group read data from
the same stream source.We intentionally let the queries in
each group share some operators with each other, which
creates a case where CTRL is not applicable, as analyzed
in Sect. 4.1.

1 In fact, the CTRL paper does not even use real operators: It used
only delay operators to simulate an operator with a certain processing
cost and selectivity. The Aurora paper uses only a simulation for its
experiment, not a real DSMS.

– QN-long: This query network contains long queries (i.e.,
queries having many operators). A representative query
in this network is presented in CQL syntax [13] below2,
with S, T, U, V, W and M being the six stream sources:

SELECT l. avg(m) FROM
ISTREAM
( SELECT S.l AS l,

(S.m + T.m + U.m + V.m + W.m + X.m)/6 AS m
FROM S[Range 10 seconds],

T[Range 10 seconds],
U[Range 10 seconds],
V[Range 10 seconds],
W[Range 10 seconds],
X[Range 10 seconds]

WHERE S.l = T.l and T.l = U.l and U.l = V.l
and V.l = W.l and W.l = X.l

) [Rows 10]
GROUP BY l
HAVING avg(m) < 40.0;

Effectively, the query has five Joins and five Range win-
dows, one Relation-to-stream operator (ISTREAM), one
Group-aggregate and one Row window, and one Select.
In addition, the query has five Stream sources and one
Output operator, for a total of 20 operators. There are
five groups in the query network, each containing 4
queries with multiple levels of sharing. More specifi-
cally, two of the queries in each group share with each
other the segment from stream sources up to the group-
aggregate, while sharing with the other two queries the
stream sources and the first range window join.

Input data: We use two streams of synthetic data, denoted
SAc and SAstep, and one of real data SAr . We generated the
input tuples for each source beforehand and stored them in
a file. Each tuple has a timestamp, which indicates the time
the tuple will arrive at the system during execution (relative
to the experiment’s start time) and reflects the input rate.

– SAc: has a constant input rate of 200 tuples/s, which is
within the system capacity, for the first 10 s, and then goes
to 350 tuples/s, which overloads the system, until the end
of the experiment at the 400th second. SAc is used when
wewant to keep the input rate constant to clearly examine
the effect of the factor of interest.

– SAstep: has an initial constant input rate of 200 tuples/s
for the first 10 s, then goes up to a higher level every 40s
until the system is so overloaded that load shedding can
no longer control the response time. We use this input to
test a worst-case situation.

2 Note that because STREAM (inherited by AQSIOS) does not support
everything in the CQL syntax, we had to split the query into several
virtual queries in the actual script.
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Fig. 8 Input rate of the real data in SAr and SDr

– SAr : is a trace of TCP packets between the Lawrence
Berkeley Laboratory and the rest of the world3. Figure 8
shows the input rate of this stream. This input rate allows
us to evaluate the performance of our scheme, compared
to the others, with the fluctuations of a real-world data
stream. Note that this real input rate pattern is the same
as that of the input used in the CTRL paper.

We use a uniform distribution for the values of the tuples
in order to fix the selectivities of the select operators and
make sure they are not the cause for the cost fluctuation.
Parameters:We choose the values for the delay target D =
2s, which are the same to that used in the CTRL paper. We
use the control period T = 0.5s (CTRLpaper experimentally
shows that [250–1000ms] is the best range for T given that
D = 2s).

In order to choose an appropriate headroom factor for
CTRL,we follow themethod used in [44] and run theCTRL’s
module that estimates the output delay based on the length of
the virtual queue. We manually change the headroom factor
used in the model and plot the estimated value together with
the real one until they match one another. This tuning gave us
0.99 as the best value of headroom factor for CTRL for the
QN-flat query network. For the QN-complex and QN-long
query network, as anticipated, it is impossible for us to find
a suitable headroom factor for CTRL since the estimation of
the virtual queue by CTRL is no longer correct. Therefore,
in this case, we have to run CTRL with the headroom factor
obtained with the QN-flat query network, as well as some
other values down to 0.8. For ALoMa, we set the initial value
of the headroom factor to 0.8.

7.1.2 ALoMa vs CTRL under CTRL’s ideal setting (Fig. 9;
Table 2)

In this experiment, we use the flat query network QN-flat so
that all the calculations of CTRL’s delay estimation model
are correct. In addition,wemanually tune its headroom factor
and keep the system environment unchanged during execu-
tion, so that the tuned value remains accurate (even though
this is unrealistic for real systems). The real input SAr is used

3 Dataset LBL-PKT-4/lbl-pkt-n.tcp is publicly available at the follow-
ing URL: http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html.
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Fig. 9 Response times with QN-flat and SAr

Table 2 Average delay and data loss, with QN-flat and SAr for CTRL
with optimal, manually tuned headroom factor

Average delay
violation (s)

Max delay
violation (s)

Data loss (%)

ALoMa 0.05 0.62 21.36

CTRL 0.01 0.35 21.41

for the experiment. We run ALoMa under the same setting,
but without the manual tuning of the headroom factor.

Figure 9 shows the response time of the output under
ALoMa and CTRL. Table 2 summarizes the average delay
violation, the maximum violation observed, and the data loss
under each scheme. ALoMa has higher maximum violation,
and from Fig. 9 we can observe that the response time fluctu-
ates more under ALoMa than under CTRL. This, however, is
expected, since ALoMa has to make multiple adjustments of
the headroom factor on the fly,whileCTRLhas the headroom
factor manually pre-tuned. Nevertheless, ALoMa manages
to honor the delay target, closely to what CTRL does. The
average delay violation under ALoMa is slightly bigger than
CTRL but is still very small (0.05 s compared to the delay
target of 2s)

Clearly, ALoMa achieves performance very close to that
of CTRL under CTRL’s ideal setting, even though ALoMa
makes all the headroom factor adjustment automatically,
without requiring any manually tuned value as CTRL does.

7.1.3 ALoMa verss CTRL under system environment
changes (Fig. 10)

Despite being carefully selected, a specific value of the head-
room factor is not guaranteed to be correct for the whole
execution time. In fact, it is virtually guaranteed not to be
correct for the whole execution time. To illustrate this, we
launch two background jobs while the DSMS is running.
In order to clearly show the effect of the system environ-
ment change, we use the input SAc with constant input
rate.

Figure 10 shows the response time of the system under
CTRL, which uses a fixed, manually tuned headroom fac-
tor, and our proposed scheme ALoMa, which automatically
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Fig. 10 Effect of environment changes on CTRL and adaptation of
ALoMa. Top plot shows the response time; bottom plot shows the head-
room factor recognized by each scheme. Total data loss for ALoMa and
CTRL is 62.98 and 62.69%

adjusts the headroom factor at runtime. We can observe
that as the background jobs are launched and share the
processor with the DSMS at the 100th second the head-
room factor used for CTRL is no longer correct, making
the response time to be twice as high as the delay tar-
get. ALoMa, however, is able to adapt very quickly to
the change as expected and still honor the delay target
despite the change of the environment. The data loss with
ALoMa, in this case, is similar to that with CTRL. For more
insight, Fig. 10 also shows the headroom factor adjustment
made by ALoMa in response to the change in the system
environment.

7.1.4 ALoMa versus CTRL and Aurora with a complex
query network (Fig. 11; Table 3 )

The CTRL paper [44] shows that CTRL outperforms Aurora
in the experiments with flat query networks, as does ALoMa,
since ALoMa performs equivalently to CTRL as shown
above. Because [44] does not show CTRL’s performance
compared to Aurora for complex query networks, we include
Aurora in this evaluation to confirm that our scheme also out-
performs Aurora in this case.

Since the Aurora scheme does not suggest a way to pick
a correct value for the headroom factor, we ran it with a
range of possible values. However, in this setup, no value
of the headroom factor could enable it to perform equiva-
lently to ALoMa. If the headroom factor is too small, the
response time is kept well below the target at all times by
droppingmuchmore data unnecessarily.When the headroom
factor equals 0.92 (Fig. 11), the average delay violation of
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Fig. 11 Response times with QN-complex and SAr . Note that the
X-axis plots the input timestamps, showing that within the specified
experiment time the system under CTRLwas only able to process tuples
coming in the first 66 s

Table 3 Delays and data loss with QN-complex and SAr

H Max delay
violation (s)

Average delay
violation (s)

Data loss (%)

ALoMa Auto 0.75 0.06 32.41

CTRL 0.99 41.10 23.33 0.00

Aurora 0.92 1.16 0.09 37.59

Aurora 0.93 1.80 0.19 36.82

Aurora is roughly the same as ALoMa, but Aurora drops
5% more data (Table 3). Increasing the headroom factor
to 0.93 makes the delay violation significantly higher (due
to the higher peak in the response time), while the data
loss is still higher than ALoMa. This is consistent with the
properties of Aurora analyzed in [44]: The Aurora method
is not aware of the delay target and cannot recover from
its previous wrong decision since it does not look at its
outcomes.

The method given by CTRL to tune the headroom factor
cannot be applied any more with the complex query net-
work: No matter how we change the value of the headroom
factor, the delay estimated by CTRL does not match with
the real output delay. Because the query network contains
shared operators, an input tuple actually corresponds to sev-
eral tuples in the output flow. CTRL cannot recognize this
mapping and hence it miscalculates the length of the virtual
queue. We still tried to run CTRL with the headroom fac-
tor equal 0.99 (i.e., the value we tuned for QN-flat). As we
show in Fig. 11, CTRL totally fails to control the response
time: It does not realize that the system is overloaded and
does not apply any shedding, letting the response time of the
query output exceed the delay target quickly (the Y-axis is
in log scale). As a result, when the experiment stops (for all
schemes, we let the experiment run for 420 s), the system
with CTRL has only been able to process input tuples com-
ing in the first 66 s (out of 400 s). We tried some other values
of the headroom factor from 0.8 to 0.99 as well, but they do
not make any difference to the performance of CTRL in this
case.
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Fig. 12 Performance of ALoMa, CTRL andAurora with QN-long and
SAr . Top plot is the response time and bottom plot is the shedding rate

7.1.5 ALoMa versus CRTL and Aurora with a query
network containing long queries (Fig. 12)

In this experiment, we useQN-long to confirm thatALoMa is
applicable for query network containing long queries with all
basic types of operators and with multiple levels of operator
sharing. We use the real input rate pattern SAr for all of
the stream sources. Note that because there are five range
window joins in each query, the effective overshoots in the
input load is actually much higher than the overshoots in the
individual input load shown in Fig. 8. The reason is that the
increase in input rate increases the number of tuples in each
window, causing the selectivity of the range window join
to increase. Figure 12 shows the response time under the 3
schemes.

In general, ALoMa can control the response time well
at the delay target. We observe four points when the delay
target is violated, of which the highest violation is 1.08 s.
These violations correspond to the very high overshoots in
the input load. However, ALoMa was able to cope with them
by increasing the shedding rate from 0 to almost 70%.

CTRL, as expected, cannot control the response time
because it cannot correctly estimate the length of the vir-
tual queue of a complex query network. We show Aurora’s
performance just for completeness, as without being aware
of the delay target its performance for a certain workload is
very unpredictable. In this experiment, with headroom factor
set to 0.92, it happens that it drops more than necessary, as
shown in the bottom plot of Fig. 12.

7.1.6 Worst-case scenarios (Figs. 13 and 14)

In this set of experiments, we illustrate theworst-case scenar-
ios explained in Sect. 4.2.4. We use query network QN-flat,
so that CTRL is applicable.

 0.1

 1

 10

 100

 0  50  100  150  200  250  300  350  400

re
sp

on
se

 ti
m

e 
(s

)

time(s)

ALoMa
Aurora

CTRL
delay target

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200  250  300  350  400

sh
ed

di
ng

 r
at

e(
%

)

time(s)

ALoMa
Aurora

CTRL
delay target

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0  50  100  150  200  250  300  350  400

in
pu

t r
at

e(
tu

pl
es

/s
)

time(s)

input rate

Fig. 13 Performance of ALoMa, CTRL and Aurora with workload
increasing to worst-case situation. Top plot is the response time,middle
plot is the shedding rate and bottom plot is the input rate

In the first setup, we use the input SAstep to push the input
workload from no overload (200 tuples/s) to extreme over-
load. As expected, as the input load reaches a certain point,
none of the schemes can any longer control the response time
to the delay target even though they drop almost 100% (we
set maximum shedding rate for all the schemes at 99%, so
that we can retain some output tuples). This is because the
system still spends some CPU cycles on a dropped tuple to
read it from the stream source and to decide whether to drop
it. When the input load is too big, this cost alone is enough to
overload the system. Figure 13 (top plot) shows the response
time of the system under each scheme, corresponding to the
input rate plotted in the bottom plot. The middle plot shows
the shedding rate under each scheme.

Interestingly, the three schemes have different points at
which they can no longer control the response time, with
ALoMa’s point being the farthest to the right. We observed
that, when the input rate is very high (beyond 1000 tuples/s
in this experiment), the headroom factor decreases when the
rate increases. ALoMa’s adaptivity allows it to cope with
this change, whereas CTRL and Aurora failed to cope with
it. Thus, a value of the headroom factor that works well
for CRTL and Aurora at the beginning becomes incorrect,
causing the two schemes to lose control of response time
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Fig. 14 Response time under ALoMa, CTRL and Aurora with back-
ground job coming and leaving at different frequencies

early. Our explanation for this decrease in the headroom
factor is that when the input rate significantly increases,
batch processing kicks in lowering the cost of processing
each tuple. Therefore, some fixed costs (e.g., scheduling,
statistics collection) become relatively bigger compared to
the processing cost per tuple. However, we think this phe-
nomenon depends greatly on the detailed implementation
of each system, so it can be different across different
DSMSs.

In the second setup, we use the constant input SAc as
in the experiment in Sect. 7.1.3. After the experiment has
run for the first 10 s, we kick off a background job which
stays for 10 s, then leaves for 10 s and comes back for
another 10 s. The pattern is repeated for about 60 s, then
switches to a pattern of 5-second stay and 5-second leave for
another 60 s, then 60s of 2-second stay and 2-second leave
and finally 60s of 1-second stay and 1-second leave. This
creates situations where the change in the headroom factor
happens suddenly yet does not stay long enough for ALoMa
to adapt. Figure 14 shows the response time under all three
schemes.

We can see that there are points at which the response
time under ALoMa drops close to 0. Ideally, with this con-
stant rate the response time should be kept at the delay target
(i.e., the maximum allowed), so as to minimize the data lost.
However, the process of adjusting the headroom factor takes
time. When the background job leaves, ALoMa needs a few
seconds to adjust the headroom factor back to the original,
bigger value, so during that transition time it drops more data
than necessary. Interestingly, when the frequency of coming
and leaving of the background job becomes very high (i.e.,
every one second in this experiment), ALoMa’s performance
becomes better, because by the time the job leaves, ALoMa
is not too far from decreasing the headroom factor so it just
needs a short time to move it back up.

CTRL does not recognize the change in the headroom
factor so the response time under it fluctuates above the delay
target. Aurora loses its control of the response time beginning
with the very first appearance of the background job, as it
does not consider any kind of feedback from the outcome of
its decision and hence has no way to recover.

7.2 DILoS evaluation

7.2.1 Experimental settings

Query network:We use two query networksQN-A andQN-
B:

– QN-A: A query network that consists of three classes of
queries:

– Class 1: Priority 6 (highest), with delay target 300ms.
– Class 2: Priority 3 (second highest), with delay target
400ms.

– Class 3: Priority 1 (lowest), with delay target 500ms.

All three classes have the same set of 11 queries, con-
sisting of five aggregates, two window joins, and four
selects. These types of operators would appear in a typ-
ical monitoring continuous query, for example those in
the Linear Road Benchmark [11].

– QN-B: The same as QN-A except that we triple the size
of the first class so that, when using the real input trace
for the first class, the resulting workload is heavy enough
to create some load impact in the system.

Input data: We use two streams of synthetic input patterns,
denoted SDc, SDp, and one using real input traces, SDr , as
described below:

– SDc: All the input streams coming to the three classes
have a constant input rate of 950 tuples/s, which, together
with the query network QN-A, creates a total load that is
slightly higher than the total system capacity. The sim-
ple pattern of this input allows us to easily analyze the
behavior of each scheme.

– SDp: The input rate (per control period) of classes 2 and 3
follows a Pareto distribution in the range of [800–1300]
and [300–800], respectively, with skewness equal to 1.
These input rates are expected to overload the classes
if they are limited to their originally assigned capacity
portions. For class 1, which is the class of highest priority,
we change the range for its input rate distribution (also
Pareto) after every 50-second period (Fig. 15 sketches
the changes of the range) in order to vary the amount of
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Table 4 DILoS’ advantages
shown through average response
time and data loss

Response time (ms) Data loss (%)

Class 1 Class 2 Class 3 Class 1 Class 2 Class 3

No load manager 5.25 7.22 117,132.74 0 0 0

Common load manager 4.01 4.74 513.71 42.19 42.15 42.24

Separate load manager 4.91 7.21 492.16 0 0 85.37

DILoS (Full synergy) 8.90 34.18 487.04 0 0 24.43

DILoS with inter-class sharing 9.05 36.54 482.53 0 0 14.70

excess capacity it can share with the other classes. The
query segment that can be shared with class 3, however,
has the same input rate as class 3, so that we can keep the
entire workload of class 3 to be at the same level during
the experiment).

– SDr: The same input rate patterns as in SDp are used for
class 2 and 3, while the input rate of class 1 is the real
trace used in SAr (Fig. 8).

Parameters: For all experiments, we set 150 ms to be the
loadmanagement cycle. In [44], the authors report the appro-
priate loadmanagement cycle to be around one-fourth to half
of the delay target, and we had a similar experience. We set
the capacity redistribution cycle (i.e., the cycle at which the
scheduler considers redistributing the system capacity for
each class) to be 10 load management cycles (i.e., 1.5 s). We
report the sensitivity analysis on the length of this capacity
redistribution cycle in Sect. 7.2.4.

7.2.2 Confirming the advantages of DILoS

In these experiments, we run the query network QN-A with
the constant input rate SDc in five cases: (1) when there is no
load manger, (2) when there is one common load manager
for the whole system, (3) when one ALoMa load manager
instance is created for each CQ class, (4) when the sched-
uler uses the feedback from the load manager to adjust its
scheduling decisions, in the complete DILoS framework and
(5) when operator sharing is enabled in the DILoS frame-
work, allowing class 1 and class 3 to share a query segment.
Table 4 summarizes the response time and data loss of the
three class in each of these cases.

When there is no load manager, class 3 is overloaded,
and, as a result, its response time (117,132.74 ms) exceeds
its delay target (500 ms) by three orders of magnitude. With
one common load shedder, which is the case for all the state-
of-the-art systems, the load shedder is oblivious to the priority
enforcement of the scheduler. Thus, although the load man-
ager successfully controls the response time of class 3 to
satisfy the worst-case QoS, it does not honor the priorities of
the classes with respect to QoD: The three classes lose the

same amount of data, and class 1 and class 2 suffer from data
loss even though they are not overloaded.

When one load manager instance is created for each
CQ class, the load manager can follow exactly the priority
enforcement of the scheduler. As a result, only class 3, which
is the one that is overloaded, experiences load shedding of
85.37%. Not only that, the observed data loss for class 3 is
actually less than the total data loss for the three classes in
the case of a common load shedder.

Under a complete DILoS framework when the scheduler
use the feedback from the load manager instances, its effec-
tiveness is clear: The data loss is reduced by more than 70%
compared to the case with no synergy (24.43 vs 85.37% data
loss for class 3 as in Table 4)4. Given 13 stream sources
used by class 3, each with the input rate of 950 tuples/s, this
decrease in data loss means approximately 7526 more tuples
are processed per second. At the same time, the response
times of the three classes are well controlled, and the over-
all goal is preserved: DILoS is still consistent in providing
better QoS and QoD for the class of higher priority. When
inter-class sharing is supported in DILoS more data is saved
(14.70 vs 24.43%)5, while the performance of the higher-
priority class 1 is not affected by the lower-priority class 3.
Figure 18 shows the response time of the three classes under
a complete DILoS framework with inter-class sharing.
Understand the benefit of the synergy: One might think
that the advantage of DILoS’ full synergy in reducing data
loss is only due to the fact that it repairs the over-provisioning
of system capacity for some classes. This benefit is true for
the global scheduler that strictly fixes the CPU time alloca-
tion. However, DILoS actually achieves more than merely
repairing the over-provisioning: it exploits batch processing
to further increase system capacity utilization.

Figure 16 plots the headroom factor (i.e., the capacity por-
tion) estimated by each load manager of each class when
an ALoMa instance is created to manage the load in each

4 We have observed in some experiments (not shown in this paper),
that the reduction in data loss under DILoS can reach up to 100%, i.e.,
completely eliminating the need for shedding.
5 Since the three classes have the same amount of data, total data loss

of the three classes is calculated by
∑

1≤i≤3[datalossi ])
3
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Fig. 18 Response timeswith SDc, QN-A,DILoS, and inter-class shar-
ing

class, but the scheduler does not use the feedback from these
ALoMa instances to adjust its decision. At the beginning of
the experiment, we initialize the headroom factors for classes
1, 2, and 3 by their expected values, i.e., 0.6, 0.3, and 0.1,
respectively. However, we observed that the headroom factor
of classes 2 and 3, estimated by the load manager at runtime,
was above their expected values of 0.3 and 0.1, respectively.
This phenomenon is due to the policy of CQC: If a class fin-
ishes executing all tuples in its queues, the scheduler lets the
next class in the round run without waiting for the former
class to use up its quota (waiting for new tuples). Thus, when
a class is very lightly loaded (class 1 in this case), part of its
assigned capacity is automatically given to the other classes6.
Thus, CQC by itself already allows implicit capacity sharing,
and the system capacity seems to have been used fully.

However, Fig. 17 shows that class 3 actually receives even
more system capacity when the full synergy is used (i.e., the
scheduler uses feedback from the ALoMa instances to adjust
its decisions, which explains why it does not need to drop

6 Note that in this case, the estimated headroom factor of class 1 is not
adjusted and still remains at the initial value because the load manager
does not have the necessary signals to decrease it.
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Fig. 19 Response times with SDp , QN-A, and DILoS (with sharing)

as much data. Where does the “extra” capacity come from?
The answer is from batch processing. We have known that
the higher the number of tuples an operator can process in a
batch, the lower the processing cost per tuple. If the work-
load is much less than the processing capacity (as in the case
of class 1), there are very few tuples waiting in an opera-
tor’s input queue, so it cannot take advantage of the allowed
batching to reduce the processing cost. By explicitly reducing
the capacity portion of the lightly loaded class, DILoS effec-
tively increases the number of tuples its operators process
in batch and reduces the processing cost per tuple. There-
fore, the class can fit in the smaller capacity without being
overloaded, sharing more capacity with the other classes.

We can observe that the response time of classes 1 and
2 increases. This is a side effect of batch processing: These
classes are forced to process more tuples in each batch, so
each tuple has to wait for a longer time. We believe this side
effect is not an issue given that the response times of the three
classes still meet their QoS requirement.

7.2.3 Asserting DILoS robustness

Because there is no previous work with an equivalent model
to compare our work with, we evaluated DILoS with more
challenging input rate patterns, both real and synthetic, in
order to assert its robustness. More specifically, we tested
how fast our scheme can react to sudden changes of input
rate and whether the benefit of the synergy still exists in such
cases.
QN-A and SDp (Figs. 19, 20; Tables 5, 6): This set of
experiments simulates situationswhere the load level of class
1 (the highest priority) changes dramatically after a certain
period, aiming to test whether DILoS reacts fast enough to
sudden changes in the load of the class that is sharing its
redundant capacity with others. Also, at a given load level,
the input rate (of all the three classes) is still not constant
but fluctuates following a Pareto distribution with sudden
high peaks. We show the response times of the three classes
under DILoS with inter-class sharing in Fig. 19. In Fig. 20,
we show the changes in the capacity portion of each class,
which is reflected through the headroom factor estimated by
each load manager instance, and the corresponding changes
in the shedding rates.
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Fig. 20 Estimated headroom factors (top) and shedding rates (bottom),
with SDp , QN-A, and DILoS (with sharing)

Table 5 Average response time (ms) with SDp and QN-A

Class 1 Class 2 Class 3

No synergy (& no sharing) 5.30 15.13 176.37

DILoS without sharing 6.47 43.98 84.21

DILoS with sharing 5.94 38.04 72.73

Table 6 Average data loss (%) with SDp and QN-A

Class 1 Class 2 Class 3

No synergy (& no sharing) 0 0 8.53

DILoS without sharing 0 0.23 2.30

DILoS with sharing 0 0.16 1.42

We observe that when the load of class 1 is low, DILoS
enables the global scheduler to distribute the excess capacity
from class 1 to the other classes, allowing them to shed less.
However, as soon as the load of class 1 increases (e.g., at
the 100th second), DILoS returns to class 1 all or part of its
original capacity, so that its performance, as specified by its
class priority, is preserved.

In Tables 5 and 6, we compare DILoS’ average response
time and data loss with those two alternatives (i.e., DILoS
without sharing and the scheme without the synergy).
Clearly, the synergy between the scheduler and load shedder
exploits better the system capacity and saves considerably
more data (2.3 vs 8.53% of data loss of class 3). As expected,
the response times of class 1 and class 2 increase under the
synergy due to the side effect of batch processing, but they are
allwell below their delay target. The higher-priority class still
receives the better QoS, which complies to the implemented
policy. The average response time of class 3 is smaller under
the synergy, because there are more periods during which the
class is not overloaded and its response time is much smaller
than its delay target.
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Fig. 21 Response times with SDr , QN-B, and DILoS (with sharing)

In this experiment, class 2 incurs a data loss of 0.2% under
DILoS, although its expected data loss should be 0%. This
reveals an inherent aspect of any statistics-based module,
including those used by DILoS to enforce explicit capacity
redistribution: They might need some cycles of adjustment
before they can pick up the right decision. This occurs when
the input rate fluctuates considerably after each loadmanage-
ment cycle (recall that in Sp although the upper and lower
bounds of the input rate are kept constant for class 2, the input
rate of each load management cycle follows a Pareto distri-
bution within the two bounds). In such a case, the lag of the
statistics-based decision causes small additional shedding in
some time windows. The additional data loss, however, is
very small and often not observed, because it is obscured by
the normal fluctuations in the system.

The results also show the benefit of sharing in saving data
and confirm that with appropriate loadmanagement the shar-
ing does not affect the QoS and QoD of the higher-priority
class.
QN-B and SDr (Figs. 21, 22; Tables 7, 8): In this set of
experiments, we replace the synthetic input rate pattern by
SDr with the real trace for class 1 (Fig. 8). This real input
rate pattern has two challenging periods when the rate keeps
increasing with sudden, very high peaks.

We show the response time of the three classes under
DILoS with inter-class sharing in Fig. 21. In order to under-
stand better the behavior of the load manager under each
of the three classes, we also plot the headroom factors and
shedding percentages in Fig. 22 (the top and the middle plot,
respectively). For convenience, at the bottomof this figurewe
repeat the real input rate pattern used for class 1. As expected,
when the input rate of class 1 increases (e.g., from the 250th
to the 300th second), the excess capacity the class can give
to the other classes decreases. This has the clearest effect on
the lowest priority class 3, causing this class to drop a lot
more data during that period.

In the first 250 s, none of the classes are overloaded, and
the recognized headroom factors might be higher than the
true values because of the implicit redistribution of the sys-
tem capacity when some of the classes have very light load,
as mentioned in Sect. 7.2.2. The load manager recognizes
the correct headroom factor when the load of some of the
classes reaches their capacities and the explicit redistribu-
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Fig. 22 Estimated headroom factors (top) and shedding rates (middle)
in response to the input rate of class 1 (bottom), with SDr , QN-A, and
DILoS (with sharing)

Table 7 Average response time (ms) with SDr and QN-B

Class 1 Class 2 Class 3

No synergy (& no sharing) 22.31 68.23 300.91

DILoS without sharing 25.69 76.86 122.66

DILoS with sharing 25.03 70.29 127.28

Table 8 Average data loss (%) with SDr and QN-B

Class 1 Class 2 Class 3

No synergy (& no sharing) 0.01 0.79 21.67

DILoS without sharing 0.46 0.68 8.70

DILoS with sharing 0.44 0.82 6.54

tion happens, which is the case during the high-load period
(after the 250th second).

Tables 7 and 8 compare the average response time and
data loss for all cases. In this experiment, while synergy still
brings significant benefit in terms of exploiting system capac-
ity (much more data are saved: 3.28 vs 7.49% of total data
loss), it also incurs a trade-off: the data loss of class 1 under
the two cases with synergy is higher compared to the case
without synergy. As shown in Fig. 22, the shedding of class
1 corresponds to the sudden high peaks of input rate during
the high-load period. As in the previous experiment, this is
due to inherent lag of the statistics-based decision. Specifi-
cally, since class 1 passed its excess capacity to the others,
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Fig. 23 Data loss at different lengths of the capacity redistribution
cycles

its remaining capacity became rather tight, hence a sudden,
huge increase in the input rate caused overloading, and subse-
quently, load shedding, before the scheduler could recognize
and correct the situation.

We believe this trade-off is acceptable given that the
increase in the shedding rate of class 1 (0.45%) is much
smaller compared to the total data saved (12.97% for class 3
and 4.21% overall). This happens only in very extreme sit-
uations and is eventually corrected. In practice, if a class
is highly critical and such a trade-off cannot be toler-
ated, one can develop a capacity redistribution policy that
includes a limit on the shared usage of the class’ capacity
(while still allowing the class to use redundant capacity from
other classes and allowing the normal capacity redistribution
among the other classes).

These results also confirm that the proposed approach for
inter-class sharing saves more data for class 3 while leaving
class 1, i.e., the higher-priority class sharing a query segment
with class 3, unaffected.

7.2.4 Sensitivity analysis

In this section, we report the sensitivity of the system per-
formance to the length of this capacity redistribution cycle
(CRC for short).

We show in Fig. 23 the system performance in terms of
average data loss per class at different values of CRC, under
the Sr input rate pattern whichwe expect the CRC to have the
biggest impact. Note that the y-axis is in logarithmic scale.
We observe that the data loss of class 1 (and the other two)
is smallest when CRC is equal to 1 or 2 load management
cycles (i.e., 150–300ms). This is because the system can react
faster with sudden changes of the input rates and in the sys-
tem environment. However, the difference across all values
is rather small, suggesting that the long-term performance of
the system is somewhat stable to awide range of CRC values.

As mentioned in Sect. 7.2.1, for all the above experiments
we let the scheduler consider redistributing the system capac-
ity after every 10 load management cycles (i.e., 1.5 s). To
better evaluate the framework,we avoid using the best-picked
value (2 loadmanagement cycles in this case) and instead use
one that gives average performance.
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8 Extensibility of DILoS

As a framework with two-level integrated scheduling and
load managing, DILoS enables easy incorporation of differ-
ent scheduling and load shedding schemes at both the class
and operator level.

At the class level, different capacity allocation and redis-
tribution policies can be adopted. For example,

– Absolute priority for higher-priority class. A higher-
ranked class can use all of the available system capacity
if needed before a lower-ranked class is considered. A
hybrid policy between absolute and relative priority is
also possible: The first class might use up the whole sys-
tem capacity if needed, but any remaining capacity is
distributed to the other classes proportionally by their
priorities.

– Relative priority with workload consideration. The cur-
rent policy in CQC guarantees better QoD for a class of
higher priority compared to a lower-priority one only if
the higher class has the same or less load than the lower
one. With the support of DILoS, a stricter guarantee is
possible: The higher class will receive either maximum
QoD (i.e., no data loss) or betterQoD than the lower class,
regardless of the relative workloads of the two. Since the
global scheduler receives feedback from the load man-
ager about the capacity utilization of each class, it can
recognize any violation of such policy and fix it by mov-
ing the necessary capacity from the lower class to the
higher one.

At the operator level (i.e., in within a class), different load
shedders and operator schedulers can be used. Any opera-
tor or query-based scheduling policy can be easily plugged
in as a local scheduler inside a class without affecting the
benefit brought by DILoS. We have verified this through an
experiment with round robin as the local scheduler (result
not shown due to space limitation).

An important part of DILoS is the capability of the
load manager to automatically recognize exactly the sys-
tem capacity each class is receiving, which ALoMa satisfies.
However, ALoMa only focuses on the question of detect-
ing when the system is overloaded and how much the excess
load is. Regarding the other commonquestions related to load
shedding, i.e., what to shed and where to shed, ALoMa uses
a general, domain-independent method of applying random
dropping evenly from the input of all queries in the class.
Other works on these questions, such as those considering
semantic dropping (e.g., [19,22,42]) and determining where
in the query network to shed data to minimize semantic loss
(e.g., [14,42]), can be trivially plugged in to replace the basic
method ALoMa is using. Note that all these schemes need to

know when and how much load to shed, which is answered
by ALoMa. For example, assuming that semantic shedding
is desired for a class of 2 CQs, Q1 and Q2, each of which has
input tuples containing integer keys in [1–10]. For Q1, out-
put with keys [9–10] is more important than those in [1–8],
while for Q2 those in [1–2] is more important than the others.
When ALoMa determines that, say, 20% of the current load
needs to be shed, the semantic shedder will take that 20% as
input for its algorithm. Correspondingly, the semantic shed-
der decides that for Q1, it drops 10

8 × 20% tuples with keys
in [1-8], while for Q2 it drops 10

8 × 20% tuples with keys in
[3–10], keeping the whole important range (assuming a uni-
form distribution of the keys). Note that this assumes queries
which have different semantic on incoming tuples, as in the
case of Q1 and Q2 in this example, do not share operators
with each other.

9 Related work

Overloading is a common problem in many systems includ-
ing DSMS, real-time database, networking, and web ser-
vices. Common approaches for this problem can be divided
into three categories: resource allocation, admission control,
and load shedding. Although for each approach the basic
ideas are shared across systems, every system has its own
model and constraints, which determine the details of the
approach. For example, measuring bandwidth load in net-
working is very different from measuring workload in data
stream systems; in data stream management systems, the
objects of load management are both incoming data and
query operators, as opposed to network packets. In the scope
of this paper, our discussion focuses on workload manage-
ment in DSMS, which are the most closely related to our
work.

Resource allocation in DSMS, in general, decides how
the system resources (CPU cycles, memory, etc.) should
be assigned to each query/operator in each period of time.
Included in this category areworkloaddistribution/ balancing
and scheduling. Workload distribution and balancing either
distributes and rebalances the workload on the fly over the
available processing nodes (e.g., [28,31,46]), or finds a query
network deployment that is resilient to workload fluctuation
at run time (e.g., [33]). Castro Fernandez et al. [16] also inte-
grates fault tolerance and scaling out of stream operators.
Scheduling of CQs in a DSMS focuses more on time shar-
ing the system resources among the query operators, aiming
at optimizing certain performance goals such as minimiz-
ing latency ([15,40]) or minimizing memory requirements
([12]). Related to our work on multi-class CQ scheduling are
the works in [7,15,17] which consider latency-based QoS
functions for each query, and in [32,45,47] which schedule
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real-time CQswhere each CQ has a deadline. These schemes
try to optimize the overall benefit of the system rather than
explicitly guarantee the benefit of each class according to
its priority. In our previous work [10], we proposed another
scheduling scheme, calledCQC, inwhich each query belongs
to a class of a specific relative priority, and the benefit of each
class according to its priority. CQCwas later extended in [9].
None of these works on priority-based schedulers considers
the integration with a load shedder to handle overload situa-
tions.

Load shedding has been proposed in many DSMS archi-
tectures as amethod to handle overloading [7,13,30,39]. [42]
articulates four basic questions for a load shedder:when, how
much, where and what to shed.

The works in [14,41,42] mainly focus on the question of
where to shed, i.e., given an amount of excess load, which
positions in the query network should drop how much of
the load, such that the loss of quality of data is minimized.
[34] basically considers the same problem, but the model is
for aggregates and mining queries and aims at deciding the
shedding ratio for each of the keys of the queries.

The question of what to shed has been addressed in many
of previous works in load shedding. Instead of randomly
dropping tuples, semantic models are used in [19,20,22,42]
to increase the usefulness of the query results after shed-
ding. Also related to this question, in [24,25,27,36,39] the
authors propose methods to shed load other than simply
discarding tuples from a query network. In [39], dropped
tuples are routed to a lightweight shadow plan that produces
approximated results. The work in [36] is customized for
spatiotemporal data streams, in which a dropped tuple is
approximated by the mean value of the cluster it belongs
to. In [24,27], the system load is shed by selecting only
subsets of the windows to perform the joins. In [25], the
DSMS delegates the load shedding task to the source fil-
ters, which apply varying amounts of shedding to different
regions of the data space. In [43], Tatbul and Zdonik con-
sider a whole window, not a single tuple, as the shedding
unit.

A few works have addressed the question of when to
shed load and how much load to shed ([14,30,31,39,42,
44]). However, as analyzed in Sect. 4.1, they have short-
comings that limits their applicability in practice, among
which is the requirement of a manually tuned estimation
of the system capacity. In our previous work [38], we pro-
vided another load shedding solution that can avoid this
manual tuning, but this solution is not complete since its
approach depends on the fairness of the operator sched-
uler. Therefore, in this paper we proposed another approach,
ALoMa, which follows a different design to achieve the
same goal withoutmaking any assumption on the scheduler’s
fairness.

Admission control can be viewed as a more drastic way
of load shedding: The system decides to drop some of the
queries rather than the data, as in load shedding. Typically,
admission control schemes select a subset of CQs to run
every period of time or epoch based on some optimization
objective. For example, in [46], the goal is to maximize the
utilization of the system and the overall importance of the
CQs,whereas in [8], the goal is profitmaximization, strategy-
proofness and sybil immunity even at the expense of system
utilization.

Combinations of the above approaches have been pro-
posed in different settings. For example, [26] combines
admission control and load shedding (i.e., update shedding
and query shedding) in a mobile CQ setting.

In [23], the authorsmodel both load shedding and resource
allocation as a dual optimization problem, formally solve
the problem, and illustrate the solution using a simulation.
The paper does not consider query priorities in both resource
allocation and load shedding and assumes a known system
capacity (i.e., resource budget).

Few of the previous works on load shedding have con-
sidered the priority of the CQs. CQ priorities have been
implicitly considered through loss-tolerance QoS (i.e., QoD)
graphs [42] ormaximal tolerable relative error [17,30]. How-
ever, the emphasis of these approaches is on load shedding:
The load shedder is unaware of the priorities the scheduler is
enforcing, and there is no unified priority model which a load
manager and a scheduler can together support consistently.
As a result, none of these load shedders can provide feedback
to the scheduler to improve scheduling decisions.

In [46], the authors consider the problem of resource allo-
cation and job admission for DSMS deployed on multiple
nodes, taking into account the rank of the jobs. Thiswork also
aims at maximizing resource utilization and giving higher
admission priority to jobs with higher rank. However, the
paper considers job admission rather than load shedding and
does not provide any guarantee onQoS andQoD for different
rank as our scheme does.

As opposed to the above works, DILoS, which was
initially proposed in a 6-page workshop paper [37] and
expanded and enhanced in this paper, consistently combines
priority-based scheduling and load shedding to provide a
guarantee on QoS and class-consistent QoD.

10 Conclusions

In this paper, we presentedDILoS, a novel framework to sup-
port priority-based CQ processing, and ALoMa, an adaptive
load manager utilized in DILoS implementation.

The success of DILoS, which facilitates the synergy
between the scheduler and load manager in our new frame-
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work, strengthens our hypothesis that further optimization of
QoS and QoD for a DSMS can be achieved by exploiting the
synergy of the scheduler and load shedder. We have shown,
through analysis and experimental evaluation on AQSIOS, a
real DSMS prototype, that the synergy developed in DILoS
brings three basic benefits: (1) the integration enables the
load manager to honor query class’ priorities in a consistent
way with a two-level, class-based scheduler (e.g., CQC); (2)
by adjusting its decision using feedback from the load man-
ager, the scheduler can nowbetter exploit the system capacity
and reduce load shedding; and (3) the proper employment of
the load manager helps to release the congestion problem in
the class-based scheduler to allow the sharing of processing
among queries of different classes, thereby enhancing even
more the ability of the system to meet the QoD and QoS
specifications.

ALoMa is a general and practical DSMS load manager
that effectively determines when and how much to shed and
it can be used in conjunction with any statistical or semantic
scheme that determines where and what to shed. Our exper-
imental evaluation of ALoMa verified its clear superiority
over the state-of-the-art load managers in three key dimen-
sions: (1) it automatically tunes the headroom factor, (2) it
honors the delay target, and (3) it is applicable to complex
query networks with shared operators.
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