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ABSTRACT

With data becoming available in larger quantities and at higher
rates, new data processing paradigms have been proposed to han-
dle high-volume, fast-moving data. Data Stream Processing is one
such paradigm wherein transient data streams flow through sets of
continuous queries, only returning results when data is of interest
to the querier. To avoid the large costs associated with maintain-
ing the infrastructure required for processing these data streams,
many companies will outsource their computation to third-party
cloud services. This outsourcing, however, can lead to private data
being accessed by parties that a data provider may not trust. The
literature offers solutions to this confidentiality and access control
problem but they have fallen short of providing a complete solu-
tion to these problems, due to either immense overheads or trust
requirements placed on these third-party services.

To address these issues, we have developed PolyStream, an en-
hancement to existing data stream management systems that en-
ables data providers to specify attribute-based access control poli-
cies that are cryptographically enforced while simultaneously al-
lowing many types of in-network data processing. We detail the
access control models and mechanisms used by PolyStream, and
describe a novel use of security punctuations that enables flex-
ible, online policy management and key distribution. We detail
how queries are submitted and executed using an unmodified Data
Stream Management System, and show through an extensive eval-
uation that PolyStream yields a 550x performance gain versus the
state-of-the-art system StreamForce in CODASPY 2014, while pro-
viding greater functionality to the querier.

1. INTRODUCTION

With more devices connecting to the Internet, the amount and
speed of data being generated is ever-increasing, and processing it
is becoming progressively more challenging. Data is being gen-
erated by a more diverse set of instruments ranging from sensors
embedded into natural environments to monitor earthquakes and
tsunamis, to sensors embedded in the human body to monitor per-
sonal well-being, to an increasing array of sensors built into smart-
phones and other wearables, to social media which is constantly
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updating and evolving [20]. This increase in data quantity and di-
versity, coupled with the real time nature of most monitoring appli-
cations, has brought about the paradigm of Data Stream Processing.

In a streaming environment, queries are long-running and pro-
cess transient data flowing through the system. Stream processing
is especially well-suited for early detection of anomalous events
and for long-term monitoring through the use of Data Stream Man-
agement Systems (DSMS). Streaming environments separate the
provider of the data from the consumer, and often leverage third-
party computational nodes for processing their continuous queries.
Unlike traditional database systems, this separation leads to data
sources having little control over how their data is handled or who
has access to it. Given this separation of the data provider and
the eventual data consumer, it becomes difficult to reason about
how a data provider can protect their private data. For a system
to guarantee the confidentiality of the provider’s data once it has
been emitted, it must provide an access control framework that al-
lows a data provider to easily describe who has access to their data.
To ensure data remains confidential, it should be encrypted to pre-
vent unauthorized users from learning any information about the
underlying data once it has left the data provider. To accommo-
date this encryption, there must be a protocol for an online key
management system which can dictate who gets access and how
they should be granted access. Furthermore, modern systems are
ever-changing with users changing their preferences, leaving and
entering the system, or changing their demand on the system. Over
time, a data provider may wish to change their access control poli-
cies to match changes in the system or their personal preferences.
To add a final complication to the problem of enforcing access
controls over streaming data, modern systems often make use of
outsourced third party systems to cheaply and easily manage their
continuous queries. Adding access controls and encryption should
not limit a data consumers ability to outsource computation or au-
thor meaningful and useful queries over data for which they have
been granted access, nor should it greatly impact the performance
of these queries either when outsourced or executed locally.

The current state-of-the-art system to solve this problem is Stream-
force [5] and although it addresses many of the issues in enforc-
ing access controls, it incurs prohibitive overheads, and limits the
types of queries that can be issued to the system. A system like
CryptDB [29] addresses a similar problem for outsourced databases
but does not provide the dynamic online access control and key
management protocol required for an ever-changing streaming en-
vironment.

To fully address these issues, we have designed the PolyStream
framework, which considers data confidentiality and access con-
trols as first-class citizens in distributed DSMSs (DDSMS) while
supporting a wide range of query processing primitives and flexi-
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ble key distribution and policy management. Unlike previous work
in this space, PolyStream runs on top of an unmodified DDSMS
platform; supports a wide range of attribute-based, user-specified
cryptographic access controls; allows dynamic policy updates and
online, in-stream key management; and enables queriers to sub-
mit arbitrary queries using a wide range of in-network processing
options. More precisely, in developing PolyStream, we make the
following contributions:

o PolyStream allows users to cryptographically enforce access
controls over streaming data and alter their policies in real
time. In PolyStream, access control is based upon a data con-
sumer’s cryptographically-certified attributes. PolyStream sup-
ports Attribute-Based Access Controls (specifically, a large frag-
ment of ABACy, [22]) and Attribute-Based Encryption (ABE)
to enable data providers to write and enforce flexible access
control policies over data at the column, tuple, or stream levels.

o PolyStream provides a built-in scheme for distributing and man-
aging cryptographic keys using ABAC. PolyStream utilizes a
modified version of Security Punctuations [25] (SPs) to enforce
ABAC policies. SPs are typically used to allow data providers
to communicate access control policies to the trusted servers on
which users run queries over their streaming data. Prior work in
the cryptographic DDSMS space has largely ignored the subject
of key management and changes to policy by relying on sepa-
rate offline systems to handle key and policy distribution. By
contrast, PolyStream uses SPs to both communicate the policies
protecting the contents of a given stream, as well as to provide
a key distribution channel for decryption keys that are protected
by Attribute-Based Encryption enforcement of ABAC policies.
This enables a flexible, online key management and policy up-
date infrastructure, even for stateful continuous queries.

e PolyStream allows data consumers to submit a wide range of
queries. To the best of our knowledge, no streaming system has
allowed in-network processing of arbitrary queries over pro-
tected data streams handled by an untrusted infrastructure. In
systems supporting user-specified queries, the data processing
servers are typically assumed to be trusted [3, 13, 14, 25, 26].
In systems processing data over untrusted infrastructure, cryp-
tographic protections are enforced such that data consumers
have only limited query processing abilities [5]. By contrast,
PolyStream’s key management infrastructure allows untrusted
compute nodes to process equality, range, and aggregate queries,
and also has limited support for in-network joins.

e Finally, PolyStream functions as a stand-alone access control
layer on top of an underlying DSMS. PolyStream is not, itself,
a DDSMS. Rather, it provides an access control service layer on
top of another DDSMS. SPs are processed by PolyStream and
are obtained via long-running selection queries on the underly-
ing DDSMS. Queries are submitted via PolyStream, rewritten,
and deployed using operations already available from the un-
derlying DDSMS, thereby requiring no changes to the system.

We survey related work in Section 2, and describe our system
and threat models in Section 3. Section 4 describes the design and
implementation of PolyStream, which is then experimentally ana-
lyzed in Section 5. Finally, we present our conclusions and direc-
tions for future work in Section 6.

2. RELATED AND PRELIMINARY WORK

This section outlines the related work as well as the primitives
necessary for understanding PolyStream.
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2.1 Related Work

Many streaming systems have been proposed and studied to date.
The most notable modern stream processing systems are the Au-
rora [2], its distributed version Borealis [1], and STREAM [9]. To
protect the users of streaming systems from having their private
data leaked or stolen, several access control techniques have been
proposed. These techniques can be classified into two main cate-
gories: those that trust an outsourced third party to enforce access
controls over their data, and those that do not.

FENCE [26] is a streaming access control system that trusts third
parties to enforce access controls. Nehme et al. introduced the
concept of a Security Punctuation for enforcing access control in
steaming environments [25]. A Security Punctuation (SP) is a tu-
ple inserted directly into a data stream that allows a data provider
to send access control policies and updates to the stream processing
server(s) where access controls are to be enforced.

Carminati et al. provide access control via enforcing Role Based
Access Control (RBAC) and secure operators [13—15]. Operators
are replaced with secure versions which determine whether a client
can access a stream by referencing an RBAC policy. Their work
assumes a trusted and honest server that enforces their access con-
trol policies. In [13], the authors extend this work to interface with
any stream processing system through the use of query rewriting
and middleware, as well as a wrapper to translate their queries into
any language accepted by a DSMS.

Ng et al. [27] allow the data provider to author policies over their
data. The system uses the principles of limited disclosure and lim-
ited collection to limit who can access and operate on data streams,
requiring queries to be rewritten to match the level at which they
can access the data. Their system requires changing the underlying
DSMS and therefore is not globally applicable, and it also requires
a trusted server to rewrite the queries.

Linder and Meier [24] focus on securing the Borealis Stream En-
gine [1]. They introduce a version of RBAC called owner-extended
RBAC, or OxRBAC which operates over different levels of stream
objects. OxRBAC allows for each object to have an owner, as well
as allowing for rules and permissions. Owners are allowed to set
RBAC policies over their objects, which the system will enforce.
Objects include schemas, streams, queries, or systems. Users are
limited to RBAC policies and must trust the server to enforce their
policies as well as see their data in plain text.

Unlike the aforementioned work, Streamforce [5] does not trust
the stream processing infrastructure to enforce access control and
instead relies on cryptography. Streamforce assumes an untrusted,
honest-but-curious DDSMS and utilizes Attribute-Based Encryp-
tion (ABE) to enforce access control. The data provider will en-
crypt their data based on what attributes they desire a potential data
consumer to possess. Streamforce is able to enforce access control
over encrypted data through the use of their main access structure,
views. Views are submitted by the data provider to the (untrusted)
server as a query and only those results are returned to the data con-
sumer. The use of views in this system requires the data provider to
be directly involved in the querying process, which has the conse-
quence of limiting what a querier can do with the permissions they
were given. Streamforce’s use of ABE results in large decryption
times depending on the number of attributes. In order to reduce the
cost on the data consumer’s end, Streamforce outsources decryp-
tion to the server [16, 17]. However, even with outsourced decryp-
tion, Streamforce reports up to 4,000x slowdown compared to an
unmodified system due to their extensive use of ABE. Streamforce
also requires the data provider to execute all aggregates locally,
which may not be feasible since the provider may be a system of
sensors, or simply a publish/subscribe system. Finally, Streamforce



requires an offline key management solution which makes it hard
to reason about key revocation and policy updates.

CryptDB [29] allows computation over encrypted data on an un-
trusted honest-but-curious relational DBMS. CryptDB’s primary
goal is not access control, but rather allowing computation over en-
crypted data stored on an untrusted third-party database system. Es-

sentially, CryptDB offers protection from honest-but-curious database

administrators through the use of encryption, but does not offer fine
grained access controls over the data stored on the system, nor does
it offer a key management mechanism since the data owner is in di-
rect control of who can access their data and can change keys at
will. CryptDB utilizes specialized encryption techniques for al-
lowing queries to operate on untrusted servers over encrypted data.
Specifically, CryptDB employs Deterministic, Order-Preserving,
Homomorphic, Specialty Search, Random, and Join encryption tech-
niques to enable many different queries to operate. CryptDB uses
onion structures to store data, in which data is encrypted under mul-
tiple keys: the outer layer of the onion is the most secure, and suc-
cessive layers provide more functionality (i.e., allow for queries to
be executed), but may leak some data. The use of onions as tuples
in a streaming system would lead to unnecessary encryptions and
decryptions as not all encryption levels are required (cf. Section 5).
MONOMI [32] extends CryptDB to allow the querier to also pro-
cesses queries to provide a broader range of queries to the users.

2.2 Cryptographic Primitives

We now overview the basic encryption techniques that will be
used in the coming sections. We use two main types of encryption:
computation-enabling and attribute-based encryption.

2.2.1 Attribute-Based Encryption

Attribute-Based Encryption (ABE) is used to encrypt data such
that only entities with the proper certified attributes can decrypt a
given ciphertext. In an ABE system, an Attribute Authority (AA)
holds a master key that can be used to generate decryption keys
tied to an individual’s attributes (e.g., Professor or Orthopedist).
Encryption requires only public parameters released by the AA and
a logical policy p in addition to the data to be encrypted, while
decryption requires attribute-based decryption keys provided by the
AA. The following functions comprise an ABE system:

GenABEMasterKey(): Generates a master key MK.

GenABEPublicParamaters(MK): Generates the public param-
eters pay needed for encryption.

GenABEDecryptionKey(UA 5or, MK): generates a decryp-
tion key k, for user based on their set of attributes UA ;-

Encpg (pay, p,d): generates an ABE encrypted ciphertext ¢
with the public parameters, a logical policy p, and the data d.

Decapr (p,ky,c): recovers the data d using the ABE decryption
key kg4, the policy p, and the ciphertext c.

Note that the first three functions are executed by the AA. On
the other hand, Encapgr (pap, p,d) can be executed by any entity,
as it relies only on public information, while Decagg (p,ky,c) can
be executed by any entity with an ABE decryption key k.

2.2.2 Computation-Enabling Encryption

The computation-enabling encryption techniques allow a user
to perform some sort of computation over the encrypted data and
therefore allow for outsourced data to be processed without leaking
plaintext data. However, each technique does leak some metadata
about the underlying plaintext.
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Random Encryption (RND) uses a block cipher (e.g., AES in
CBC mode) to encrypt fields so that no two fields are encrypted
to the same value, and does not leak information regarding the
correspondence of actual values. Ciphertexts are different even
when RND is given the same input for any given value.

Deterministic Encryption (DET) ensures that multiple encryp-
tions of the same value result in the same ciphertext. DET is im-
plemented using a standard cipher (e.g., AES) with some small
alterations. Values less than 64 bits are padded, and any value
greater than 128 bits is encrypted in CMC mode [18] since CBC
mode leaks prefix equalities. This enables equality checking
over encrypted values.

e Order-Preserving Encryption (OPE) enforces the relationship
that x < y iff OPE(x) < OPE(y). The OPE scheme used in our
system is adapted from Boldyreva et al. [11], where the authors
present Order-Preserving Symmetric Encryption. This enables
range queries over encrypted data, but only has IND-OCPA (in-
distinguishability under ordered chosen-plaintext attack) secu-
rity and therefore can leak the ordering of tuples [12].

Homomorphic Encryption (HOM) enforces the relationship that
HOM(x)* HOM(y) = HOM(x+y). This allows the execu-
tion of summation (and by extension average) queries on un-
trusted servers without leaking field data values or the summa-
tion value. PolyStream uses the Paillier [28] encryption scheme.
This enables in-network aggregation of encrypted data with-
out leaking individual data values, but comes at the cost of in-
creasing the computational load of this aggregation. An ad-
versary does learn a relationship for the sliding window, since
the encrypted sum for the sliding window’s worth of tuples is
revealed. Note that a sliding window is simply the range of tu-
ples used to generate a result (i.e. 3 minutes, 100 tuples) over
the life of the stream.

As noted above, these four techniques make it possible for un-
trusted computational infrastructure to execute certain query pro-
cessing functionalities over encrypted data. Deterministic, Order-
Preserving, and Random cryptosystems are parameterized by a sim-
ilar set of functions:

e GenKeypgrope rvp(): Generates a symmetric key k corre-
sponding to the technique used.

e Encprr ope rvp(k, d): Encrypts data d with key k.
e Decprr.ore rvp (ks ©): Decrypts ciphertext ¢ with key k.

The Pallier homomorphic cryptosystem does not rely on a single
key, but rather a pair of (public) encryption and (private) decryp-
tion parameters. For the purposes of this paper, we represent this
functions parameterizing this cryptosystem as follows, and refer the
reader to [28] for more information:

e GenKeyyo)(): Generates a encryption parameter pagoy and
a private parameter ppgom-
o Encyop(panom, d): Encrypts data d with key pagop.

e Decyor(pprom, c): Decrypts ciphertext ¢ with key pprops-
3. SYSTEM AND THREAT MODEL
3.1 System Model

PolyStream provides an API that sits between end users (i.e.,
data providers and data consumers) and an underlying Distributed
Data Stream Management System (DDSMS). No changes to the
underlying DDSMS are required for PolyStream to work. Instead,
PolyStream makes uses of common functions provided by all DDSMS.
Specifically, DDSMSs provide the user with an optimizeQuery func-
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Figure 1: PolyStream system model. An example query is given and represented in the cloud. Node N; executes part of the query as
represented by the dotted line, and similarly N, and N3 are responsible only for what is represented in the execution tree depicting the query.

tion that takes a CQL query, verifies it, optimizes it, and returns
a query plan, and a function submitQuery that places the query.
DDSMSs also provide a results function that yields the result of a
query. PolyStream provides functionality to support the three key
players in a DDSMS, and one new component (cf., Figure 1):

e Data Providers (squares labeled “P;”) create and distribute data
streams. Data providers do not necessarily trust all other parties
in the DDSMS, which requires creating and updating access
control policies for their streams. To aid data providers in cre-
ating policies, a trusted third-party Artribute Authority verifies
the identities and attributes of other parties in the system.

o Attribute Authorities (trapezoids labeled “AA;”) verify and cer-
tify the attributes of system components. The scope of an AA
may vary: while one AA may exist to certify the job titles or
roles of employees within a company, others may certify at-
tributes that cross-cut many organizations (e.g., ABET accred-
its many universities). One system can have many AAs, and
individuals may choose which AAs they trust.

e Compute & Route Nodes (CRN, squares labeled “N;”) are tasked
with executing queries on data streams. Data consumers place
query operators on CRNs, which then process incoming tuples
and produce output tuples that flow either to other CRNs or to
the data consumer.

e Data Consumers (circles labeled “C;”) submit continuous queries.
Depending on permissions, the query operators resulting from
these queries are either submitted to CRNs via PolyStream or
executed locally. Queries are submitted using a declarative lan-
guage, such as CQL [7], and are optimized by the data con-
sumer. PolyStream allows streaming operators to be spread
across multiple CRNs with varying levels of trust.

A sample query is given in Figure 1. In this simple example,
Data from P; and P, are combined from different machines run-
ning selection and projection operators. The results are joined and
summed on a different node, and returned to the data consumer.
PolyStream assumes that tuples arrive in order. This is easy to ac-
complish by utilizing sequence numbers from the data provider and
enforcing that only the next tuple can be processed.

3.2 Threat Model

The main goal of PolyStream is to provide a mechanism that data
providers can use to author and enforce access control policies over
their own data streams. Access control policies are specified us-
ing Attribute-Based Access Controls (i.e., a fragment of ABACy),
and enforced using Attribute-Based Encryption (ABE). Attribute
Authorities (AAs) are trusted to correctly issue attributes to enti-
ties within the system. There may be many AAs in the system,
which can vary in the scope of attributes that they will certify. AAs
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are the master secret key holders of the ABE system and, as such,
are responsible for creating ABE decryption keys for the entities
whose attributes they certify. AAs are also responsible for the re-
vocation of attributes once a user’s attributes have changed, which
is outside the scope of this paper. The literature has explored at-
tribute revocation [19,21,34] and interested readers are encouraged
to explore further. Data providers are trusted by data consumers to
correctly emit the data streams that they advertise. Compute and
Routing Nodes (CRNs) may not be trusted by data providers; as
such, data streams may be encrypted to hide information from these
parties. Similarly, PolyStream avoids placing consumers’ query
operators on CRNs not trusted to execute these operators. CRNs
are assumed to behave in the honest-but-curious model: they will
not maliciously alter data that they process, but may attempt to in-
fer information from the tuples that they process. Data consumers
may or may not be trusted by data providers, who can make use of
ABE to enforce ABAC policies protecting their data from unautho-
rized consumers. Finally, we assume that all entities can establish
and communicate over pairwise private and authenticated channels
(e.g., using SSL/TLS tunnels).

4. PolyStream

We now overview the PolyStream system. First, we introduce the
access control framework that a data provider can use to describe
and author policies. We then detail the online policy distribution
and cryptographic key management channel used to communicate
and enforce the access control policies. We also detail how data
consumers’ queries are handled in the PolyStream system.

4.1 Access Control Model and Mechanism

Given the dynamic nature of real-time data stream processing
systems, data providers, data consumers, and compute and route
nodes are likely to join and leave the system over time. This inhibits
a data provider’s ability to have a full understanding of every entity
acting in the system. As such, PolyStream makes use of attribute-
based policies to help data providers protect their sensitive data in
a more generalizable manner.

Access Control Model. Attribute-based access controls allow
a data provider to describe authorized consumers of their data,
rather than listing them explicitly. PolyStream makes use of a large
fragment of the ABACy [22] model. An ABAC system is com-
prised of the following state elements:

e Sets U, S, and O of users, subjects, and objects

e Sets UA, SA, and OA of user attributes, subject attributes, and
object attributes



Furthermore, ABAC, makes use of the following grammar for
specifying policies:

pz= pAp | pvp | (») | —p |
set setcompare set | atomic € set |
atomic automiccompare atomic
set = setsy C SA|setoq C OAlset,q C UA
setcompare = C|C|¢
atomic ::=  attribute € SA|attribute € OAlattribute € UA
atomiccompare == < |=|<
attribute 1= < string >

In PolyStream, the set U is comprised of all entities acting in
the system (i.e., data providers, consumers, and CRNs). The set
O contains pairs (¢,¢) containing all tuples ¢ being processed by
the underlying DDSMS (i.e., data fields or streams), and the access
level ¢ at which they should be protected. PolyStream supports
four such access levels, corresponding to the type of in-network
processing that will be allowed: NONE (no in-network access), SJ
(in-network selection and join), RNG (in-network range queries),
and AGG (in-network aggregation). While there are no explicit
subjects in PolyStream, queries issued by a data consumer can be
given access to a limited set of the issuing user’s attributes. As
such, S is comprised of the long-running queries submitted by data
consumers.

Data producers use the ABACy policy grammar to author pro-
tections over the data that they supply to the DDSMS. In this paper,
we will use the shorthand (g A r) Vs to express a policy of the form
(g e UAAr e UA) Vs € UA), since all policies are written as con-
straints over the set UA of user attributes that must be possessed
by an authorized data consumer (and thus by the query subject op-
erating on their behalf). Note also that PolyStream does not make
use of the atomic operators for < and <, since our underlying ABE
library supports only string attributes.

Enforcement Mechanism. Unlike most stream processing sys-
tems, in PolyStream, CRNSs are not trusted to correctly enforce data
provider access controls. As such, we enforce ABAC, policies
cryptographically by encrypting data prior to introducing it to the
DDSMS. Recall that PolyStream supports four access permissions:
NONE, SJ, RNG, and AGG. We now describe each in more de-
tails, and discuss how cryptography can assist in the enforcement
of these permissions.

o NONE. This permission prevents all in-network processing. To
enforce the NONE permission for a tuple 7, we simply encrypt
t using a randomized cryptosystem (e.g., AES in CBC mode)
prior to transmission. That is, given a session key k, we transmit
ciphertext ¢ = Encgyp (k,t) to the DDSMS. Intermediate CRNs
cannot glean any information about the contents of this cipher-
text, but authorized consumers can decrypt it upon receipt.

e SJ. This permission allows in-network selection and joins of
streams sent by the same data producer. To enforce the SJ per-
mission for a tuple ¢, we encrypt ¢ using a deterministic cryp-
tosystem (e.g., AES in CMC mode) prior to transmission. Given
a session key k, we transmit the ciphertext ¢ = Encpgr (k,?) to
the DDSMS. Since the same plaintext value will always encrypt
to the same ciphertext value, untrusted CRNs can carry out se-
lection on static values or join two streams whose join attributes
are encrypted under the same key.
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Encapg((kpgr,*, 2), doctor V (nurse AICU),pay)

Figure 2: A typical Security Punctuation with an example use case.

e RNG. This permission allows in-network processing of range
queries. To enforce the RNG permission for a tuple ¢, we use
an order-preserving encryption scheme (e.g., [11]) and a ses-
sion key k to transmit the ciphertext ¢ = Encopg (k,t) to the
DDSMS. Given (encrypted) range bounds = Encppg (k, v ) and
h=Encopg (k,v;), an untrusted CRN can check whether / < ¢ <
h without learning vy, vy, or ¢.

AGG. This permission allows in-network processing of aggre-

gate queries. Enforcement of the AGG permission uses an addi-

tively homomorphic cryptosystem (e.g., Pallier [28]) to enable

in-network aggregation. Given tuples ¢1,1,...,t, and a pub-

lic/private key pair (k,k~!), we compute and transmit

c1 =Encyop(k,t1),c2 =Encgoy(k,12),. .. ,cn = Encgon (k, 1)
to the DDSMS. An untrusted CRN can then compute ¢; X ¢ X

... xXcp =Encyoy(k,s =t +1,+...+1,) without learning s or
any t;.

Table 1 summarizes how each permission can be enforced cryp-
tographically, as well as the DDSMS operations enabled by the per-
mission. Note that PolyStream only supports encrypted joins on
streams that are DET-encrypted under the same key. In principle,
this likely means that joins are only possible over streams published
by the same data producer. Supporting a richer variety of joins is
left to future work.

Although the above constructions enable in-network processing,
they do not enable attribute-based control of these access permis-
sions. To cryptographically enforce ABAC policies over objects
in PolyStream, we make use of attribute-based encryption to ensure
that the session keys used above can only be recovered by autho-
rized data consumers. In particular, consider an ABAC, policy p
authored over attributes issued by some authority AA; whose public
parameters are pa;, and a session key k used to enforce one of the
above four access permissions over some data tuple. In this case,
the data producer can transmit Encagg (pa;, p, k) to authorized data
consumers. Authorized consumers can then decrypt the session key
k, which can be used to access protected data tuples. The exact me-
chanics of this policy distribution and key management process will
be discussed next.

4.2 Policy Distribution

In a DDSMS, data providers do not control the paths taken by
their data. As such, distributing, updating, and enforcing policies
protecting that data take some effort, particularly if the infrastruc-
ture itself is only semi-trusted. Security Punctuations (SP) [25]
address this issue by providing a mechanism for distributing policy
along with data. A SP is simply a tuple injected into a provider’s
data stream (represented as a circle in Figure 2) that describes an ac-
cess control policy over some set of protected data. For PolyStream,
a SP dictates the ABE-enforced ABAC policy or policies protect-
ing a stream to potential consumers. SPs are comprised of the five
fields below (and the top box in Figure 2):



Permission  Scheme | Type of Queries Supported operators Information Gained by Adversary
NONE RND None None Nothing

SJ DET Equality Equality Select, Project, Join, Count, Group By, Order by Equality of attributes

RNG OPE Range Equality Select, Range Select, Join, Count A partial to full order of tuples
AGG HOM Summations Aggregates over summations Encrypted Sum for sliding window

Table 1: Summary of what types of queries and operators are supported by each encryption scheme, as well as what each scheme could

reveal to a potential adversary.

e Type: Indicates that the SP originated from a data provider.

e Data Description Part: Indicates the schema fields (e.g., “heart
rate”) within a tuple that are protected by this policy. This may
be as broad as an entire stream, or as specific as an individual
field.

e Security Restriction Part: Describes the policy being enforced.
o Timestamp: The time at which the tuple was generated.

o Enforcement: Either immediate or deferred. Immediate en-
forcement applies the new policy to tuples in buffers, whereas
deferred enforcement applies the new policy only to tuples times-
tamped after the SP.

While prior work has used SPs to distribute plaintext policies for
enforcement by a trusted DDSMS, PolyStream makes use of SPs
as a policy and key distribution mechanism, but relies on cryptog-
raphy for policy enforcement. This means that while the type, data
description part, timestamp, and enforcement fields are straightfor-
ward, the structure of the security restriction part (SRP) requires
greater explanation. PolyStream uses the SRP field to transmit a
tuple (c, p) where p is the ABAC, policy protecting access to the
fields listed in the data description part, and c is an ABE ciphertext
generated by encrypting the following three pieces of information:

e Access Type: The type of in-network permission (i.e., NONE,
SJ, RNG, or AGG) allowed by this policy

e [ndex: The position(s) of the data field(s) being protected by
the policy, listed in the DDP.

e Decryption Key: The symmetric key k used to recover data pro-
tected at the NONE, SJ, or RNG levels, or the private key k!
used to recover data protected at the AGG level.

Note that the above index information is needed due to the fact
that a given stream may include several copies of a given schema
field. For instance, if one policy on a stream grants AGG access
to “heart rate” to some individuals while providing other individ-
uals with SJ access, two copies of the “heart rate” field will be
transmitted: one encrypted using Pallier (for AGG access) and one
encrypted with AES in CMC mode (for SJ access).

Given an SP with an SRP containing the pair (c, p), a data con-
sumer can inspect p to determine whether they possess the attributes
needed to decrypt c¢. If so, decrypting ¢ provides the data con-
sumer with a description of the in-network processing allowed by
the policy, the indexes upon which this processing can occur, and
the (symmetric or private) key needed to decrypt result tuples. This
is enough information to facilitate query planning (Which queries
can I run?), operator placement (How can I place physical oper-
ators for these queries in the CRN network?), and results analysis
(How can I decrypt the results that I receive?).

Key revocation in PolyStream is as simple as updating the ac-
cess control policy (even the same one again) so that a new key is
generated. A key is therefore revoked when a user no longer pos-
sesses the proper attributes to satisfy the ABAC policy to get the
new key. Data providers can develop their own policy for updating
and refreshing keys to satisfy their own needs. Key revocation does
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not include the revocation of attributes. Attribute Authorities (AA)
are responsible for the revocation of attributes so when a user loses
possession of an attribute, a new ABE decryption key is issued.
This could lead to a time where data consumers can have unautho-
rized accesses due to a loss of an attribute but still have the key
from the last Security Punctuation. This can be protected against
by data providers periodically updating the keys that they use to
protect their streams, via the Security Punctuation mechanism de-
scribed previously.

Algorithm 1 SubmitQuery

1: Submit query ¢ to DSMS query Optimizer for Plan p
2: for Operation o in qurery ¢ do

3: if no entry in schemaTable then
4: Return permission denied
5: else
6: retrieve Schema Key k from schemaTable
7: Encrypt Attribute with k
8: if o is Filter or Count then
9: if Filtering on Equality AND
permissionTable contains “SJ” then
10: Encrypt value in o with key in permissionTable
11: else if Filter on range AND
permissionTable contains “RNG” then
12: Encrypt value in o with key in permissionTable
13: else if permissionTable contains “NONE” then
14: Operator Executes Locally, exit
15: if 0 is Sum then
16: if permissionTable contains “AGG” then
17: Change o to Multiplication
18: else
19: Operator Executes Locally, exit
20: if 0 is Average then
21: if permissionTable contains “AGG” then
22: Create operations Count, SUM
23: Create local operation Division for sum/count
24: else
25: Operator Executes Locally, exit
26: if 0 is Join then
27: if permissionTable contains “SJ” or “RNG”
for the same provider then
28: Encrypt value in o with key in permissionTable
29: else
30: Operator Executes Locally, exit
31: if Other operator then
2: Operator Executes Locally, exit

33 submit(Q)

4.3 Query Processing

This section overviews how a data consumer can submit and
change queries based on policy updates from the data providers
they are are interested in. When a data consumer authors a query,
they submit it to PolyStream, which follows the steps outlined in
Algorithm 1. Recall that PolyStream sits between an unmodified
DDSMS and the data providers/consumers. First, PolyStream sub-
mits the query to the underlying DDSMS’s query optimizer using
the DDSMS’s own optimizeQuery function, and receives back the
generated query plan (in the form of a physical operator graph).
Using this plan, PolyStream iterates through each operation of the



Schemas: S1: Streamld, Location, HeartRate, Timestamp

[ op [ location | 1 [ 9:00 | m. |

[ op | heartrate | 2 [ 9:00] M. | [ P [ location [ 3] 9:00 [ M. ]

1 Encapp((SJ, 2, kpgr), (serviceApp A certifiedApp) V userApprovedApp, pa,)

. 2 Enc, (AGG, 3, kopg), (serviceApp A certifiedApp) V doctor,pa
$2: Streamld, Location, Speed 3 ase( orE g fieddpp Pap)
Encapg((S], 2, kper), (serviceApp A certifiedApp) V certifiedMechanic, pa,)

1 SELECT sl.streamlId, AVG(sl.heartRate) AS avht
2 FROM Streaml as sl, Stream 2 as s2

3 WHERE sl.location = s2.location

4 AND sl.timestamp > 6:00am

5 AND sl.timestamp < 7:00pm

6 AND s2.speed < 30

7

EVERY 5 minutes, UPDATE 1 minute

Figure 3: Motivating Example - RoadRageReducer App.

Algorithm 2 handleSecurityPunctuation

SRP = Security Restriction Part of SP
DDP = Data Description Part of SP
Have pa, ABE Decryption Key from AA
if pa,, decrypts SRP then
for Fields f in DDP do
Associate f with permission p at index i from SRP

1:
2:
3:
4.
5:
6:

plan starting at the data source nodes in the graph (line 2) and de-
termines where the operation must be placed.

Using data extracted from the SRP field of SPs received by the
consumer from the data providers, PolyStream iteratively checks
each operation to see if in-network processing has been enabled
by the data provider (lines 8,15,20,26,31) and if access has been
granted to the data consumer (lines 9,11,13,16,21,27). If so, this
operation can be submitted to a CRN for in-network processing. If
in-network processing is not possible, but the consumer has access
to the field(s) being operated upon, the operator executes locally
on the data consumer’s device, where local decryption is possible
(lines 14,19,25,30,32). We note that once any operator is placed on
the data consumer’s machine, all subsequent operations are placed
on the data consumer’s machine as well to avoid unnecessary net-
work round trips. Once all operator placement decisions have been
made, the query is submitted using the submit Query function pro-
vided by the DDSMS and results are processed using the results
function.

PolyStream provides a large number of operations that can be
executed by CRNs over encrypted data, including operations that
require multiple encrypted streams. For instance, a data consumer
who is interested in aggregates over multiple encrypted streams
can simply execute an aggregate separately over each encrypted
stream and combine the results on their trusted machine once they
are decrypted. A data consumer can also preform a join on two en-
crypted streams so long as they are encrypted with the same DET
or OPE key. When the streams are encrypted under different keys,
or processing on the CRN is otherwise not possible, PolyStream
provides functionality similar to MONOMI [32] in that operations
are executed on the data consumer’s trusted machine after data is
decrypted, so long as the data consumer possesses the proper de-
cryption keys. Ultimately, this allows the consumer to issue any
query for which they at least have decryption capabilities.

There exist alternative approaches to executing a multi-provider
joins on the data consumer’s trusted machine. One approach is for
the data consumer to deploy a trusted node in the CRN network
that simply decrypts multiple streams that are to be joined and re-
encrypts each using a single symmetric key. This will allow later
nodes in the CRN network to handle in-network joins, while min-
imizing the computational impact on the data consumer. Another
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approach is to use proxy re-encryption to compute on data even
when it is encrypted with different keys [33]. Proxy re-encryption
will enable one stream to be joined with another simply by re-
encrypting one (still in its encrypted form) so that it is encrypted
form matches the other. These techniques are being considered in
our ongoing work

Example. Consider the scenario presented in Figure 3 with a sin-
gle data provider, a city commuter, who is producing two data
streams. The first stream contains health and location data be-
ing produced by a fitness watch linked to a phone, while the sec-
ond contains location and travel data from her car’s on-board com-
puter. Stream 1 is protected by SP;, which enables in-network SJ
processing on the Location field for entities satisfying the policy
p1 = (serviceApp A certifiedApp) V userApprovedApp to recover
the resulting data. Stream 1 is also protected by SP, enabling in-
network AGG processing on the HeartRate field for anyone sat-
isfying py = (serviceApp A certifiedApp) V doctor. Stream 2 is
protected by SP3, which enables in-network SJ processing on the
Location field for entities satisfying the policy p3 = (serviceApp A
certifiedApp) V certifiedMechanic to recover the resulting data.

A data consumer, a mobile app called RoadRageReducer (a cer-
tified service app), wishes to execute the query shown in Figure 3.
This query determines if the commuter has road rage by check-
ing whether they are in their car while their average heart rate is
elevated. To reduce the overall workload of the query, only high
traffic driving times at low speeds are considered. Optimizing this
query using the underlying DDSMS produces the operator graph
shown in Figure 3. Given the information recovered from SP;, SP»
and SP3, each of these operators can be placed on the CRN net-
work since (i) the initial selection operates over unprotected fields
(Speed and Timestamp), (ii) the join combines both streams using
the SJ protected Location field, (iii) the averaging operator aggre-
gates over the AGG protected HeartRate field, and (iv) the only
input to the projection operator is a field index. Once the query is
processed and a result is returned, the RoadRageReducer app can
then use its Paillier decryption key to decrypt the resulting average
over the HeartRate field.

S. EXPERIMENTAL EVALUATION

Like many other confidentiality enforcement systems, PolyStream
exposes a tradeoff between performance and confidentiality. To
better understand this tradeoff, we examined many different con-
figurations/workloads on an experimental system comprised of a
cluster of 10 small instances on Amazon EC2, which implements
PolyStream as described above. All network communications oc-
cur over SSL/TLS tunnels. We also compared PolyStream with the
current state-of-the-art Streamforce [5].
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5.1 Experimental Setup and Platform

Our system is built on top of the Storm distributed computing
platform [30], as is the case for many other distributed DSMS pro-
totypes/evaluations [4,6]. Given that we do not use any function-
ality unique to Storm, we fully expect that PolyStream could be
trivially ported to other distributed computing platforms like Spark
Streaming [35] and Twitter Herron [23]. Storm provides a commu-
nication layer that guarantees tuple delivery. Storm accepts user-
defined topologies that direct how components are networked. The
main components of Storm are spouts and bolts. Spouts provide
data to the system and therefore assume the role of data provider,
and bolts compute on the data and take the role of data consumer
or CRN. To better control experiments, a special scheduler was im-
plemented to dictate which machines handled which components.

Tests were run on Amazon EC2 using small instances. All com-
ponents were programmed in Java and packaged as JAR files. Each
data consumer was assigned a set of attributes from a bolt Central
Authority. One EC2 instance was devoted to controlling Storm’s
required libraries as well as assigning tasks and was not used in
experimentation; leaving nine that were used as CRNs with data
consumers on them. Data providers were generated from outside
machines and fed into the cluster so that data generation would not
alter the state and load of each machine. Tests involved between
one and eight data providers; 1,000 and 8,000 tuples per second
input rates; two and 20 data consumers; and two and eight CRNs.
All CP-ABE functionality was provided by the Advanced Crypto
Software Collection library [10], and the HOM key size was 1024
bytes.

5.2 Workload Description

For our experiments, we used simulated Twitter-like data from
a workload generator which provided control over distribution and
frequency of keywords as input data. This generator is capable of
forming both text and numerical data. Values can be controlled in
either a fine or course-grained fashion. Fine-grained control allows
us to define a small dictionary and assign a distribution over the
occurrence of each value in the dictionary. Course-grained support
simply sets a desired amount of data and desired selectivities (as to
control selectivity for windowed and one-shot queries). We chose
not to the Linear Road [8] benchmark for two main reasons. First,
adding encryption and policy changes to arbitrary values adds over-
heads to the actual benchmark and requires altering it, which could
undermine the intentions behind the data and queries. Secondly,
Linear Road requires compatibility with a traditional database sys-
tem. In the PolyStream model, the database system may reside on
the server (colocated with the data) which can leak data since it
would be required to remain in plaintext. A system like CryptDB
could be used in this regard, but that says nothing for the methods
of PolyStream which focuses on data streams.
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5.3 Overhead for Computation Functionality

To better understand the effect that each operator has on the over-
all throughput, we compared unencrypted versus encrypted pro-
cessing using one encryption type. We also included a Strawman
approach where all data is routed to the data consumer for process-
ing under the RND encryption scheme.

Configuration One data provider with one stream distributed the
data to a single CRN with a single data consumer. This data con-
sumer posed one query to the stream corresponding to the given en-
cryption scheme (e.g., DET encryption matched to equality select
and OPE mapped to range queries). One field was encrypted for
each operator. For equality queries, Range, and summation queries
DET, OPE, and HOM were used, respectively.

Results (Figure 4 and Table 2) On average, deterministic encryp-
tion only incurs 12% overhead, whereas HOM decreases through-
put by 49% on average. This large difference in HOM is attributed
to its use of Homomorphic encryption, which involves costly ho-
momorphic additions running on each CRN. We also evaluated a
more secure scheme (implemented on the same system) in which
RND encryption is used and all tuples are sent back to the data con-
sumer for processing. This requires every tuple to be decrypted and
the operation computed over the plaintext value. Since every tuple
is encrypted, the overall cost of execution is hindered by the cost
of decrypting each tuple before processing. The overhead incurred
by each encryption scheme originates either from the encryption or
the decryption phase of the algorithm. Table 2 shows exactly how
much time is spent during each phase of encryption. Note that a
summation for the HOM scheme itself takes on average .015ms,
and the key size (modulus size) for HOM plays a significant role in
its encryption and decryption time. It is also important to note that
the system will always pay the encryption cost for every tuple, but
may not pay the decryption cost for each tuple depending on the
selectivities.

Takeaway Compared to an unmodified DSMS, PolyStream’s over-
head is a modest 28% in supporting access control on honest-but-
curious CRNs. In contrast, the overhead of the state-of-the-art
Streamforce [5] is 4,000x, according to the authors.

Mode | RND OPE DET H-1024 H-2048 H-4096
Encrypt 82 131 125 18.1 70.2 151.8
Decrypt 82 132 123 12.9 21.6 36.5

Table 2: The encryption and decryption times (in ms) for each of
the schemes used by our system (H-xxxx = HOM at that key size).

5.4 Effects on Latency per Encryption Type

To explore the perceived effect on waiting for a result based
on an incoming tuple, this experiment compared the latency of
PolyStream to that of the baseline Storm-based DDSMS without
any encryption.

Configuration This experiment used only one EC2 small instance.
One query was used to test each encryption type, and each query
was simply a selection (i.e. on comparison) or addition wherein
one addition or one comparison needed to be made. The input
rate of tuples remained constant. Each query was tested five times
with the average reported for 1,000 tuples per trial. Finally, exper-
iments were carried out in succession with the same system setup
and background. Results are reported in milliseconds (ms).

Results (Table 3) Table 3 shows the latencies for each type. The
main differences between PolyStream and the baseline DSMS is in
the decryption time on the data consumer. The actual computation
on the CRN is roughly the same (with the exception of HOM) since



System | RND OPE DET HOM
PolyStream | 425 413 326 1,144
Baseline 356 357 308 485

Table 3: The latency (ms) of each encryption when used in a query.
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2,000 38 40 60 41.2 9.5 35.6
4,000 39 53 62 617 103 126
6,000 34 72 63 690 122 1.6
8,000 34 86 58 762 16.0 0.0

Table 4: The percentage of system time spent on a task based on
the input rate. CP-ABE represents the time spent passing keys and
managing attribute-based encryptions.

the operators are only comparing larger integers or strings. HOM,
however, takes longer to compute since the integers are larger and
require multiplication as opposed to simple summations. Note that
the HOM latency is calculated as the arrival of the first tuple in a
window until the time the resulting summation is outputted. For
this experiment, the window size was five tuples.

Takeaway Summation or averaging queries incur larger delays due
to the need for multiplying larger numbers (a costlier operation) to
homomorphically sum tuples using the Paillier [28] scheme.

5.5 Total System Overview

Given that each encryption scheme yields an overhead, it is worth
exploring exactly what percentage of system time is devoted to do-
ing a given task. We consider six main tasks when examining where
the system spends its time: encrypting, decrypting, attribute alter-
ations (CP-ABE), computing, transmitting, and waiting.
Configuration The results are based on an hour-long simulation
where over 40,000 tweets were generated, and 600 changes in pol-
icy were assigned. The worker nodes were in a wheel configura-
tion (Figure 5) with each leaf sending data to a sink (a bolt which
receives and deletes data) to emulate retransmission. We used a
mixed query workload, consisting of equality, range, and summa-
tion queries (33% for each type). Since the workload depends
largely on the input rate, results are given for different input rates.
In the event that the machines became overwhelmed, a typical sim-
ple load shedding technique was used [31].

Results (Table 4) For all experiments, over 70% of the time was
spent on computation or idling if the workload was light. The time
spent on attribute alterations and the time spent encrypting stays
relatively constant throughout the simulation. The system spends
more time decrypting as the workload increases since more tuples
are sent. The wait time of 0.0%, for the 8,000 tuples/sec case, indi-
cated a system saturated with tuples and, as such, some tuples were
dropped (4.9% of tuples).

Takeaway PolyStream spends on average 15-17% of the total time
in encryption, decryption, and key management.

5.6 SP Frequency vs. Throughput

A change in policy can occur at any time. Next, we evaluate how
the frequency of policy changes effects the overall latency.
Configuration We used two machines, each with two data con-
sumers. The frequency of policy changes is determined by the fre-
quency of inserting SPs into the stream. We compare against using
ABE encryption for all tuples, similar to the state-of-the-art [5].
The number of attributes was fixed at five, with a mixed query
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Figure 5: Configurations used to test how network topology affects
PolyStream.
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workload of equality, range, and summation queries (33% each).
Results (Figure 6a) Results are depicted in Figure 6a. Note that
the per-tuple ABE uses outsourced decryption. These experiments
show that PolyStream was better than per-tuple ABE for all cases
except the degenerate case of one SP per data tuple. PolyStream
performed well when changes in policy are infrequent. It is clear
that PolyStream outperforms the state-of-the-art [5] in even the
simple case of one policy update for every two tuples, while pro-
viding more flexibility in submitting queries.

Takeaway Given a ratio of 1/100 (data tuples to SPs), PolyStream
outperforms Streamforce by over 40x.

5.7 Tuple vs. Punctuation Level ABE

The implementation of the current state-of-the-art, Streamforce [5],
uses decryption outsourcing techniques from Green et al. [17] to
outsource decryption of Attribute-Based Encryptions to the cloud.
Through the use of a transformation key, the server (CRN) is able
to aid in decryption by doing most of the decryption, leaving only
a small decryption operation to the data consumer. For every tuple
selected by the system, however, a full attribute-based decryption
must be done, which is costly regardless of whether or not it is done
on a server. This means the number of ABE decryptions in Stream-
force is large when compared to PolyStream which only uses ABE
for policy updates (SPs). To test the effects of outsourcing attribute-
based decryption to the cloud, we implemented the scheme used by
Streamforce to compare our key distribution approach with their
attribute-based approach.

Configuration Streamforce used four different queries ranging from
simple selections to summations. To compare their results with
ours, the total decryption time is taken as the transformation time
plus the decryption time performed on the data consumer. The total
decryption time for PolyStream is simply the faster cryptographic
scheme decryption time, which averages to 13.2 seconds, as men-
tioned above. Since PolyStream only uses ABE to share keys (i.e.
only when a Security Punctuation is issued and processed), it does
not pay the cost of ABE decryption on every tuple; instead, it only
pays the cost once, as described above. One query was used, along
with one stream on one machine. Note that the ABE decryption
time depends on the number of attributes, so results are given for
different numbers of attributes. Also, note that in this experiment
the only comparison drawn between Streamforce and our work is
Streamforce’s use of ABE for each tuple. Streamforce relies on the
data provider to do aggregates rather than the server, and the deter-
ministic encryption and summations are the same as the ones used
in PolyStream, so they were excluded.

Results (Figure 6d) Even with the smallest number of attributes,
outsourced ABE is 4x slower than the PolyStream approach, and
at one point it is nearly 550x slower depending on the number of
attributes. These results are in line with initial results from Green
et al. [17], which were on similar, yet better, hardware.

Takeaway By using ABE only for key management (i.e. not for
every tuple), PolyStream incurs up to 550x less overhead per tuple
than Streamforce.
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Figure 6: Network Configuration, SPS frequencey, and Encryption Technique Effects on Throughput and Latency

5.8 Network Effect on Throughput & Latency

Configuration (Figure 5) Storm enables the user to describe the
configuration of the network interconnecting the worker nodes. To
better see how network connections affect the system, we tested
five configurations with different input rates, data consumers, se-
lectivities, and CRNs. These five configurations consisted of a tree,
areverse tree, a line, a diamond, and a wheel.

Throughput Results (Figures 6b, 6¢) The first network experi-
ment measured the throughput with respect to the workload. Each
configuration had all of the worker nodes running. Figure 6b de-
picts the results. As the workload increases for each configura-
tion, there is a corresponding drop in throughput. The wheel con-
figuration is less affected as there is no single bottleneck whereas
each other configuration has at least one bottleneck where multiple
streams meet at a CRN. The throughput is not just a factor of the
workload, it is also a factor of selectivity and the number of worker
nodes. Only deterministic selection queries were used in this ex-
periment. Figure 6¢ shows the effects of selectivity on throughput
for each configuration. The results are similar to the increase in
workload, but the trees have a higher throughput since they reduce
the number of tuples at each stage due to changes in selectivity.
Latency Results (Figures 6e, 6f) Figure 6e shows that the reverse
tree incurs the highest latency. Again, the output node becomes the
bottleneck, causing delays to compound as the number of tuples
increases. The wheel configuration preforms the best since there
is no delay getting data consumers. Figure 6f shows the effects on
latency when the selectivity of operatiors increases. Networks that
reduce the number of CRNs as data flows tend to do worse as the
workload increases. This verifies that PolyStream does not incur
unnecessary overheads that would not appear otherwise.
Takeaway Network configurations have an impact on the latency
and throughput of PolyStream since delays compound depending
on the encryption types and selectivities.
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5.9 Overhead of Analytical Queries

Analytical queries can be more costly than regular queries when
summation is involved. We explore these next.
Configuration For analytical queries, we used an equal mix of 100
range and summation queries. Range queries had a selectivity of
0.5. Ten queries were registered to each of ten data consumers who
were assigned two per machine in a wheel pattern (see Figure 5).
The same data was used for the non-analytical queries, but all query
types were included to show how throughput was affected. Analyti-
cal queries were simply summations over a fixed window and filters
over a fixed window, whereas non-analytical queries were equality
filters and plain-text joins.
Results (Figure 7) Figure 7 shows the throughput for an analytical
query-heavy workload and a non-analytical-query-heavy workload.
Analytical queries must use the Paillier [28] encryption scheme,
which requires large integer computations to be done on the server,
resulting in the slowdown depicted in Figure 7.
Takeaway Analytical queries require multiplication of large num-
bers and will incur larger overheads than simpler queries.
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5.10 Encryption Overhead Comparisons

Configuration Here, we introduce CryptDB [29] as adapted for
a streaming environment. CryptDB [29] and PolyStream utilize
many of the same tools to accomplish their goals, although they
were designed for very different system needs: CryptDB operates
on traditional Database Management Systems, whereas PolyStream
operates on DDSMSs. CryptDB’s primary goal is not access con-
trol for all parties, but rather eliminating unwanted access by third-
party storage systems by allowing computation over encrypted data
on the untrusted third-party database. CryptDB utilizes special-
ized encryption techniques for allowing queries to operate on un-
trusted servers over encrypted data. Specifically, CryptDB employs
Deterministic, Order-Preserving, Homomorphic, Specialty Search,
Random, and Join encryption techniques to enable many different
queries. Each technique leaks a different level of information (dis-
cussed in Section 4.3) but allows for different levels of functional-
ity. These different techniques are structured in “Onions” in which
the outer layer contains the most secure encryption technique. Re-
moval of layers allows more functionality (i.e. going from RND to
DET), but leaks some sensitive data.

When considered for use in a DDSMS, CryptDB encounters a
few limitations. First, the data consumer no longer has control of
the data source, meaning they do not control the encryption being
used, or the accesses being given (including whether they them-
selves have access). This requires an online key management sys-
tem as well as knowledge of what types of encryption are required
for each potential data consumer, and an access control mechanism
for different end users. In the system model described above, one
data provider can have many data consumers digesting their data.
Each data consumer may require a different level of encryption for
processing.

We implemented a micro-benchmark to show the average over-
head incurred by using onions in a streaming environment. This
benchmark consisted of three onions (all those from CryptDB mi-
nus searches and joins) for a simple schema of four fields: Name,

HeartRate, StepsTaken, and Glucose. Each field was onion-encrypted,

resulting in 12 fields. Between 2 and 12 fields were chosen at ran-
dom to be decrypted to a random level, for 10,000 tuples.

Results (Figure 8) The average overhead from decryption was 51.5ms

per tuple for the stream adaptation of CryptDB. This means a DSMS
that could handle 10,000 tuples per second would be reduced to 194
tuples per second, hindering the useful work being done by 98%,
and causing an increase in encryption overhead of nearly 5,000%.
These overheads and the need for an access control element limit
the use of CryptDB in a streaming environment. PolyStream avoids
these overheads by simply encrypting data at one level and by avoid-
ing re-encryption. Also note that using CryptDB for a streaming
application would cause greater overheads, due to a large number
of insertions into the database and frequent query re-execution to

get up to the date results. Both of these overheads are not explored
here.

In addition to these overheads, recall that the encryption over-
head for Streamforce causes a 4,000x slowdown on an unaltered
system (as claimed in [5]). Our experiments from Section 5.6 show
that a workload with just 5 attributes would incur at least 49,000%
overhead for every tuple. Note also that from Section 5.6, PolyStream
with a relatively low policy update rate can incur as little as 12%
overhead attributed to encryption, but will average roughly 56%.
These overheads are displayed in Figure 8.

Takeaway PolyStream incurs very little overhead versus the closest
related work.

6. CONCLUSION

Modern data streaming applications, which separate the source
of data from its eventual consumer, make it difficult for data providers
to author and enforce effective access controls. Access control
frameworks for DDSMSs must allow data providers the ability to
easily author policies, while supporting policy changes over time
as the system evolves. To ensure data confidentiality from (poten-
tially) untrusted third-party compute nodes, these policies should
be enforced cryptographically, which requires an online key man-
agement system. A key challenge is enforcing these protections
without incurring undue performance or utility degradation.

In this paper, we introduced PolyStream to address the above
problems via cryptographically enforced access controls over stream-
ing data. Through the use of various cryptographic schemes, PolyStream
allows untrusted third-party infrastructure to compute on encrypted
data, allowing in-network query processing and access control en-
forcement with minimal impact on system utility. PolyStream uses
a combination of security punctuations, attribute-based encryption,
and hybrid cryptography to enable flexible (ABAC) access control
policy management and key distribution with minimal overheads.
We have performed an extensive experimental evaluation on a real
system (using Storm) and showed that PolyStream provides an ex-
cellent tradeoff between confidentiality and performance. Com-
pared to the state-of-the-art, PolyStream performed up to 550x faster
in our evaluation.
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