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Abstract— The proliferation of mobile, ubiquitous and spatial
computing has led to a number of services aiming into facilitate
the exploration of a city. Platforms such as Foursquare and
Yelp curate information about establishments in an area that
can then be used for recommendation purposes. Traditionally an
approach followed by these systems is to rank places based on
their popularity, proximity or any other feature that represents
the quality of the venue and then return the top-£ of them.
However, this approach, while simple and intuitive, is not
necessarily providing a diverse set of recommendations, since
similar venues typically are ranked closely. Therefore, in this
paper we design and introduce MPG (which stands for Mobile
Personal Guide), a mobile service that provides a set of diverse
venue recommendations better aligned with user preferences.
MPG takes into consideration the user preferences (e.g., distance
willing to cover, types of venues interested in exploring, etc.),
the popularity of the establishments, as well as their distance
from the current location of the user by combining them in a
single composite score. We evaluate our approach using a large-
scale dataset of approximately 14 million venues collected from
Foursquare. Our results indicate that MPG can increase coverage
of the result set compared to the baselines considered. It further
achieves a significantly better Relevancy-Diversity trade-off ratio.

I. INTRODUCTION

The rapid developments in mobile computing has lead to
the transformation of traditional Yellow pages to mobile.
Platforms such as Yelp and Foursquare allow their users
to generate content (e.g., text, image, etc.) and share their
experiences with their peers. This content is consequently
consumed by other users, thus, closing the communication
channel and allowing the exploration of an urban area.

Many systems have been developed and built on top of these
platforms for recommending specific venues to be visited by
users, i.e., a digital travel guide. Given that this digitization
results in a richer and up-to-date content, the possibilities
for providing a flexible, personalized guide are huge. Nev-
ertheless, many of the approaches to date are monolithic
and myopic to the user preferences, returning generic rec-
ommendations where every location is treated equally (e.g.,
[11], [13], [20], [28], [34]). Of course, personalized tour
systems have also appeared in the literature (e.g., [16] with
more details provided in Section VI) taking into consideration
spatiotemporal constraints, users’ interests, etc. However, a
common theme among these approaches - personalized or not
- is the ranking of venues based on some quality features.
Consequently, the top-k venues are returned. The drawback
of this approach is that it does not allow for a diverse set
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Fig. 1: MPG provides a set of diverse recommendations without
sacrificing the quality.

of recommendations; similar venues will tend to have similar
ranking and hence the top venues will all be similar to each
other with high probability. At a high level this translates to
a poor recommendation since the effective choice of the user
is reduced, given that many of the recommended venues will
offer similar experiences.

In this work, our goal is to design the Mobile Personal
Guide (MPG) that will take into consideration the user’s
preferences and provide a set of venues that satisfies the
imposed constraints with maximized diversity. The diversity
(to be formally defined later) is essentially a measure of
dissimilarity of the venues based on external attributes. Simply
put, MPG outputs a set of high-quality yet diverse venues. To
illustrate this objective let us consider a toy-example consisting
of 100 venues that satisfy Pam’s preferences depicted in Fig.
1. Assume, Pam only has time to visit 4 of them. The venues
represented by the large circles correspond to the top-4 venues
ranked based on their popularity for instance. The venues
represented by the triangle and the square are the 5th and 6th
ranked venues, respectively. The rest of the venues are lower
ranked and are represented with the brown dots. The space
corresponds to two external features (fi, f2) that define the
similarity of a pair of venues. In particular, the top-4 venues
as we can see are very close in this space and hence are similar
(or in other words they have low diversity in the space defined
by f1 and f2). A system that does not consider the diversity of
the recommended venues would most certainly choose these
venues as the output. However, MPG allows the user to explore
the available venues in this latent space - without sacrificing
the quality of the recommendations - and so, it would return
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to the user the top-2 venues as well as the Sth and 6th ranked
venues (the venues with red fill). As we can see this set is more
spread in this latent space as compared to the top-4 venues.

In a nutshell our approach consists of the following basic
steps. First, we begin by assigning an intensity value I, to
venue v based on its popularity. We also assign a distance
intensity value Ij ., which captures the distance between
the current location ¢ of the mobile user and venue v. By
combining I, and I, we obtain an updated intensity value,

».d- We then further tune these intensity scores based on the
preferences of user u obtaining I ; ., which forms our com-
posite intensity value spacel,.. Finally, I} along with a vector
f, that represent venue v in the latent space (i.e., external
attributes) form the input to our slightly modified PrefDiv
algorithm [14] whose output is the required recommendations.
One of the advantages of PrefDiv is that it offers to the mobile
user the ability to adjust the balance between relevance and
diversity in the returned results.

A main focus of our study is an appropriate definition
for the popularity-based intensity value I;. A straightforward
approach is to consider information such as the number of total
visitations in venue v and/or the number of unique people that
have visited v. However, this might introduce age biases, that
is, venues that are older will inevitably have accumulated a
larger number of visitations. Furthermore, venues in a city
are not isolated entities. They interact with each other as
part of a large, connected network based on the aggregate
mobility of the dwellers. For example, even though venues
v; and v; have similar number of visitations, v; might attract
customers from a large number of other establishments, while
venue v; from only a handful of them. Similar differences and
aspects of a venue’s popularity can be captured by analyzing
a flow network between venues. In particular, we examine the
integration of Page Rank in the computation of I;. Our results
presented in detail later indicate that Page Rank integration
offers marginal gains, if at all. Given its high computational
complexity, especially in a large and densely populated area
where the urban flow network is expected to be larger, our
final recommendation for MPG is to utilize the I; that does
not incorporate the Page Rank scores.

In summary, this paper’s contributions are as follows:

e We introduce a new method, which capable of generating
venue recommendations that are not only popular and
relevant to user’s preference but are also diverse. Our
method ranks venues based user preferences, how far the
venue is, and the popularity of a venue based on check-
in information. It achieves diversity using the semantic
distance function called Word2Vec [24]. (Sec. III)

e As a proof-of-concept, we design and implement MPG, a
prototype of a real mobile service that provides users with
a fine control over the trade-off between relevancy and
diversity through intuitive tunable parameters. (Sec. IV)

e We experimentally show that MPG can successfully in-
crease coverage of the result set compared to other al-
ternatives, and achieves a significantly better Relevancy-
Diversity trade-off ratio than other models. (Sec. V)
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II. BACKGROUND

In this section we will provide the description of the dataset
used as well as notations for the development of MPG.

A. Datasets

In our work we have used data collected from the major
location-based social network, Foursquare. Foursquare is a
digital social network where the main interaction among its
users is the voluntary sharing of one’s whereabouts through
check-ins. Foursquare has a rich, user-curated, venue database
through which users can choose to notify their friends for their
current location. In particular, our study utilize the following
information:

Venue database: We used Foursquare’s public venue
API and queried information for 14,011,045 venues.
Each reading has the following tuple format: <ID,
latitude, longitude, # check-ins, # unique
users, type>. The purpose of this dataset is two-fold; (a)
we obtain a database of all points-of-interest (POIs) in a city,
and (b) we obtain information that can be used as a proxy for
the quality of a venue (e.g., the number of unique users that
have checked-in to the venue or the total number of check-ins).

Venue transition flows: Foursquare’s public venue API
(NextVenues endpoint) allows us to obtain for every
Foursquare venue v, a set V, of venues that users typically
visit after v. The results are based on the number of users that
have performed the transition v — u,u € V,. We have queried
the Foursquare venue database and have obtained the relevant
information for all the venues in New York City (NYC) and
San Francisco (SF).

User check-in information: User preferences can be indi-
rectly revealed through their historic visitations (e.g., frequent
visits at Chinese restaurants by Pam is a strong signal for her
appeal to this cuisine). In order to build realistic user profiles
for our evaluations we used a dataset collected by Cheng et
al. [8] that includes geo-tagged, user-generated content from a
variety of social media between September 2010 and January
2011. This dataset includes 11,726,632 Foursquare check-ins
generated by 188,450 users.

B. Relevance, Intensity, Diversity and Similarity

We now formally introduce the relevance and diversity,
which are central to our work.

Relevance: We represent the degree or score of relevance
of an item o to a user u by the Preference Intensity Value (I).

Definition 1: Preference Intensity Value A Preference In-
tensity Value (/) is a decimal value between —1 and 1 that is
used to express a negative preference, a positive preference, or
equality/indifference. Negative preferences are expressed using
any value in [-1,0); —1 is used to express complete dislike.
Positive preferences are expressed using any value in (0,1]; 1
is used to capture the most likability. Equality/indifference is
expressed using 0.

Diversity: We measure the diversity of a set of items S by
measuring how dissimilar, i.e., the semantic distance beyond
a threshold, each item in S is with respect to each other.
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Definition 2: Dissimilarity Let O be the set of items in the
database. Two objects o; and o; € O are dissimilar to each
other dsmy(0i,05), if dt(oi,0;) > o for some distance function
dt and a real number p, where p is a distance parameter, which
we call radius.

Definition 3: Similarity Let O be the set of items. Two
objects o; and o; € O are similar to each other, if d¢(0;,0;) < o
for some distance function dt and a real number o. We use
stm(0i, O) to denote a set of items in O that are similar to
an item o;, such that Vo; € sim,(0s,0), 05 # 0.

C. Preferential Diversity

In this section, we present Preferential Diversity (PrefDiv)
[14], which we have previously proposed as an efficient
solution to the Maximum Covering Diversified Top-k problem
in traditional databases. PrefDiv is an iterative algorithm that
utilizes a ranking model that produces an initial result set of
objects for a given user query and returns a set of k objects
with maximized relevance and diversity. PrefDiv is shown in
Algorithm 1 and its input parameters in Table I.

Parameter A is used to tune the balance between relevance
and diversity in the returned result set. Specifically, A defines
the distribution of the intensity values of objects in the final
result set R. When A = 1, R would simply be the top % objects
from the initial set, i.e., the objects with the & highest intensity
values. When A = 0, R contains % dissimilar objects from the
initial set. When A is between 0 and 1 and given that PrefDiv
is an iterative algorithm, the final result will have at least Axk
objects from every iteration, and, in each iteration, A will be
divided by half. For example, when A = 0.5 and k = 20, the
first iteration will select at least 20«0.5 items for the final result
set, the second iteration will select at least 20 (0.5%0.5) items,
and so on.

The basic logic of PrefDiv is as follows: It first sorts the
objects in the initial set O = {01, ....,0n} in descending order
along their intensity value and splits them in groups of &
objects. In each iteration, it evaluates the objects in a group
for diversity, starting with the first group with the highest
intensity objects. The item o; with the highest I in the group
To is moved into the final result set R, if there is no object
in R similar to o, i.e., simy(0;, R) is empty; otherwise it is
marked as “Eliminated”. Also, all objects in sim,(0;,To) are
marked as “Eliminated”. While there are still objects left in
To that are not being marked as “Eliminated”, it processes
the next unmarked one o; with the highest I’ in the same
manner. It ends an iteration by finalizing the moved objects

TABLE I: Parameters of PrefDiv

Par. Range Usage

O 1 < O] Set of objects with intensity values

k 1<k Size of the result set

0 0< o< M! Determines whether a pair of objects
are similar.

A 0 <A<1 Determines the number of objects to
be promoted to the result set at each
iteration.

I'M = Max distance of dataset
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Algorithm 1 PrefDiv

Require:
1: One set of objects O, a size k, a relevancy parameter A,
and a radius o
Ensure:
2: One subset R of O
S0

3
4: turnCounter = 0

5: while there exists unmarked items in O and |R| < k do
6:  Increase turnCounter by 1

7: S« Pick k items with highest intensity from O

8:  for all items o; € R do

9 for all items o; € S, s.t. 0; € sim, (04, S) do

Mark o; as “Eliminated”

11:  while there exists unmarked items in S do

12: R =RUo;, s.t. 0o; € S is unmarked and I > I :
VOj cs

13: for all unmarked o, € S do

14: if o, € simr(0;,S) then

15: mark o, as “Eliminated”

16:  while number of unmarked items in S < A -k do

17: R = RUo;, s.t. 0o; € S is unmarked and 1% > I :
VOj cs

18: A=A-05

19:  if turnCounter == 1 then

20: create new set G <+ Vo, € S, s.t. o; is marked

2. 0=0-(0NS)

22: if |R| < k and Vo; € O, s.t. 0o; are marked then

23:  while |R| < k do

24: R=RUoj, st.oj€Gand I, > I3 :Yo; € G

25: Return R

into R according to A, as mentioned above. If fewer than
the required A x k“*¢"***°" objects were moved in R, then the
difference s is covered by moving the top-s objects with the
highest intensity values that have been marked as “Eliminated”
in Tp into R. The iterations continue until either k objects are
selected (|R| = k), or if all items in O are examined. If the
size of R is still less than k, k — |R| items with the highest
intensity values that have been marked as “Eliminated” will
be selected and added into R.

PrefDiv is linear to the number of objects in the initial set.
The initial candidate selection for first iteration takes O(k?)
and each subsequent iteration costs O(k?) as well. As there
are at most % iterations, Algorithm 1 has an overall worst
case complexity of O(kN).

D. Venue Flow Network

As mentioned in the Introduction, a critical element in
the design and evaluation of MPG is the definition of the
popularity-based intensity value. Towards that end, we will
examine the integration of a flow network G; between venues
in a city as captured through the aggregate mobility of city-
dwellers. This network is derived by the venue transition flows
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dataset obtained from Foursquare and essentially captures the
transitions of people between the venues in an area. Formally,
Gy is defined as follows:

Definition 4: The venue flow network Gy V,€), is a
directed network where a node v; € V represents a venue and
there is a directed edge e;; € £ from node v; to node v; iff v,
has been visited immediately after v;.

In particular, we study the use of the PageRank of G; in the
definition of a popularity-based intensity for a venue. With
3 being a vector whose i-th element captures external (i.e.,
irrelevant from the network structure) factors affecting the
centrality of node v;, the PageRank of Gy is given by [25]:

m=D(D—-aA) '8 (1)

where A is the adjacency matrix of Gy, a is a parameter
(a typical value of which is 0.85) and D is a diagonal
matrix where d;; = max(1, ki,out), With k; 0.¢ being the out-
degree of node v;. While in most practical cases PageRank
considers only the network structure, Eq. (1) is able to take
into consideration - if needed - not only the network structure
but external information that affect the “importance” of a
node/venue v; through vector 8. In MPG we do not consider
this option and hence, 3 is the unit vector.

III. SYSTEM DESIGN

In this section we will begin by formally presenting the
mobile personal guide problem and consequently detailing the
design of MPG.

A. Problem Statement

We begin by formalizing the algorithmic problem that lays
in the epicenter of MPG.

Problem 1 (MPG): Given a set of geographical points V' =
{v1,v2,...,u}, a popularity index &,, for location v;, a query
point ¢, a reach r, and a profile set that encodes user prefer-
ences P = {p1,p2,...,pn}, identify a set V* CV ([V*| = k)
with maximized diversity A(S), while a set of constraints
h(V*,P,q,r &) is satisfied.

In our setting the set V' corresponds to the set of available
venues/Points-of-Interest. The query point ¢ corresponds to
the current location of the mobile user, while r represents the
maximum allowed distance between ¢ and any point in the
chosen solution V*. The set of preferences P captures the
profile of the mobile user with respect to his interests. In our
setting, we will use the user check-in information dataset (see
Section II) from Foursquare to build the users’ profiles as we
detailed in Section III-B. Finally, the constraints described by
function & in Problem 1 include, (i) a geographic constraint
that ensures that the maximum distance between the currently
location of the mobile user and any venue recommended
does not exceed r (i.e., d(¢,v;) < r, Vo, € V), and (ii) a
personalization constraint that ensures that the output set of
venues is compatible with the user preferences (i.e., V = P).

Given this problem setting, the actual mobile personal guide
system will include an interface that (a) will obtain the current
location of the user ¢ (e.g., through the GPS sensors, NFC

75

P1

0.4
P5 (Museum)

0.5

Heinz
History
Center

Carnegie
Science
Center

Athena

Starbucks Peet's Coffee DD

Tree

Pizza
u Roma

Souvlaki.gr

Fig. 2: Pam’s sample hierarchical user profile. The first level
corresponds to the coarse-grain preference profile (P;), while
each one of the sub-trees stemming from P; corresponds
to the preferences within each category (e.g., preference P>
corresponds to the “Cafe” venue type).

sensors etc.) and will allow the user to provide as input (b)
the reach r, (c) the set of types of venues she is interested in
this trip and (d) the number of venues & she would like to know
about. The preference of the user will be “hardcoded” either in
the system (i.e., bound with the user account) or stored on the
mobile device and uploaded at the time of the request. MPG
will finally provide the set V* of the recommended venues
based on the definition of Problem 1.

B. User Preferences

In Foursquare every individual venue v is associated with a
type 7,. This classification is hierarchical, in the sense that an
Italian restaurant belongs to the category “Italian restaurant”,
which can belong to the higher level category ‘“Restaurants”,
which can itself belong to the category “Food” and so on. At
the top level of the hierarchy there are ten categories, namely,
Arts & Entertainment, College & University, Food, Nightlife
Spots, Outdoors & Recreation, Events, Professional & Other
Places, Residences, Shops & Services and Travel & Transport.
However, in order to build highly personalized and specific
profiles we use the bottom layer of hierarchy as well as the
specific venues visited.

In particular, given the set of check-ins C,, of mobile user w,
we provide a hierarchical profile P. At the top level, the pref-
erences of the user are expressed in terms of the (normalized)
frequencies of this user’s visitations with respect to the types of
venues. The second layer of the user profiles further provides
the normalized frequencies of venues for the different types
of locations visited by «. Fig.2 presents a sample profile for
Pam. Preference P; is a coarse-grain preference profile, which
informs the system that Pam prefers to spend 40% of her time
in coffee shops, 10% in museums, 20% in burger joints and
30% in Greek restaurants. Preferences P>— P are able to distill
further Pam’s preferences. For instance, she appears to prefer
Starbucks more compared to Peet’s coffee.

C. Distance-based Intensity Value

The physical distance between the current location ¢ of the
mobile user and venue v can also be used to obtain an intensity
value for v. In particular with d; being the normalized distance

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:30:30 UTC from IEEE Xplore. Restrictions apply.



between ¢ and v’s location the distance-based intensity value
can be defined as: dv
q

(@)
”

In the above equation the distance has been normalized
based on the maximum allowed distance from Problem 1,
that is, r. Note here that d; can be, in principle, equal to
0. However, this happens when the current user location g is
at venue v. Given that the user is already at this location these
venues are not considered by our system.

=1-

D. Popularity-based Intensity Value

An important factor that can impact the choice of a venue

v from MPG is its popularity. With ¢, being the number of

total visits in venue v, i.e., the number of check-ins in v, and

sy being the number of unique visitors in v, we define the
popularity-based intensity value of v as:

=X —2 41—

max c;
eV

Sy

3

, A€ [0,1]
max S;
%

where V is the set of all the venues. This intensity value
essentially corresponds to the popularity index £ used in the
formal definition of the MPG problem.

Eq. 3 does not consider the flow network between venues
that can provide additional popularity information for venues.
Hence, with 7, being the Page Rank score for venue v, we
updated Eq. 3 as follows:

Cy Sy

I =p- (A +(1=X)- Y+ (1—p) mp, u, A€ [0,1]

4)
Having I3 and I, (or I, .), we can combine them in one
intensity score as follows:

max c;
5%

max s;
ieV

Iip =71+ (1 —=7)- I, y€[0,1]

E. Preference-based Intensity Value

(&)

The degree or strength of relevance of a venue v is ex-
pressed by the preference-based intensity value I, derived
from the user’s profile. In particular, the preference-based
intensity value is a combination of the score of the type of the
venue (i.e., the coarse-grain preference score) with the specific
venue (i.e., fine-grain preference) score. As stated above, since
these scores are derived from the user’s check-ins C.,, the
preference-based intensity value I, for venue v and user u
is computed as follows:

e

» Cy v €t

IL=05 —2% 405 —20 6
Ssor PSS ©
vjet tET'u]-Et

where, C; is the number of check-ins that v had in v, ¢ is the
venue type of v and T is the set of all venue types.

We can further combine I;; with I, in a manner similar
to Equation (5) and obtain a value that combines the user
preference, the popularity (with or without the integration of
Page Rank) and the distance of the venue from the current
location of the user. More specifically:
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Lipa=a I+ (1—a) I, acl0,1] 7

FE. Composite Intensity Value

Eq. (7) combines 3 different elements (user preference
through I, venue popularity through I or I . and geography
through I7) into a single intensity score. This combined
intensity score is the composite intensity value of v, I (or
Iy . if Page Rank is used in the popularity intensity value).
One point we would like to emphasize here is that the order
with which we combine the three intensity values (i.e., I, I
(or I, ) and Ij) to obtain Iy (or I} ) does mot impact the
output of MPG. The reason is that MPG outputs a total order of
the venues based on these three factors. The absolute values
themselves for I} will be different, but the order will always
be the same.

IV. MPG PROTOTYPE IMPLEMENTATION

The MPG prototype essentially implements the PrefDiv
algorithm (Section II-C) with a parameterized intensity value
and Word2Vec [24], as the semantic distance function. For
efficiency, the implementation makes extensive use of hash
tables and indexes. The two key indexes used are the M-Tree
[9] and the Category Tree, which are described below along
with our Word2Vec implementation.

A. M-Tree

One of the main operations in MPG is to generate a set
of nearby neighbors. In order to speed up this process, MPG
utilizes the well-known M-tree spatial index structure [9]. M-
tree uses triangle inequality for efficient range queries similar
to those required in MPG. An M-tree is a balanced tree index
that is designed to handle a large scope of multi-dimensional
dynamic data in general metric spaces. An M-tree partitions
the space in such way that it generates bounding ball regions
around some of the indexed items, called pivots, with some
bounding radius r. Each internal node has at most NV entries,
and contains the following attributes: a pivot p,, the bounding
radius r around p,, a pointer pt to the subtree that is rooted at
the pivot p,, and the distance between p, and its parents pivot.
The distance of a subtree from p, is guaranteed to be within
the bounding radius r. Each leaf node in the tree will have
two attributes: the item that is being indexed, and the distance
between this leaf node and the parent pivot. In MPG, we have
modified the implementation of the M-Tree from [23].

B. Category Tree

MPG uses the Foursquare Category Hierarchy [1] first to
derive the user preferences and build user profiles, and second
in the comparisons for similarity among venues. MPG accel-
erates both of these operations by building a category tree to
capture the category structure of venues in Foursquare as a
tree. Each internal node in the category tree represents a type
of venue, where each internal node represents the subcategory
of the parent node with each leaf node representing the actual
venue. There are in total 10 categories at the top-level of this
hierarchy. Each internal node in a category tree contains the
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following attributes: ID of the category it represents, name of
the category, a pointer to the parent node and a list of pointers
to each of its children nodes. Since a category tree can have
an unlimited number of degrees, all the children node pointers
are stored as hash tables, with the key being venue ID and the
value being the actual pointer.

The user profiles are further derived from the preference
hierarchy, as described above in Section III-B. The preference
hierarchy consists of the top-level categories and the leaf nodes
of the category tree (Fig. 2).

The category tree can be used to calculate the similarity
distance between two venues v; and v; as follows:

Ancestors_Path

Longest_Path ®)

Simee(vi,vj) =1-

where Ancestors_Path is the number of common ancestors
between the venues v; and v; and Longest_Path is the number
of nodes on the longest path to the root from either v; and v;.

C. Word2Vec

Although the category tree is able to measure the similarity
between two venues, this measurement is not very accurate
as it only provides a coarse granularity distance between
two venues. Specifically, this measurement cannot distinguish
the difference between two venues that are under the same
subcategory, for example, “McDonald’s” and “Burger King”,
as both of them share the exact same ancestors.

In order to overcome this limitation, MPG also utilizes
Word2Vec [24], an advanced NLP technique, which supports
fine granularity distance calculation between two venues by
going beyond syntactic comparisons.

Word2Vec is a tool that provides the implementation of
two word vector representation computing models: Continuous
Bag-of-Words model (CBOW), which predicts the current
word based on the sourcing words, and Continuous Skip-
gram model, which seeks to use the current words to predict
surrounding words. Both of these models are based on the
Neural Net Language Model. With Word2Vec, the similarity of
word representations goes beyond simple syntactic regularities.
Specifically, word vectors capture many linguistic regularities.
For example, after obtaining the word representation in vector
space, the resulting vector can have the following properties,
such that vector(‘King’) - vector(‘Man’) + vector(‘Woman’)
results in a vector that is closest to the vector(‘Queen’). MPG
uses CBOW model to generate all word vectors.

The difference between two words under Word2Vec are
calculated through the cosine similarity of two-word vectors,
such that cosine similarity is defined as following:

_ Z?:l AiBi
VI AL, B

where n is the length of vector, A; and B, are elements of
vector A and B, respectively.

The current word vectors we adopted support phrases that
consist of up to two words. For venue names that have more
than two words or are not contained in the word vectors,

Simyec(A, B) ©
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we split the phrases into single words and then obtain word
vectors for each individual word in the phrases. The final
vector of a phrase is obtained through the average of all vectors
for each word in this phrase. Since the accuracy of Word2Vec
is strongly depends on the quality of the word vectors, a large
real-world corpus is needed in order to obtain high quality
word vectors. We have experimented with various corpus in
an attempt to generate the highest quality word vectors. The
best suitable word vectors we obtained were generated from
the entire English wikipedia that consist of 55 GB of plain text.
The resulting word vectors contain over 4 million entries. In
order to effectively query the word vectors, MPG stores all the
word vectors in memory as a hash map.

Similar to category-tree based similarity, the Word2Vec
based similarity has its own biases. We were able to overcome
these biases of the individual similarity metrics by combining
them (Eqgs. 8 and 9) and measuring the similarity between two
venues v; and v; as follows:

SimTree('Uh Uj) + SimVeC(A7 B)
2

where A and B are representing the vector representation of
venue v; and v; respectively.

(10)

Sim (v, v;)

V. PERFORMANCE EVALUATION

In order to study the effectiveness of MPG, we use as base-
line Page Rank the original PrefDiv that considers only user
preferences — PrefDiv was experimentally shown that it can
successfully increase coverage of the result set compared to
the state-of-the-art diversified top-k algorithms, and achieves
a significantly better Relevancy-Diversity trade-off ratio than
these algorithms [14]. In order to get a better insight into the
impact of each component of the composite intensity value,
we compare MPG to PrefDiv with different intensity value
combinations. Table II summarizes all models employed in
our experiments, and Table III summarizes the values of the
parameters used.

We ran all our experiments on an Intel machine with Core
i7 2.5Ghz CPUs, 16GB Memory and 512GB SSD and used
the Foursquare datasets described in Section II-A. We created
individual Foursquare user profiles as described above and
three super-user profiles with more fine-grained preferences
by merging the profiles of (i) 1000 Foursquare users (Super-
user A), (ii) 500 Foursquare users (Super-user B), and (iii) 350
Foursquare users (Super-user C).

A. Evaluation Metrics

In our experimental evaluation, we used three well-known
metrics: Normalized Relevance [30], Average Similarity Dis-
tance, and Coverage [12] .

Definition 5: Normalized Relevance. Let O be a set of
venues and O; C O such that |Oj| = k. The Normalized
Relevance of Oj is defined as the total relevance score of
Oj; over the sum of top-k highest relevance scores of O.

In our experiments, Normalized Relevance is measured
in terms of composite intensity value and preference-based
intensity value (i.e., original PrefDiv).
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TABLE II: MODEL ABBREVIATION

| Models | Description |
PD(pref) Uses preference-based intensity value as the relevance score for PrefDiv.
PD(pop+dist) Uses popularity and distance from the user current location as the relevance score for PrefDiv.
PD(pref+dist+pr) Uses preference-based intensity value, distance and PageRank as the relevance score for PrefDiv.
PD(dist+pref) Uses preference-based intensity value and distance as the relevance score for PrefDiv.
PD(composite+PageRank) | Uses composite intensity value and PageRank as the relevance score for PrefDiv.
PD(composite) Uses composite intensity value as the relevance score for PrefDiv.
PageRank Only uses the result of PageRank as the final ranking without using PrefDiv.

Definition 6: Average Similarity Distance Let O be a set
of venues, the average similarity distance of O represents the
average of the pairwise distances of the venues in O.

In our experiments, Average Similarity Distance (ASD) is
normalized to take into consideration that different methods
may return as a result a list of venues with duplicates rather
than a set and expressed as Redundancy Normalized Pairwise
Distance (RNPD):

(EmeDl) < asp

where Unique(O) represents O with out duplicates.

RNPD(L) = (1 — (11)

Definition 7: Coverage Let O be a set of venues, O; C O
such that |O;| = k and S C O be defined as the union of
sime(vi, O) for all v; € Of. The coverage of a subset Oy is
defined as the percentage of venues in S over the total number
of venues in O, i.e., |S|/|O|.

B. Experimental Results

In this section, we present the evaluation of all models in
our experiments. First, we compare all of them in terms of the
metrics mentioned above, and then we focus on the two-best
performing ones for further understanding their performance.

1) All models: We performed our experiments using the
parameters in Table III randomly selecting 15 query points in
each of New York City (NYC) and San Francisco (SF). Our
experiments showed that the actual location of the query point
(at least among those randomly selected) does not significantly
impact our results. Due to space limitations, we only present
the results from 15 random locations in each of the cities for
Super-user A and for 10 categories (Figs. 3-10).

As we can see from Figs. 3 and 7, PD(composite) and
PD(composite+PageRank) have the best performance in terms
of Normalized Composite Intensity Value. In particular, they

TABLE III: PARAMETER CONFIGURATION

| Parameters [ Value |

A 0.5
o 0.7
0 0.7
a 0.5
A 0.6

K 10 - 50

Radius 1.5 km

Number of Locations 15, 50

Number of Categories of POIs Selected 5, 10
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provide a 10% improvement on average. Page Rank consis-
tently performs the worst with respect to relevance as expected,
since it is oblivious to user preferences and venue popularity.
In PD(composite) when PrefDiv selects the representative
venues, it considers the Normalized Composite Intensity Value
as the relevance criteria. This allows PrefDiv to optimize
towards the Normalized Composite Intensity Value. In the
case of PD(composite+PageRank), although it additionally
considers the PageRank in the computation of the Normal-
ized Composite Intensity Value, it does not seem to have a
significant impact in terms of relevance.

With respect to the Normalized Preference-based Intensity
Value (Figs. 4 & 8) PD(pref) delivers the best performance.
PD(pref) uses the Preference-based Intensity Value directly
as the criteria for relevance. However, both PD(composite)
and PD(composite+PageRank) still outperform the rest of the
models by a significant margin, which shows that they can
both satisfactorily reflect user preferences.

Figs. 5 and 9 further illustrate the performance of re-
dundancy normalized pairwise distance of all models. Page
Rank performs the best in this case. PD(composite) and
PD(composite+PageRank) perform very close to the second
best (i.e., PD(pref+dist+pr), PD(pop+dist)) by a small margin,
with the performance difference being consistently between
3% and 5%. Moreover, Figs. 6 and 10 present the perfor-
mance of all models with respect to coverage. As we can
see, most of the models perform identical to each other,
with PD(composite) and PD(composite+PageRank) perform-
ing slightly better.

Finally, Figs. 11 and 12 present two scatter plots that
capture the trade-off between relevance and diversity. Each
point in these two figures correspond to the average over
15 different locations of one super-user and one output size.
Models located in the left upper corner of the figure exhibit the
best diversity result, while the ones located in the lower right
corner have the highest relevance scores. As we can observe,
both PD(composite) and PD(composite+PageRank) are located
towards the upper right corner (circled), which indicates that
both PD(composite) and PD(composite+PageRank) are better
able to handle the trade-off between relevance and diversity.
In conclusions, these results indicate that both PD(composite)
and PD(composite+PageRank) have the ability to achieve a
good balance between diversity and relevance.

2) PD(composite) vs  PD(composite+PageRank):

As illustrated by Figs. 11 and 12 PD(composite) and
PD(composite+PageRank) outperform the rest of the models
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in balancing relevance and diversity. Thus, we carried out
further experiments with these two models utilizing more
query points, i.e., 50 randomly selected points in each city.

13 and 14 demonstrates that PD(composite)
PD(composite+PageRank) slightly in terms
of average Normalized Composite Intensity Value. In
particular, PD(composite) has a slight advantage over
PD(composite+PageRank) when K is small, with the per-
formance gap closing when the size of the output required
increases. Furthermore, Figs. 15 and 16 show that both
PD(composite) and PD(composite+PageRank) perform simi-
larly in terms of Normalized Preference-based Intensity Value.
The same is true with respect to the Redundancy Normalized
Pairwise Distance (Figs. 17 & 18). This reflects that both
models have the ability to eliminate redundant items. Finally,
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as shown in Figs. 19 and 20 both models provide a similar
performance with respect to coverage with PD(composite)
providing some marginal benefits for small K.

3) Discussion: Based on our results the performance of
PD(composite) and PD(composite+PageRank) are similar, i.e.,
the performance of MPG does not significantly improve with
the integration of PageRank. Given the computational com-
plexity of PageRank, which requires O(m + n) for each itera-
tion, where n is the number of nodes and m is the number of
edges in the (urban flow) network the cost of integrating Page
Rank into MPG is high. Hence, our final design of MPG includes
PD(composite), which returns a single recommendation in our
experiments between 200 and 500 msec depending on K and
the user’s location.
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VI. RELATED WORK

In this section we will briefly discuss related to our work
studies. In particular, we will present studies related with trip
planning as well as with the methods of query personalization.

Trip planning and spatial recommendations: During the
last years there has been a large volume of studies that focus on
methods for personalized location/Point-of-Interest recommen-
dations [4], [26], [33] to social-network users. The majority of
existing work utilizes collaborative-filtering techniques [33],
geometric embeddings [4] or they even incorporate features
present in the users’ social network [26] to associate every
venue with a score, which is representative of the probability
of a user enjoying (or liking) a particular venue.

Nevertheless, similar studies consider and evaluate each
venue independently. Hence, motivated by this monolithic
view of the above methods, recent work has focused on
recommending fours of locations. For instance, De Choudhury
et al. [11] focus on segmenting streams of spatiotemporally
tagged photos into paths, and then assembling these paths
into itineraries. Similar studies by Kurashima et al. [21]
and Yoon et al. [34], are based on geo-tagged content from
photo-sharing media (e.g., photo streams, GPS trajectories)
to recommend future travel paths. However, these approaches
do not come without their own drawbacks. For example, in
order to be applicable, the presence of training sequences of
spatiotemporally tagged photographs (or other similar traces)
is required. These approaches cannot handle multiple types
of venues that cater to different user needs. The same is
true for interactive systems [13], [20], [28], which iteratively
personalize or improve a tour based on user feedback.

The support for multiple types of venues is considered
by Ardissono et al. [3] where the user manually selects a
venue from each desired type and then a tour traversing
the selected venues is proposed. More recently, Gionis et
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al. [16] developed a system based on dynamic programming
algorithms to provide spatial-constrained tours based on users
preferences of type of venues. Other spatial recommendation
approaches focus on reconstructing and recommending routes
based on existing location trajectories (e.g., [7], [32]).

To the best of our knowledge there is no study to date that
considers the venue diversity (in a latent space) when it comes
to recommendations. On a different direction though Lu et al.
[22] propose the integration of the output of several location
recommender systems, whose outcome are different.

Query personalization: Relevance ranking using prefer-
ences and result diversification techniques have been proposed
to deal with the problem of information overload, i.e., avoid
overwhelming the users with a large volume of irrelevant
results. Ranking techniques are comprehensively surveyed in
Stefanidis et al. [29]. Mostly these techniques can handle
only one type of preference, either quantitative preferences
or qualitative preferences. Hybrid schemes that support both
qualitative and quantitative preferences have been proposed
in an attempt to exploit the advantages of both types of
preferences while eliminating their disadvantages [15], [19].

Diversity has various definitions in the literature [23]. The
most common definitions are based on similarity, where diver-
sity means to include in the results objects that are dissimilar
to each other (e.g., [37]). Other definitions are based on either
semantic coverage, where diversity means to include objects
that belong to different categories (e.g., [2]), or novelty, where
diversity means to include data that contains new information
(i.e., information that has not been presented previously) (e.g.,
[10]). During the past, many result diversification models have
been proposed, e.g., MaxMin and MaxSum (e.g., [5], [17],
[31]) and DisC Diversity [12], [23].

Even though the goal of diversity is to ensure potentially
important data is not lost due to its low ranking, however the
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result of diversification does not automatically imply relevancy
for the users. This was the underlying motivation for top-k
diversification techniques, such as PrefDiv [14], Swap [35]
and Div-Astar [27], the Query Manifold (OM) framework
[36] and the multi-objective optimization approaches, where
the first objective is relevance and the second objective is
dissimilarity [37]. As opposed to PrefDiv and the multi-
objective optimizations that recommend relevant and diverse
data, QM recommends a set of relevant and diverse queries.

The difference between PrefDiv and Swap is that Swap
seeks diversity through pairwise distances of items among the
result set and filters out items that contribute less to diversity.
Swap ensures relevance by removing items that drop the
relevance below the pre-defined threshold. In contrast, PrefDiv
seeks diversity through eliminating similar items and ensures
relevance by using a relevance-focused greedy algorithm that
can reflect the user specified relevance distribution.

Div-Astar [27] is a graph-based solution in which each node
corresponds to one item in the original data. This diversity
graph is sorted according to the relevance score and an a”
algorithm is used to find the exact solution for diversifying top-
k results. That is, Div-Astar considers the problem as finding
the the optimal solution for the maximum weight independent
set problem, which has been proven to be NP-hard.

The most widely known approach that is targeted directly at
optimizing the trade-off between diversity and relevance, was
introduced by [6]. In this work, the authors have purposed the
twin-objective function called Maximal Marginal Relevance
(MMR), which combines both relevance and diversity aspects
in a single comprehensive objective function with a scaling
factor . When A = 1, the MMR function equals to a
standard relevance ranking function, when A = 0 it computes
a maximal diversity ranking. Recently, a new MMR function
that integrates regret minimization was proposed to generate
the relevance score [18]. This new score attempts to minimize
the disappointment of users when they see k representative
tuples rather than the whole database.

VII. CONCLUSIONS

In this paper we propose and design MPG, a mobile service
that provides a set of diverse venue recommendations better
aligned with user preferences. This is achieved by considering
the user habits, the reach willing to cover, the types of venues
interested in exploring, and the popularity and the diversity
of venues. Our evaluation with Foursquare data indicates
that integrating Page Rank with popularity provides only
marginal benefits, and hence, in view of its high computational
complexity, we recommend not including it in MPG.
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