
MPG: Not so Random Exploration of a City

Xiaoyu Ge1, Panos K. Chrysanthis1, Konstantinos Pelechrinis2

1 Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA
{xig34,panos}@cs.pitt.edu

2School of Information Sciences, University of Pittsburgh, Pittsburgh, PA, USA
kpele@pitt.edu

Abstract— The proliferation of mobile, ubiquitous and spatial
computing has led to a number of services aiming into facilitate
the exploration of a city. Platforms such as Foursquare and
Yelp curate information about establishments in an area that
can then be used for recommendation purposes. Traditionally an
approach followed by these systems is to rank places based on
their popularity, proximity or any other feature that represents
the quality of the venue and then return the top-k of them.
However, this approach, while simple and intuitive, is not
necessarily providing a diverse set of recommendations, since
similar venues typically are ranked closely. Therefore, in this
paper we design and introduce MPG (which stands for Mobile
Personal Guide), a mobile service that provides a set of diverse
venue recommendations better aligned with user preferences.
MPG takes into consideration the user preferences (e.g., distance
willing to cover, types of venues interested in exploring, etc.),
the popularity of the establishments, as well as their distance
from the current location of the user by combining them in a
single composite score. We evaluate our approach using a large-
scale dataset of approximately 14 million venues collected from
Foursquare. Our results indicate that MPG can increase coverage
of the result set compared to the baselines considered. It further
achieves a significantly better Relevancy-Diversity trade-off ratio.

I. INTRODUCTION

The rapid developments in mobile computing has lead to

the transformation of traditional Yellow pages to mobile.

Platforms such as Yelp and Foursquare allow their users

to generate content (e.g., text, image, etc.) and share their

experiences with their peers. This content is consequently

consumed by other users, thus, closing the communication

channel and allowing the exploration of an urban area.

Many systems have been developed and built on top of these

platforms for recommending specific venues to be visited by

users, i.e., a digital travel guide. Given that this digitization

results in a richer and up-to-date content, the possibilities

for providing a flexible, personalized guide are huge. Nev-

ertheless, many of the approaches to date are monolithic

and myopic to the user preferences, returning generic rec-

ommendations where every location is treated equally (e.g.,

[11], [13], [20], [28], [34]). Of course, personalized tour

systems have also appeared in the literature (e.g., [16] with

more details provided in Section VI) taking into consideration

spatiotemporal constraints, users’ interests, etc. However, a

common theme among these approaches - personalized or not

- is the ranking of venues based on some quality features.

Consequently, the top-k venues are returned. The drawback

of this approach is that it does not allow for a diverse set
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Fig. 1: MPG provides a set of diverse recommendations without

sacrificing the quality.

of recommendations; similar venues will tend to have similar

ranking and hence the top venues will all be similar to each

other with high probability. At a high level this translates to

a poor recommendation since the effective choice of the user

is reduced, given that many of the recommended venues will

offer similar experiences.

In this work, our goal is to design the Mobile Personal

Guide (MPG) that will take into consideration the user’s

preferences and provide a set of venues that satisfies the

imposed constraints with maximized diversity. The diversity

(to be formally defined later) is essentially a measure of

dissimilarity of the venues based on external attributes. Simply

put, MPG outputs a set of high-quality yet diverse venues. To

illustrate this objective let us consider a toy-example consisting

of 100 venues that satisfy Pam’s preferences depicted in Fig.

1. Assume, Pam only has time to visit 4 of them. The venues

represented by the large circles correspond to the top-4 venues

ranked based on their popularity for instance. The venues

represented by the triangle and the square are the 5th and 6th

ranked venues, respectively. The rest of the venues are lower

ranked and are represented with the brown dots. The space

corresponds to two external features (f1, f2) that define the

similarity of a pair of venues. In particular, the top-4 venues

as we can see are very close in this space and hence are similar

(or in other words they have low diversity in the space defined

by f1 and f2). A system that does not consider the diversity of

the recommended venues would most certainly choose these

venues as the output. However, MPG allows the user to explore

the available venues in this latent space - without sacrificing

the quality of the recommendations - and so, it would return
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to the user the top-2 venues as well as the 5th and 6th ranked

venues (the venues with red fill). As we can see this set is more

spread in this latent space as compared to the top-4 venues.
In a nutshell our approach consists of the following basic

steps. First, we begin by assigning an intensity value Ivp to

venue v based on its popularity. We also assign a distance

intensity value Ivd,q, which captures the distance between

the current location q of the mobile user and venue v. By

combining Ivp and Ivd,q we obtain an updated intensity value,

Ivp,d. We then further tune these intensity scores based on the

preferences of user u obtaining Ivp,d,u, which forms our com-

posite intensity value spaceIvk . Finally, Ivk along with a vector

fv that represent venue v in the latent space (i.e., external

attributes) form the input to our slightly modified PrefDiv
algorithm [14] whose output is the required recommendations.

One of the advantages of PrefDiv is that it offers to the mobile

user the ability to adjust the balance between relevance and

diversity in the returned results.
A main focus of our study is an appropriate definition

for the popularity-based intensity value Ivp . A straightforward

approach is to consider information such as the number of total

visitations in venue v and/or the number of unique people that

have visited v. However, this might introduce age biases, that

is, venues that are older will inevitably have accumulated a

larger number of visitations. Furthermore, venues in a city

are not isolated entities. They interact with each other as

part of a large, connected network based on the aggregate

mobility of the dwellers. For example, even though venues

vi and vj have similar number of visitations, vi might attract

customers from a large number of other establishments, while

venue vj from only a handful of them. Similar differences and

aspects of a venue’s popularity can be captured by analyzing

a flow network between venues. In particular, we examine the

integration of Page Rank in the computation of Ivp . Our results

presented in detail later indicate that Page Rank integration

offers marginal gains, if at all. Given its high computational

complexity, especially in a large and densely populated area

where the urban flow network is expected to be larger, our

final recommendation for MPG is to utilize the Ivp that does

not incorporate the Page Rank scores.
In summary, this paper’s contributions are as follows:

• We introduce a new method, which capable of generating

venue recommendations that are not only popular and

relevant to user’s preference but are also diverse. Our

method ranks venues based user preferences, how far the

venue is, and the popularity of a venue based on check-

in information. It achieves diversity using the semantic

distance function called Word2Vec [24]. (Sec. III)

• As a proof-of-concept, we design and implement MPG, a

prototype of a real mobile service that provides users with

a fine control over the trade-off between relevancy and

diversity through intuitive tunable parameters. (Sec. IV)

• We experimentally show that MPG can successfully in-

crease coverage of the result set compared to other al-

ternatives, and achieves a significantly better Relevancy-
Diversity trade-off ratio than other models. (Sec. V)

II. BACKGROUND

In this section we will provide the description of the dataset

used as well as notations for the development of MPG.

A. Datasets

In our work we have used data collected from the major

location-based social network, Foursquare. Foursquare is a

digital social network where the main interaction among its

users is the voluntary sharing of one’s whereabouts through

check-ins. Foursquare has a rich, user-curated, venue database

through which users can choose to notify their friends for their

current location. In particular, our study utilize the following

information:

Venue database: We used Foursquare’s public venue

API and queried information for 14,011,045 venues.

Each reading has the following tuple format: <ID,
latitude, longitude, # check-ins, # unique
users, type>. The purpose of this dataset is two-fold; (a)

we obtain a database of all points-of-interest (POIs) in a city,

and (b) we obtain information that can be used as a proxy for

the quality of a venue (e.g., the number of unique users that

have checked-in to the venue or the total number of check-ins).

Venue transition flows: Foursquare’s public venue API

(NextVenues endpoint) allows us to obtain for every

Foursquare venue v, a set Vv of venues that users typically
visit after v. The results are based on the number of users that

have performed the transition v → u, u ∈ Vv. We have queried

the Foursquare venue database and have obtained the relevant

information for all the venues in New York City (NYC) and

San Francisco (SF).

User check-in information: User preferences can be indi-

rectly revealed through their historic visitations (e.g., frequent

visits at Chinese restaurants by Pam is a strong signal for her

appeal to this cuisine). In order to build realistic user profiles

for our evaluations we used a dataset collected by Cheng et

al. [8] that includes geo-tagged, user-generated content from a

variety of social media between September 2010 and January

2011. This dataset includes 11,726,632 Foursquare check-ins

generated by 188,450 users.

B. Relevance, Intensity, Diversity and Similarity

We now formally introduce the relevance and diversity,

which are central to our work.

Relevance: We represent the degree or score of relevance

of an item o to a user u by the Preference Intensity Value (Iou).

Definition 1: Preference Intensity Value A Preference In-

tensity Value (I) is a decimal value between −1 and 1 that is

used to express a negative preference, a positive preference, or

equality/indifference. Negative preferences are expressed using

any value in [−1, 0); −1 is used to express complete dislike.

Positive preferences are expressed using any value in (0, 1]; 1

is used to capture the most likability. Equality/indifference is

expressed using 0.

Diversity: We measure the diversity of a set of items S by

measuring how dissimilar, i.e., the semantic distance beyond

a threshold, each item in S is with respect to each other.
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Definition 2: Dissimilarity Let O be the set of items in the

database. Two objects oi and oj ∈ O are dissimilar to each

other dsm�(oi, oj), if dt(oi, oj) > � for some distance function

dt and a real number �, where � is a distance parameter, which

we call radius.

Definition 3: Similarity Let O be the set of items. Two

objects oi and oj ∈ O are similar to each other, if dt(oi, oj) ≤ �

for some distance function dt and a real number �. We use

sim�(oi, O) to denote a set of items in O that are similar to

an item oi, such that ∀oj ∈ sim�(oi, O), oj �= oi.

C. Preferential Diversity

In this section, we present Preferential Diversity (PrefDiv)

[14], which we have previously proposed as an efficient

solution to the Maximum Covering Diversified Top-k problem

in traditional databases. PrefDiv is an iterative algorithm that

utilizes a ranking model that produces an initial result set of

objects for a given user query and returns a set of k objects

with maximized relevance and diversity. PrefDiv is shown in

Algorithm 1 and its input parameters in Table I.

Parameter A is used to tune the balance between relevance

and diversity in the returned result set. Specifically, A defines

the distribution of the intensity values of objects in the final

result set R. When A = 1, R would simply be the top k objects

from the initial set, i.e., the objects with the k highest intensity

values. When A = 0, R contains k dissimilar objects from the

initial set. When A is between 0 and 1 and given that PrefDiv

is an iterative algorithm, the final result will have at least A∗k
objects from every iteration, and, in each iteration, A will be

divided by half. For example, when A = 0.5 and k = 20, the

first iteration will select at least 20∗0.5 items for the final result

set, the second iteration will select at least 20∗(0.5∗0.5) items,

and so on.

The basic logic of PrefDiv is as follows: It first sorts the

objects in the initial set O = {o1, ...., on} in descending order

along their intensity value and splits them in groups of k

objects. In each iteration, it evaluates the objects in a group

for diversity, starting with the first group with the highest

intensity objects. The item oi with the highest Ioiu in the group

TO is moved into the final result set R, if there is no object

in R similar to oi, i.e., sim�(oi, R) is empty; otherwise it is

marked as “Eliminated”. Also, all objects in sim�(oi, TO) are

marked as “Eliminated”. While there are still objects left in

TO that are not being marked as “Eliminated”, it processes

the next unmarked one oj with the highest I
oj
u in the same

manner. It ends an iteration by finalizing the moved objects

TABLE I: Parameters of PrefDiv

Par. Range Usage
O 1 ≤ |O| Set of objects with intensity values
k 1 ≤ k Size of the result set

� 0 ≤ � ≤ M1 Determines whether a pair of objects
are similar.

A 0 ≤A≤ 1 Determines the number of objects to
be promoted to the result set at each
iteration.

1 M = Max distance of dataset

Algorithm 1 PrefDiv

Require:
1: One set of objects O, a size k, a relevancy parameter A,

and a radius �

Ensure:
2: One subset R of O

3: S ← ∅
4: turnCounter = 0

5: while there exists unmarked items in O and |R| < k do
6: Increase turnCounter by 1

7: S ← Pick k items with highest intensity from O

8: for all items oi ∈ R do
9: for all items oj ∈ S, s.t. oj ∈ simr(oi, S) do

10: Mark oj as ”Eliminated”

11: while there exists unmarked items in S do
12: R = R ∪ oi, s.t. oi ∈ S is unmarked and Ioiu ≥ I

oj
u :

∀oj ∈ S

13: for all unmarked ou ∈ S do
14: if ou ∈ simr(oi, S) then
15: mark ou as “Eliminated”

16: while number of unmarked items in S < A · k do
17: R = R ∪ oi, s.t. oi ∈ S is unmarked and Ioiu ≥ I

oj
u :

∀oj ∈ S

18: A = A · 0.5
19: if turnCounter == 1 then
20: create new set G← ∀oj ∈ S, s.t. oj is marked

21: O = O − (O ∩ S)

22: if |R| < k and ∀oj ∈ O, s.t. oj are marked then
23: while |R| < k do
24: R = R ∪ oj , s.t. oj ∈ G and I

oj
u ≥ Ioiu : ∀oi ∈ G

25: Return R

into R according to A, as mentioned above. If fewer than

the required A ∗ kiteration objects were moved in R, then the

difference s is covered by moving the top-s objects with the

highest intensity values that have been marked as “Eliminated”

in TO into R. The iterations continue until either k objects are

selected (|R| = k), or if all items in O are examined. If the

size of R is still less than k, k − |R| items with the highest

intensity values that have been marked as “Eliminated” will

be selected and added into R.

PrefDiv is linear to the number of objects in the initial set.

The initial candidate selection for first iteration takes O(k2)

and each subsequent iteration costs O(k2) as well. As there

are at most N
k

iterations, Algorithm 1 has an overall worst

case complexity of O(kN).

D. Venue Flow Network

As mentioned in the Introduction, a critical element in

the design and evaluation of MPG is the definition of the

popularity-based intensity value. Towards that end, we will

examine the integration of a flow network Gf between venues

in a city as captured through the aggregate mobility of city-

dwellers. This network is derived by the venue transition flows
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dataset obtained from Foursquare and essentially captures the

transitions of people between the venues in an area. Formally,

Gf is defined as follows:

Definition 4: The venue flow network Gf = (V, E), is a

directed network where a node vi ∈ V represents a venue and

there is a directed edge eij ∈ E from node vi to node vj iff vj
has been visited immediately after vi.

In particular, we study the use of the PageRank of Gf in the

definition of a popularity-based intensity for a venue. With

β being a vector whose i-th element captures external (i.e.,

irrelevant from the network structure) factors affecting the

centrality of node vi, the PageRank of Gf is given by [25]:

π = D(D − αA)−1β (1)

where A is the adjacency matrix of Gf , α is a parameter

(a typical value of which is 0.85) and D is a diagonal

matrix where dii = max(1, ki,out), with ki,out being the out-

degree of node vi. While in most practical cases PageRank

considers only the network structure, Eq. (1) is able to take

into consideration - if needed - not only the network structure

but external information that affect the “importance” of a

node/venue vi through vector β. In MPG we do not consider

this option and hence, β is the unit vector.

III. SYSTEM DESIGN

In this section we will begin by formally presenting the

mobile personal guide problem and consequently detailing the

design of MPG.

A. Problem Statement

We begin by formalizing the algorithmic problem that lays

in the epicenter of MPG.

Problem 1 (MPG): Given a set of geographical points V =

{v1, v2, . . . , vl}, a popularity index ξvi for location vi, a query

point q, a reach r, and a profile set that encodes user prefer-

ences P = {p1, p2, . . . , pn}, identify a set V ∗ ⊆ V (|V ∗| = k)

with maximized diversity Δ(S), while a set of constraints

h(V ∗,P, q, r, ξ) is satisfied.

In our setting the set V corresponds to the set of available

venues/Points-of-Interest. The query point q corresponds to

the current location of the mobile user, while r represents the

maximum allowed distance between q and any point in the

chosen solution V ∗. The set of preferences P captures the

profile of the mobile user with respect to his interests. In our

setting, we will use the user check-in information dataset (see

Section II) from Foursquare to build the users’ profiles as we

detailed in Section III-B. Finally, the constraints described by

function h in Problem 1 include, (i) a geographic constraint

that ensures that the maximum distance between the currently

location of the mobile user and any venue recommended

does not exceed r (i.e., d(q, vi) ≤ r, ∀vi ∈ V ), and (ii) a

personalization constraint that ensures that the output set of

venues is compatible with the user preferences (i.e., V |= P).

Given this problem setting, the actual mobile personal guide

system will include an interface that (a) will obtain the current

location of the user q (e.g., through the GPS sensors, NFC

P1

0.4 0.2 0.3 0.1

Starbucks Peet's DDCoffee 
Tree

P2 (Cafe)

Pizza
Hut

Roma

P3 (Pizza)

0.3 0.2 0.23 0.27
0.6 0.4

0.5 0.5

P5 (Museum)

Heinz
History
Center

Carnegie
Science
Center

P4 (Greek)

Zorbas

Souvlaki.gr

Athena

0.1 0.1
0.8

Fig. 2: Pam’s sample hierarchical user profile. The first level

corresponds to the coarse-grain preference profile (P1), while

each one of the sub-trees stemming from P1 corresponds

to the preferences within each category (e.g., preference P2

corresponds to the “Cafe” venue type).

sensors etc.) and will allow the user to provide as input (b)

the reach r, (c) the set of types of venues she is interested in

this trip and (d) the number of venues k she would like to know

about. The preference of the user will be “hardcoded” either in

the system (i.e., bound with the user account) or stored on the

mobile device and uploaded at the time of the request. MPG
will finally provide the set V ∗ of the recommended venues

based on the definition of Problem 1.

B. User Preferences

In Foursquare every individual venue v is associated with a

type Tv. This classification is hierarchical, in the sense that an

Italian restaurant belongs to the category “Italian restaurant”,

which can belong to the higher level category “Restaurants”,

which can itself belong to the category “Food” and so on. At

the top level of the hierarchy there are ten categories, namely,

Arts & Entertainment, College & University, Food, Nightlife
Spots, Outdoors & Recreation, Events, Professional & Other
Places, Residences, Shops & Services and Travel & Transport.
However, in order to build highly personalized and specific

profiles we use the bottom layer of hierarchy as well as the

specific venues visited.

In particular, given the set of check-ins Cu of mobile user u,

we provide a hierarchical profile P . At the top level, the pref-

erences of the user are expressed in terms of the (normalized)

frequencies of this user’s visitations with respect to the types of

venues. The second layer of the user profiles further provides

the normalized frequencies of venues for the different types

of locations visited by u. Fig.2 presents a sample profile for

Pam. Preference P1 is a coarse-grain preference profile, which

informs the system that Pam prefers to spend 40% of her time

in coffee shops, 10% in museums, 20% in burger joints and

30% in Greek restaurants. Preferences P2−P5 are able to distill

further Pam’s preferences. For instance, she appears to prefer

Starbucks more compared to Peet’s coffee.

C. Distance-based Intensity Value

The physical distance between the current location q of the

mobile user and venue v can also be used to obtain an intensity

value for v. In particular with dvq being the normalized distance
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between q and v’s location the distance-based intensity value

can be defined as:
Ivd = 1− dvq

r
(2)

In the above equation the distance has been normalized

based on the maximum allowed distance from Problem 1,

that is, r. Note here that dvq can be, in principle, equal to

0. However, this happens when the current user location q is

at venue v. Given that the user is already at this location these

venues are not considered by our system.

D. Popularity-based Intensity Value
An important factor that can impact the choice of a venue

v from MPG is its popularity. With cv being the number of

total visits in venue v, i.e., the number of check-ins in v, and

sv being the number of unique visitors in v, we define the

popularity-based intensity value of v as:

Ivp = λ · cv
max
i∈V

ci
+ (1− λ) · sv

max
i∈V

si
, λ ∈ [0, 1] (3)

where V is the set of all the venues. This intensity value

essentially corresponds to the popularity index ξ used in the

formal definition of the MPG problem.
Eq. 3 does not consider the flow network between venues

that can provide additional popularity information for venues.

Hence, with πv being the Page Rank score for venue v, we

updated Eq. 3 as follows:

Ivp,π = μ ·(λ · cv
max
i∈V

ci
+(1−λ) · sv

max
i∈V

si
)+(1−μ) ·πv, μ, λ ∈ [0, 1]

(4)
Having Ivd and Ivp (or Ivp,π), we can combine them in one

intensity score as follows:

Ivd,p = γ · Ivd + (1− γ) · Ivp , γ ∈ [0, 1] (5)

E. Preference-based Intensity Value
The degree or strength of relevance of a venue v is ex-

pressed by the preference-based intensity value Ivu derived

from the user’s profile. In particular, the preference-based

intensity value is a combination of the score of the type of the

venue (i.e., the coarse-grain preference score) with the specific

venue (i.e., fine-grain preference) score. As stated above, since

these scores are derived from the user’s check-ins Cu, the

preference-based intensity value Ivu for venue v and user u

is computed as follows:

Ivu = 0.5 · Cv
u∑

vj∈t
C

vj
u

+ 0.5 ·

∑
vj∈t

C
vj
u

∑
t∈T

∑
vj∈t

C
vj
u

(6)

where, Cv
u is the number of check-ins that u had in v, t is the

venue type of v and T is the set of all venue types.
We can further combine Ivu with Ivd,p in a manner similar

to Equation (5) and obtain a value that combines the user

preference, the popularity (with or without the integration of

Page Rank) and the distance of the venue from the current

location of the user. More specifically:

Ivu,p,d = α · Ivu + (1− α) · Ivd,p, α ∈ [0, 1] (7)

F. Composite Intensity Value

Eq. (7) combines 3 different elements (user preference

through Ivu, venue popularity through Ivp or Ivp,π and geography

through Ivd ) into a single intensity score. This combined

intensity score is the composite intensity value of v, Ivk (or

Ivk,π if Page Rank is used in the popularity intensity value).

One point we would like to emphasize here is that the order

with which we combine the three intensity values (i.e., Ivu Ivp
(or Ivp,π) and Ivd ) to obtain Ivk (or Ivk,π) does not impact the

output of MPG. The reason is that MPG outputs a total order of

the venues based on these three factors. The absolute values

themselves for Ivk will be different, but the order will always

be the same.

IV. MPG PROTOTYPE IMPLEMENTATION

The MPG prototype essentially implements the PrefDiv
algorithm (Section II-C) with a parameterized intensity value

and Word2Vec [24], as the semantic distance function. For

efficiency, the implementation makes extensive use of hash

tables and indexes. The two key indexes used are the M-Tree
[9] and the Category Tree, which are described below along

with our Word2Vec implementation.

A. M-Tree

One of the main operations in MPG is to generate a set

of nearby neighbors. In order to speed up this process, MPG
utilizes the well-known M-tree spatial index structure [9]. M-

tree uses triangle inequality for efficient range queries similar

to those required in MPG. An M-tree is a balanced tree index

that is designed to handle a large scope of multi-dimensional

dynamic data in general metric spaces. An M-tree partitions

the space in such way that it generates bounding ball regions

around some of the indexed items, called pivots, with some

bounding radius r. Each internal node has at most N entries,

and contains the following attributes: a pivot pv, the bounding

radius r around pv, a pointer pt to the subtree that is rooted at

the pivot pv, and the distance between pv and its parents pivot.

The distance of a subtree from pv is guaranteed to be within

the bounding radius r. Each leaf node in the tree will have

two attributes: the item that is being indexed, and the distance

between this leaf node and the parent pivot. In MPG, we have

modified the implementation of the M-Tree from [23].

B. Category Tree

MPG uses the Foursquare Category Hierarchy [1] first to

derive the user preferences and build user profiles, and second

in the comparisons for similarity among venues. MPG accel-

erates both of these operations by building a category tree to

capture the category structure of venues in Foursquare as a

tree. Each internal node in the category tree represents a type

of venue, where each internal node represents the subcategory

of the parent node with each leaf node representing the actual

venue. There are in total 10 categories at the top-level of this

hierarchy. Each internal node in a category tree contains the
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following attributes: ID of the category it represents, name of

the category, a pointer to the parent node and a list of pointers

to each of its children nodes. Since a category tree can have

an unlimited number of degrees, all the children node pointers

are stored as hash tables, with the key being venue ID and the

value being the actual pointer.

The user profiles are further derived from the preference

hierarchy, as described above in Section III-B. The preference

hierarchy consists of the top-level categories and the leaf nodes

of the category tree (Fig. 2).

The category tree can be used to calculate the similarity

distance between two venues vi and vj as follows:

SimTree(vi, vj) = 1− Ancestors Path

Longest Path
(8)

where Ancestors Path is the number of common ancestors

between the venues vi and vj and Longest Path is the number

of nodes on the longest path to the root from either vi and vj .

C. Word2Vec

Although the category tree is able to measure the similarity

between two venues, this measurement is not very accurate

as it only provides a coarse granularity distance between

two venues. Specifically, this measurement cannot distinguish

the difference between two venues that are under the same

subcategory, for example, “McDonald’s” and “Burger King”,

as both of them share the exact same ancestors.

In order to overcome this limitation, MPG also utilizes

Word2Vec [24], an advanced NLP technique, which supports

fine granularity distance calculation between two venues by

going beyond syntactic comparisons.

Word2Vec is a tool that provides the implementation of

two word vector representation computing models: Continuous
Bag-of-Words model (CBOW), which predicts the current

word based on the sourcing words, and Continuous Skip-
gram model, which seeks to use the current words to predict

surrounding words. Both of these models are based on the

Neural Net Language Model. With Word2Vec, the similarity of

word representations goes beyond simple syntactic regularities.

Specifically, word vectors capture many linguistic regularities.

For example, after obtaining the word representation in vector

space, the resulting vector can have the following properties,

such that vector(‘King’) - vector(‘Man’) + vector(‘Woman’)

results in a vector that is closest to the vector(‘Queen’). MPG
uses CBOW model to generate all word vectors.

The difference between two words under Word2Vec are

calculated through the cosine similarity of two-word vectors,

such that cosine similarity is defined as following:

SimV ec(A,B) =

∑n
i=1 AiBi√∑n

i=1 Ai
2
√∑n

i=1 Bi
2

(9)

where n is the length of vector, Ai and Bi are elements of

vector A and B, respectively.

The current word vectors we adopted support phrases that

consist of up to two words. For venue names that have more

than two words or are not contained in the word vectors,

we split the phrases into single words and then obtain word

vectors for each individual word in the phrases. The final

vector of a phrase is obtained through the average of all vectors

for each word in this phrase. Since the accuracy of Word2Vec

is strongly depends on the quality of the word vectors, a large

real-world corpus is needed in order to obtain high quality

word vectors. We have experimented with various corpus in

an attempt to generate the highest quality word vectors. The

best suitable word vectors we obtained were generated from

the entire English wikipedia that consist of 55 GB of plain text.

The resulting word vectors contain over 4 million entries. In

order to effectively query the word vectors, MPG stores all the

word vectors in memory as a hash map.

Similar to category-tree based similarity, the Word2Vec

based similarity has its own biases. We were able to overcome

these biases of the individual similarity metrics by combining

them (Eqs. 8 and 9) and measuring the similarity between two

venues vi and vj as follows:

Sim(vi, vj) =
SimTree(vi, vj) + SimV ec(A,B)

2
(10)

where A and B are representing the vector representation of

venue vi and vj respectively.

V. PERFORMANCE EVALUATION

In order to study the effectiveness of MPG, we use as base-

line Page Rank the original PrefDiv that considers only user

preferences – PrefDiv was experimentally shown that it can

successfully increase coverage of the result set compared to

the state-of-the-art diversified top-k algorithms, and achieves

a significantly better Relevancy-Diversity trade-off ratio than

these algorithms [14]. In order to get a better insight into the

impact of each component of the composite intensity value,

we compare MPG to PrefDiv with different intensity value

combinations. Table II summarizes all models employed in

our experiments, and Table III summarizes the values of the

parameters used.

We ran all our experiments on an Intel machine with Core

i7 2.5Ghz CPUs, 16GB Memory and 512GB SSD and used

the Foursquare datasets described in Section II-A. We created

individual Foursquare user profiles as described above and

three super-user profiles with more fine-grained preferences

by merging the profiles of (i) 1000 Foursquare users (Super-

user A), (ii) 500 Foursquare users (Super-user B), and (iii) 350

Foursquare users (Super-user C).

A. Evaluation Metrics

In our experimental evaluation, we used three well-known

metrics: Normalized Relevance [30], Average Similarity Dis-
tance, and Coverage [12] .

Definition 5: Normalized Relevance. Let O be a set of

venues and O∗k ⊆ O such that |O∗k| = k. The Normalized

Relevance of O∗k is defined as the total relevance score of

O∗k over the sum of top-k highest relevance scores of O.

In our experiments, Normalized Relevance is measured

in terms of composite intensity value and preference-based

intensity value (i.e., original PrefDiv).
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TABLE II: MODEL ABBREVIATION

Models Description

PD(pref) Uses preference-based intensity value as the relevance score for PrefDiv.
PD(pop+dist) Uses popularity and distance from the user current location as the relevance score for PrefDiv.
PD(pref+dist+pr) Uses preference-based intensity value, distance and PageRank as the relevance score for PrefDiv.
PD(dist+pref) Uses preference-based intensity value and distance as the relevance score for PrefDiv.
PD(composite+PageRank) Uses composite intensity value and PageRank as the relevance score for PrefDiv.
PD(composite) Uses composite intensity value as the relevance score for PrefDiv.
PageRank Only uses the result of PageRank as the final ranking without using PrefDiv.

Definition 6: Average Similarity Distance Let O be a set

of venues, the average similarity distance of O represents the

average of the pairwise distances of the venues in O.

In our experiments, Average Similarity Distance (ASD) is

normalized to take into consideration that different methods

may return as a result a list of venues with duplicates rather

than a set and expressed as Redundancy Normalized Pairwise

Distance (RNPD):

RNPD(L) = (1− |Unique(L)|
|L| ) ∗ASD (11)

where Unique(O) represents O with out duplicates.

Definition 7: Coverage Let O be a set of venues, O∗k ⊆ O

such that |O∗k| = k and S ⊆ O be defined as the union of

sim�(vi, O) for all vi ∈ O∗k. The coverage of a subset O∗k is

defined as the percentage of venues in S over the total number

of venues in O, i.e., |S|/|O|.

B. Experimental Results

In this section, we present the evaluation of all models in

our experiments. First, we compare all of them in terms of the

metrics mentioned above, and then we focus on the two-best

performing ones for further understanding their performance.

1) All models: We performed our experiments using the

parameters in Table III randomly selecting 15 query points in

each of New York City (NYC) and San Francisco (SF). Our

experiments showed that the actual location of the query point

(at least among those randomly selected) does not significantly

impact our results. Due to space limitations, we only present

the results from 15 random locations in each of the cities for

Super-user A and for 10 categories (Figs. 3-10).

As we can see from Figs. 3 and 7, PD(composite) and

PD(composite+PageRank) have the best performance in terms

of Normalized Composite Intensity Value. In particular, they

TABLE III: PARAMETER CONFIGURATION

Parameters Value

λ 0.5
μ 0.7
γ 0.7
α 0.5
A 0.6
K 10 - 50

Radius 1.5 km
Number of Locations 15, 50

Number of Categories of POIs Selected 5, 10

provide a 10% improvement on average. Page Rank consis-

tently performs the worst with respect to relevance as expected,

since it is oblivious to user preferences and venue popularity.

In PD(composite) when PrefDiv selects the representative

venues, it considers the Normalized Composite Intensity Value

as the relevance criteria. This allows PrefDiv to optimize

towards the Normalized Composite Intensity Value. In the

case of PD(composite+PageRank), although it additionally

considers the PageRank in the computation of the Normal-

ized Composite Intensity Value, it does not seem to have a

significant impact in terms of relevance.

With respect to the Normalized Preference-based Intensity

Value (Figs. 4 & 8) PD(pref) delivers the best performance.

PD(pref) uses the Preference-based Intensity Value directly

as the criteria for relevance. However, both PD(composite)

and PD(composite+PageRank) still outperform the rest of the

models by a significant margin, which shows that they can

both satisfactorily reflect user preferences.

Figs. 5 and 9 further illustrate the performance of re-

dundancy normalized pairwise distance of all models. Page

Rank performs the best in this case. PD(composite) and

PD(composite+PageRank) perform very close to the second

best (i.e., PD(pref+dist+pr), PD(pop+dist)) by a small margin,

with the performance difference being consistently between

3% and 5%. Moreover, Figs. 6 and 10 present the perfor-

mance of all models with respect to coverage. As we can

see, most of the models perform identical to each other,

with PD(composite) and PD(composite+PageRank) perform-

ing slightly better.

Finally, Figs. 11 and 12 present two scatter plots that

capture the trade-off between relevance and diversity. Each

point in these two figures correspond to the average over

15 different locations of one super-user and one output size.

Models located in the left upper corner of the figure exhibit the

best diversity result, while the ones located in the lower right

corner have the highest relevance scores. As we can observe,

both PD(composite) and PD(composite+PageRank) are located

towards the upper right corner (circled), which indicates that

both PD(composite) and PD(composite+PageRank) are better

able to handle the trade-off between relevance and diversity.

In conclusions, these results indicate that both PD(composite)

and PD(composite+PageRank) have the ability to achieve a

good balance between diversity and relevance.

2) PD(composite) vs PD(composite+PageRank):
As illustrated by Figs. 11 and 12 PD(composite) and

PD(composite+PageRank) outperform the rest of the models
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Fig. 3: Relevance: NCI
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Fig. 4: Relevance: NPI

(SF, Super-user A).
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Fig. 5: Diversity: RNPD
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Fig. 7: Relevance: NCI

(NYC, Super-user A).
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Fig. 9: Diversity: RNPD

(NYC, Super-user A).
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Fig. 12: Relevance VS. Diversity (NYC, All Super-users).

in balancing relevance and diversity. Thus, we carried out

further experiments with these two models utilizing more

query points, i.e., 50 randomly selected points in each city.

Figs. 13 and 14 demonstrates that PD(composite)

outperforms PD(composite+PageRank) slightly in terms

of average Normalized Composite Intensity Value. In

particular, PD(composite) has a slight advantage over

PD(composite+PageRank) when K is small, with the per-

formance gap closing when the size of the output required

increases. Furthermore, Figs. 15 and 16 show that both

PD(composite) and PD(composite+PageRank) perform simi-

larly in terms of Normalized Preference-based Intensity Value.

The same is true with respect to the Redundancy Normalized

Pairwise Distance (Figs. 17 & 18). This reflects that both

models have the ability to eliminate redundant items. Finally,

as shown in Figs. 19 and 20 both models provide a similar

performance with respect to coverage with PD(composite)

providing some marginal benefits for small K.

3) Discussion: Based on our results the performance of

PD(composite) and PD(composite+PageRank) are similar, i.e.,

the performance of MPG does not significantly improve with

the integration of PageRank. Given the computational com-

plexity of PageRank, which requires O(m+ n) for each itera-

tion, where n is the number of nodes and m is the number of

edges in the (urban flow) network the cost of integrating Page

Rank into MPG is high. Hence, our final design of MPG includes

PD(composite), which returns a single recommendation in our

experiments between 200 and 500 msec depending on K and

the user’s location.
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Fig. 13: Relevance: NCI

(NYC, Super-user A).

Size of Result Set
10 20 30 40 50

N
or

m
al

iz
ed

 C
om

po
si

te
 In

te
ns

ity
 V

al
ue

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
San Francisco

PD(composite) PD(composite+PageRank)
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Fig. 15: Relevance: NPI

(NYC, Super-user A).
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Fig. 16: Relevance: NPI (SF,

Super-user A).

VI. RELATED WORK

In this section we will briefly discuss related to our work

studies. In particular, we will present studies related with trip

planning as well as with the methods of query personalization.

Trip planning and spatial recommendations: During the

last years there has been a large volume of studies that focus on

methods for personalized location/Point-of-Interest recommen-

dations [4], [26], [33] to social-network users. The majority of

existing work utilizes collaborative-filtering techniques [33],

geometric embeddings [4] or they even incorporate features

present in the users’ social network [26] to associate every

venue with a score, which is representative of the probability

of a user enjoying (or liking) a particular venue.

Nevertheless, similar studies consider and evaluate each

venue independently. Hence, motivated by this monolithic

view of the above methods, recent work has focused on

recommending tours of locations. For instance, De Choudhury

et al. [11] focus on segmenting streams of spatiotemporally

tagged photos into paths, and then assembling these paths

into itineraries. Similar studies by Kurashima et al. [21]

and Yoon et al. [34], are based on geo-tagged content from

photo-sharing media (e.g., photo streams, GPS trajectories)

to recommend future travel paths. However, these approaches

do not come without their own drawbacks. For example, in

order to be applicable, the presence of training sequences of

spatiotemporally tagged photographs (or other similar traces)

is required. These approaches cannot handle multiple types

of venues that cater to different user needs. The same is

true for interactive systems [13], [20], [28], which iteratively

personalize or improve a tour based on user feedback.

The support for multiple types of venues is considered

by Ardissono et al. [3] where the user manually selects a

venue from each desired type and then a tour traversing

the selected venues is proposed. More recently, Gionis et
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Fig. 17: Diversity: RNPD

(NYC, Super-user A).
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Fig. 18: Diversity: RNPD (SF,

Super-user A).
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Fig. 20: Diversity: Coverage

(SF, Super-user A).

al. [16] developed a system based on dynamic programming

algorithms to provide spatial-constrained tours based on users

preferences of type of venues. Other spatial recommendation

approaches focus on reconstructing and recommending routes

based on existing location trajectories (e.g., [7], [32]).

To the best of our knowledge there is no study to date that

considers the venue diversity (in a latent space) when it comes

to recommendations. On a different direction though Lu et al.

[22] propose the integration of the output of several location

recommender systems, whose outcome are different.

Query personalization: Relevance ranking using prefer-

ences and result diversification techniques have been proposed

to deal with the problem of information overload, i.e., avoid

overwhelming the users with a large volume of irrelevant

results. Ranking techniques are comprehensively surveyed in

Stefanidis et al. [29]. Mostly these techniques can handle

only one type of preference, either quantitative preferences

or qualitative preferences. Hybrid schemes that support both

qualitative and quantitative preferences have been proposed

in an attempt to exploit the advantages of both types of

preferences while eliminating their disadvantages [15], [19].

Diversity has various definitions in the literature [23]. The

most common definitions are based on similarity, where diver-

sity means to include in the results objects that are dissimilar

to each other (e.g., [37]). Other definitions are based on either

semantic coverage, where diversity means to include objects

that belong to different categories (e.g., [2]), or novelty, where

diversity means to include data that contains new information

(i.e., information that has not been presented previously) (e.g.,

[10]). During the past, many result diversification models have

been proposed, e.g., MaxMin and MaxSum (e.g., [5], [17],

[31]) and DisC Diversity [12], [23].

Even though the goal of diversity is to ensure potentially

important data is not lost due to its low ranking, however the
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result of diversification does not automatically imply relevancy

for the users. This was the underlying motivation for top-k

diversification techniques, such as PrefDiv [14], Swap [35]

and Div-Astar [27], the Query Manifold (QM) framework

[36] and the multi-objective optimization approaches, where

the first objective is relevance and the second objective is

dissimilarity [37]. As opposed to PrefDiv and the multi-

objective optimizations that recommend relevant and diverse

data, QM recommends a set of relevant and diverse queries.

The difference between PrefDiv and Swap is that Swap

seeks diversity through pairwise distances of items among the

result set and filters out items that contribute less to diversity.

Swap ensures relevance by removing items that drop the

relevance below the pre-defined threshold. In contrast, PrefDiv
seeks diversity through eliminating similar items and ensures

relevance by using a relevance-focused greedy algorithm that

can reflect the user specified relevance distribution.

Div-Astar [27] is a graph-based solution in which each node

corresponds to one item in the original data. This diversity

graph is sorted according to the relevance score and an a∗

algorithm is used to find the exact solution for diversifying top-

k results. That is, Div-Astar considers the problem as finding

the the optimal solution for the maximum weight independent

set problem, which has been proven to be NP-hard.

The most widely known approach that is targeted directly at

optimizing the trade-off between diversity and relevance, was

introduced by [6]. In this work, the authors have purposed the

twin-objective function called Maximal Marginal Relevance
(MMR), which combines both relevance and diversity aspects

in a single comprehensive objective function with a scaling

factor λ. When λ = 1, the MMR function equals to a

standard relevance ranking function, when λ = 0 it computes

a maximal diversity ranking. Recently, a new MMR function

that integrates regret minimization was proposed to generate

the relevance score [18]. This new score attempts to minimize

the disappointment of users when they see k representative

tuples rather than the whole database.

VII. CONCLUSIONS

In this paper we propose and design MPG, a mobile service

that provides a set of diverse venue recommendations better

aligned with user preferences. This is achieved by considering

the user habits, the reach willing to cover, the types of venues

interested in exploring, and the popularity and the diversity

of venues. Our evaluation with Foursquare data indicates

that integrating Page Rank with popularity provides only

marginal benefits, and hence, in view of its high computational

complexity, we recommend not including it in MPG.
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