Planar: Parallel Lightweight Architecture-Aware
Adaptive Graph Repartitioning

Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh
{anz28, labrinid, panos}@cs.pitt.edu

Abstract—Graph partitioning is an essential preprocessing
step in distributed graph computation and scientific simulations.
Existing well-studied graph partitioners are designed for static
graphs, but real-world graphs, such as social networks and Web
networks, keep changing dynamically. In fact, the communication
and computation patterns of some graph algorithms may vary
significantly, even across their different computation phases. This
means that the optimal partitioning changes over time, requiring
the graph to be repartitioned periodically to maintain good
performance. However, the state-of-the-art graph (re)partitioners
are known for their poor scalability against massive graphs. Fur-
thermore, they usually assume a homogeneous and contention-
free computing environment, which is no longer true in modern
high performance computing infrastructures.

In this paper, we introduce PLANAR, a parallel lightweight
graph repartitioner, which does not require full knowledge of
the graph and incrementally adapts the partitioning to changes
while considering the heterogeneity and contentiousness of the
underlying computing infrastructure. Using a diverse collection
of datasets, we showed that, in comparison with the de-facto
standard and two state-of-the-art streaming graph partitioning
heuristics, PLANAR improved the quality of graph partitionings
by up to 68%, 46%, and 69 %, respectively. Furthermore, our
experiments with an MPI implementation of Breadth First Search
and Single Source Shortest Path showed that PLANAR achieved
up to 10x speedups against the state-of-the-art streaming and
multi-level graph (re)partitioners. Finally, we scaled PLANAR up
to a graph with 3.6 billion edges.

I. INTRODUCTION

This work targets graph-based, communication-intensive
big data applications, such as large-scale scientific simulations
(e.g., Combustion Simulations [28]) and distributed graph
computation using Pregel-like graph computing engines [17].
Graph (re)partitioning has been widely used in scientific
simulations for decades [11], [27], while the use of graph
(re)partitioning in the latter is receiving more and more at-
tention recently [34], [36], [10], [32], [14], [37], [22]. The
computation and communication patterns of such applications
are inherently, or can be modeled as, a graph. They often divide
their computations into a sequence of supersteps separated by
a global synchronization barrier. During each superstep, a user-
defined function is computed against each vertex based on
the messages it received from its neighbors in the previous
superstep. The function can change the state and the outgoing
edges of the vertex, send messages to its neighbors, or add or
remove vertices/edges to the graph.

The graph can be assigned a weight and a size for each
vertex to indicate the computational requirement and the

amount of data represented by the vertex. Also, the amount of
data communicated between each neighboring vertex pair can
be used as the corresponding edge weights. Thus, a balanced
partitioning of the graph is equivalent to distributing the load
evenly across compute nodes, whereas minimizing the number
of edges crossing partitions minimizes the communication
among neighboring vertices in different partitions.

Existing well-studied graph partitioners like METIS [18]
and CHACO [6] are designed for static graphs, but real-world
graphs, such as social networks and Web/semantic networks,
are inherently dynamic and evolve continuously over time. If
the dynamism is left unchecked, the quality of the partitioning
will continuously degrade, leading to load imbalance and ad-
ditional data communication. Furthermore, real-world systems
often dynamically increase or shrink their capacity in response
to load fluctuations, demanding the graph to be repartitioned
into a different number of partitions dynamically. Put simply,
the graph needs to be frequently repartitioned to adapt to
graph structural, load distribution, and environmental changes.

Unfortunately, given the sheer scale of real-world graphs,
repartitioning the entire graph. even in parallel, like state-of-
the-art repartitioners (e.g., ZOLTAN [1], [5], PARMETIS [26],
[30], and ScoTcH [31]), is costly in terms of both time
and space. Besides, existing repartitioners are known to have
poor scalability. Recently, several streaming graph partitioners
(e.g., DG/LDG [34], Fennel [36], and arXiv’13 [10]) have
been proposed, which can produce relatively good partitionings
in a quite short time for both static and dynamic graphs.
Nevertheless, they may result in sub-optimal performance for
dynamic graphs. Consequently, several lightweight repartition-
ers (e.g., arXiv’13 [10], CatchW [32], Mizan [14], xdgp [37],
and Hermes [22]) that do not require full knowledge of the
graph were proposed. However, they all assume uniform vertex
weights and sizes, and some ([10], [37], [22]) also assume
uniform edge weights. These assumptions are often unrealistic,
since weights and sizes of real-world graphs are almost always
nonuniform. For example, in social networks, high-degree ver-
tices often have significantly higher computational requirement
and migration costs than low-degree ones. Moreover, edge
weights are often algorithm-dependent. Hence, to maintain
good performance, we need a lightweight adaptive graph
repartitioner for massive dynamic graphs with nonuniform
weights and sizes.

Like existing heavyweight repartitioners, current stream-
ing and lightweight solutions also assume uniform network
communication costs among partitions while repartitioning.
However, modern parallel architectures, like supercomputers,

97 $ulnd901i28264 Lt Gi%3d {QQJ@/&Qﬂ)ﬁ)ﬂﬁﬁsgurgh Library System. Downlb3ded on November 12,2025 at 17:24:48 UTC from IEEE WE%&@@QI&WWICC

@ GP: Vertex Size
o GP: Edge Weights
m GP: Vertex Weights
o GP: Graph Dynamism
m AA: Resource Contention
m AA: Network Heterogeneity
@ AA: CPU Heterogeneity
0 AP: Adaptive
m AP: Lightweight
m AP: Parallel
Ul 18, 4
D 9o V.
OO/‘) OO/‘;q,{)

Features

OO Q[Oé g
iy

O
6\7’[quo \?ppoo QOO (I;

2
§ LI/"O o)@& K

Fig. 1: Overview of the state-of-the-art graph (re)partitioners showing which graph properties (GP) they support, whether they
are architecture-aware (AA), and what algorithm properties (AP) they have.

usually comprise hundreds of compute nodes linked with
a network, resulting in nonuniform network communication
costs among compute nodes (inter-node communication) be-
cause of their varying locations and link contention. In cloud
computing environments, the uneven network bandwidth is
another contributing factor to the heterogeneity [7]. In fact,
the communication costs among cores of the same compute
node (intra-node communication) are also nonuniform, where
cores sharing more cache levels typically communicate faster.
Additionally, inter-node communication is often an order of
magnitude slower than intra-node communication.

Hence, existing architecture-agnostic graph (re)partitioners
(which assume uniform network communication costs) may
lead to sub-optimal performance, which could be quite
significant for large-scale distributed computation. This is-
sue has drawn a lot of attention in the past few years
(e.g., ICA3PP’08 [20], SoCC’12 [7], ARAGON [40], and
TKDE’ 15 [39]). Nevertheless, the former three share the same
fate as that of heavyweight repartitioners, since they are built
on top of them, whereas the last one may lead to sub-optimal
performance in the presence of graph dynamism as streaming
graph partitioners [34], [36].

Additionally, none of the existing work considers the issue
of shared resource contention in modern multi-core systems.
Shared resource contention has received heated attention in
system-level research [12], [35]. Although PARAGON [41], a
parallel version of ARAGON, considers both the contentious-
ness and communication heterogeneity, it requires global
knowledge of the entire graph for repartitioning, limiting its
scalability. Therefore, we need a lightweight architecture-
aware graph repartitioner to adapt the partitioning to the
changing world such that both the contentiousness and the
amount of data communicated and migrated among partitions
having high network communication costs are minimized.
In fact, even though the graphs are static, we still need
an architecture-aware graph (re)partitioner to improve the
mapping of the application communication pattern to the
underlying hardware topology.

Summary of the state-of-the-art (Figure 1) We summa-
rize the state-of-the-art graph (re)partitioners in Figure 1,
according to three dimensions: the supported graph properties,
architecture-awareness, and algorithmic properties. In terms of
graph properties (GP), we characterize each approach as to

whether it can handle graphs with (a) dynamism, (b) weighted
vertices (i.e., nonuniform computation), (c) weighted edges
(i.e., nonuniform data communication), and (d) vertex sizes
(i.e., nonuniform data sizes on each vertex). In terms of
architecture-awareness (AA), we distinguish three aspects: (a)
CPU heterogeneity, (b) network heterogeneity, and (c) resource
contention. Lastly, in terms of algorithmic properties (AP), we
characterize each approach as to whether it (a) runs in parallel,
(b) is lightweight, and (c) is adaptive. It is worth pointing out
that the current state-of-the-art is either architecture-aware OR
parallel, adaptive, and lightweight, but no one approach (except
for PLANAR, our proposed solution) combines all.

Contributions To address the needs of efficiently parallelizing
graph-based big data applications, we make the following
contributions:

1. We report how the architecture-awareness and graph dy-
namism impact application performance (Section II).

2. We formally define the desired properties of graph reparti-
tioners needed to address the challenges identified, namely
(a) run in parallel, (b) be lightweight, (c) be adaptive, and
(d) be architecture-aware (Section III).

3. We present, PLANAR, a parallel lightweight graph repar-
titioner (Section IV), which efficiently adapts the de-
composition to graph dynamism by incrementally migrat-
ing vertices among partitions with the awareness of the
communication heterogeneity and contentiousness of the
underlying computing infrastructures.

4. We perform an extensive evaluation of PLANAR using
many real-world datasets (Section VI). The results show
the effectiveness and scalability of PLANAR compared to
the de facto standard and the state-of-the-art.

II. DYNAMISM & ARCHITECTURE-AWARENESS

Configuration (Table I) To motivate the need to consider
architecture-awareness and graph dynamism, we run an ex-
periment using the YouTube dataset (a collection of YouTube
users and their friendship connections over a period of 225
days [19]). We split the dataset into 5 snapshots (Table I), As
shown in the table, snapshot S; denotes the set of users and
their connections appearing during the first 45 % 4 days.

We then ran Breadth First Search (BFS) on snapshot Sy,
on two 20-core compute nodes on our evaluation platform

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2dsd on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

TABLE I: YouTube Growth Dataset

[Snapshots [[[V] [E] [Description]

St 1,138,499 6,135,216 45 days
S 1,606,185 9,966,724 90 days
Ss 1,952,292 | 12,032,134 135 days
Sy 2,455,644 | 15,969,462 180 days
Ss 3,223,589 | 24,447,548 225 days

1,000 :
o DG
B LDG
o METIS+DG

100¢ m PARMETIS+DG

0 ARAGON+DG
® PLANAR+DG

I~
(-}

Execution Time (s)

S o NS Sg 5
Snapshots

Fig. 2: BFS Job Execution Time

(Section VI-B). S1 was (re)partitioned across each core us-
ing 5 techniques: (a) Deterministic Greedy (DG) and Linear
Deterministic Greedy (LDG), two state-of-the-art streaming
graph partitioning heuristics [34]; (b) METIS, a state-of-the-
art, multi-level graph partitioner [18]; (c) PARMETIS, a state-
of-the-art, multi-level graph repartitioner [26], (d) our prior
work, ARAGON, a centralized architecture-aware graph par-
tition refinement algorithm [40]; and (e) PLANAR (presented
here). For PARMETIS, ARAGON, and PLANAR, S; was initially
partitioned by DG, after which the partitioning was further
improved by them. Vertices of {S;1 — S;} were injected into
the system using LDG for LDG and DG for others, when-
ever BFS finished its computation for 15 randomly selected
source vertices. The injection also triggered the execution of
PARMETIS, ARAGON, and PLANAR on the decomposition.

Results (Figure 2) In Figure 2, we plot the execution time
of BFS (in log-scale) for 15 randomly selected source vertices
on each snapshot as the graph evolves. Clearly, architecture-
awareness and the ability to handle graph dynamism are critical
to system performance. ARAGON and PLANAR outperformed
architecture-agnostic approaches (i.e., DG, LDG, METIS, and
PARMETIS) by up to 91%. Note that ARAGON is a centralized
graph partition refinement algorithm, making it infeasible for
large scale distributed online graph repartitioning.

Take-away To maintain superior performance, we should
continuously adapt the partitioning to the changes while con-
sidering the nonuniform network communication costs and the
contentiousness of the underlying computing infrastructures.

III. PROBLEM STATEMENT

In this paper, we would like to identify a graph repartitioner
that has the following four properties: (a) runs in parallel, (b)
is lightweight, (c) is adaptive, and (d) is architecture-aware.

Parallel A graph repartitioner is considered parallel if the
repartitioning is performed in a parallel/distributed fashion.
This is essential, because real-world, graph-based big data
applications often require the use of parallel computing in-
frastructures, where the graph is distributed across a set of
machines for parallel computation. Thus, to avoid massive

data communication, the repartitioning has to be performed
in parallel using the same set of machines across which the
graph has been distributed. Such parallelism also allows the
repartitioner to exploit the power of parallel computing and to
complete the repartitioning faster.

Lightweight A repartitioner is said to be lightweight if
it only relies on a small amount of information about the
graph structure for repartitioning. In contrast, if a repartitioner
requires full knowledge of the entire graph (has to access
all edges) while repartitioning, such as PARMETIS [26], it is
heavyweight because of the heavy network traffic it generates.
Additionally, the repartitioning should perform well in terms
of both time and memory requirements.

Adaptive/Incremental A repartitioner is adaptive if it im-
proves the partitioning in an incremental way over time,
rather than seeking an optimal partitioning at once by costly
repartitioning the entire graph.

Architecture-Aware Let G = (V, E) be a graph with V and
E as its vertex and edge set, P be a partitioning of G with n
partitions:

P={P,:U,P,=V and P,NP; = ¢ for any i # j} (1)

and M be the current assignment of partitions to servers
with P; assigned to server M[i]. Each server can either be a
hardware thread, a core, a socket, or a machine. Architecture-
aware graph repartitioning aims to compute a new partitioning
P’ of G that satisfies the following objectives: (a) balances
the load; (b) minimizes the communication among partitions;
and (c) minimizes the migration cost between P and P’. A
partitioning is said to be balanced if

Z?:l w(P;)

w(P) < (1+e) s ==L

)
where w(P;) is the aggregated weight of vertices in P;, and
€ is the user-defined imbalance tolerance. The communication
cost of a partitioning is defined as:

comm(G, P) = a * Z

e=(u,v)€E and
u€P; and vEP; and i#£j

w(e) x c(F;, Pj) (3)

where « is a parameter specifying the relative importance
between communication and migration cost, w(e) is the edge
weight, and ¢(P;, P;) is the relative network communication
cost between P; and P;. Existing graph (re)partitioners usually
assume c(P;, P;) = 1, which usually fails to reflect the
reality of modern computing hardware. Thus, to minimize
comm(G, P), we should gather vertices communicating a lot
of data as close as possible and minimize the number of edges
crossing partitions having high network communication costs.
The migration cost of a repartitioning is defined as:

mig(G, P, P') = E
veV and
vEP; and ’UEPJ{ and i#j

vs(v) x (P, Pj) (4)

where wvs(v) is the vertex size. Similarly, to keep
mig(G, P, P') minimized, we should avoid migrating both (a)
vertices having large neighborhoods or application state and
(b) the migration among partitions having high network com-
munication costs. Generally speaking, communication cost is

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2dkd on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Planar Overview

Algorithm 2: Phase-1a: Vertex Migration

Data: P, c,o, T
if the partitioning has not converged then

// Phase-1 (Section IV-A & IV-B)
LogicalVtxMigration(P;, ¢, &migRatio, &pv)
// Phase-2 (Section IV-C)
PhysicalVtxMigration(F;, pv)
/I Convergence Check (Section IV-D)
CheckPartitionConvergence(mzigRatto, o, T);

B Y S N

more important than migration cost, since data communication
occurs in every superstep, whereas migration is performed only
once at the end of each repartitioning phase.

IV. PLANAR

PLANAR, (Parallel Lightweight Architecture-aware Adap-
tive graph Repartitioning), is a lightweight graph repartitioner
designed for massive, dynamic graphs. Rather than costly
repartitioning the entire graph at once, PLANAR adapts the
current partitioning in the presence of changes by incremen-
tally migrating vertices among partitions, while considering the
non-uniformity of network communication costs. Algorithm 1
presents PLANAR at a high level. It is triggered whenever
there are enough changes in the graph or imbalance among
partitions. Once triggered, it is performed at the beginning
of each superstep until the partitioning is convergent. We
say a partitioning is convergent if the improvement achieved
in the expected communication cost (Eq. 3) between two
consecutive adaptations is within a user-defined threshold o
after 7 consecutive adaptation supersteps (Section IV-D).

Each such adaptation step has two phases: logical vertex
migration phase (Phase-1) and physical vertex migration phase
(Phase-2). Phase-1 attempts to improve the decomposition by
logically migrating vertices among partitions while considering
the communication heterogeneity. Logically means that we
only locally mark vertices chosen by PLANAR for migration
as if they were moved. Phase-2 (Section I'V-C) is responsible
for the actual vertex and application data migration. Phase-1
is further split into two sub phases: Phase-la and Phase-1b.
Phase-1a (Section IV-A) tries to improve the decomposition
in terms of communication cost as much as possible. Phase-
1b (Section IV-B) aims to improve the decomposition in
terms of load distribution without significantly increasing the
communication cost of the decomposition output by Phase-1a.

A. Phase-1a: Minimizing Communication Cost

In this phase, each server runs an instance of Algorithm 2
in parallel to decide which vertices should be moved out
from its local partition and which partition should each vertex
migrate to, such that both the communication and migration
cost are minimized. The input to the algorithm includes the
local partition P, owned by each server and the relative
network communication cost matrix c¢. The algorithm first
tries to identify vertices of P, having neighbors in other
partitions (boundary vertices). Then, each boundary vertex
independently selects the partition leading to a maximal gain
as its optimal migration destination. Afterwards, boundary
vertices are locally marked with a migration probability that
is proportional to their gain.

Data: P, c
1 identify boundary vertices of P
2 foreach boundary vertex v € P; do
3 L optimal migration destination selection

4 foreach boundary vertex v € P; do
5 L marked v as moved with a probability proportional to the gain

Architecture-Aware Vertex Gain Computation The gain of
moving a vertex, v, from its current partition to an alternative
partition is defined as the reduction in the communication cost.
The communication cost consists of two parts: the communi-
cation that v would incur during the computation and the cost
of migrating v. The communication cost that v would incur
during the computation when it is placed in P; is defined as:

n

comm(v, P;) = a * E
k=1 and k#1

deazt(vvpk) *C(-szpk) (5)

where d.:(v, P;) represents the amount of data that v com-
municates with vertices of P, which is further defined as:

dezt(Ua Pk) = Z ’U)(e) (6)

e=(u,v)€EFE and u€ Py,

The cost of migrating v from its current partition P; to another
partition P; is defined as:

mig(v, P;, Pj) = vs(v) % ¢(P;, P;) 7
Hence, the gain of migrating v from P; to P; is:
g" (v) = comm(v, P;) — comm(v, P;) — mig(v, P;, P;) (8)

In case of P, = Pj, g“/(v) becomes 0. If g**(v) happens
to be maximal, v will choose to stay. Clearly, migrating non-
boundary vertices of P; to other partitions would not lead to
any gain since they only communicate with vertices of Pj.

Migration Destination Selection Example (Figures 3-6)
Consider a decomposition given by Figure 3 with three par-
titions and unit weights and sizes, and the relative network
communication costs among partitions as shown in Figure 6.
Now, let us examine how vertices in P; make their migration
decisions with a = 1 (equal importance of communication and
migration costs). Take for example vertex a, the only boundary
vertex of Ps. Clearly, the gain of moving a from Ps to P;
(Figure 4) and to P» (Figure 5) is 0 and 9, respectively, since
comm(a, P3) = 13, comm(a, Py) = 7, comm(a, P;) = 3,
mig(a, Ps, Py) = 6, and mig(a, P3, P;) = 1. Thus, vertex
a would select P» as its migration destination. On the other
hand, architecture-agnostic repartitioners would choose the
decomposition of Figure 4 over Figure 5 due to its lower edge-
cut (3 vs 4).

Cross-Partition Migration Interference As is evident, the
gain of migrating a vertex from its current partition to another
partition heavily relies on the amount of data that the vertex
communicates with its neighbors in other partitions. For ex-
ample, in Figure 3, the amount of data communicated between
vertex a and P; contributes most to the gain of moving a to
P,. However, due to the independent nature of the migration
decisions, neighbors of vertex a that are in P; may decide to

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2dkd on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Old Decomposition Fig. 4: Better Decomposition

migrate to other partitions. Consequently, the gain of moving
vertex a to P, may no longer exist.

To mitigate this cross-partition migration interference, each
vertex u is migrated with a probability proportional to the
gain they may introduce. Towards this, we first split space
[0, max g"%(u)] into k equal sized regions, where d denotes the

1

optimal migration destination of u. Then, a boundary vertex
is migrated to its optimal destination with a probability of
i« LU if its gain is in the ith region, where ¢ € [1,k] and
k = 100. In this way, vertices having a higher possible gain
are more likely to be migrated (maximizing the chance of
performance improvement), and vice versa. This also reduces
the chance of migrating a high-degree vertex, since the gain
of migrating a high-degree vertex is often small according to
our gain heuristic given its large neighborhood.

Analysis As presented, each vertex only needs to know
the locations of its neighbors and the amount of data it
communicates with each partition for the migration decisions.
The former is readily available to each partition in real-world
systems for neighboring vertices to communicate with each
other, while the latter can be locally computed. Each vertex
only has to examine the accumulated weights of its edges that
have one endpoint in another partition. Clearly, Phase-1a is
lightweight, since it does not require any global coordination.

Also, Algorithm 2 only requires two arrays of size O(n)
and O(|V}]) to store the information about the amount of data
a vertex communicates with each partition and the information
about boundary vertices. Here, |V;| denotes the number of
(boundary) vertices of each partition. The time complexity of
Algorithm 2 is O(|E;|+n? |V;|) with E; denoting the edge
set of each partition, because the identification of boundary
vertices takes O(E;) and the selection of optimal migration
destination for boundary vertices takes O(|E;|+n? |V]).

B. Phase-1b: Ensuring Balanced Partitions

Since each partition makes its migration decisions indepen-
dently in Phase-1a, vertices in different partitions may decide
to migrate to the same partition, leading to load imbalance.
To ensure balanced load distribution, we carry out another
quota-based vertex migration phase (if necessary), where we
only allow a limited number of vertices to be migrated from
each overloaded partition to each underloaded one. To achieve
this, PLANAR needs to decide: (1) How much work should P;
migrate to P;? and (2) What vertices should P; move to P;?

1) Question #1: How much to move: To resolve our first
question, we first compute the amount of work that needs to
be moved out from each overloaded partition:

Q(P) =w(P;) —TC(P))

c N 1 6
P1(N1) Na ! !
N3 6 1

Fig. 6: Relative Network
Communication Costs

Fig. 5: Best Decomposition

Algorithm 3: Phase-1b: Quota Allocation

Data: P, Q,c
Result: quotal
load information exchange
potential GainCompute(P;, Q, ¢, pg)
insert P;, P; and pg(P;, P;) into a heap sorted by the gain
foreach popped partition pair P; and Pj do
L quotali[j] = max {0, min {Q(P;). “Q(P})}}

update Q(P;) and Q(P;)
quota'[][j] = quota[4][j] * A

B N N S

where w(P;) is the aggregated weight of vertices in P; and
TC(P;) denotes the maximal load that P; can have. TC(F;) =
(1+2%) = w by default. Clearly, —Q)(P;) corresponds
to the remaining capacity of F;.

Architecture-Aware Quota Allocation Algorithm 3 describes
how PLANAR distributes the remaining capacity of each un-
derloaded partition across overloaded ones. It is an iterative,
architecture-aware quota allocation algorithm. During each
iteration, the algorithm attempts to find a single partition pair,
(P;, Pj), such that allocating as much quota as possible from
the underloaded partition, P;, for the overloaded partition,
P;, would lead to a maximal gain. To do this, PLANAR
first computes the potential gain of migrating vertices of
each overloaded partition to each underloaded partition. The
partition number of each partition pair is then inserted into a
heap sorted by the potential gain. Then, PLANAR computes
the quota allocation iteratively starting from the heap top.
For each popped partition pair (P;, P;), P; will allocate
quotali][j] = max{0, min {Q(F;),—Q(P;)}} quota share for
P,. quotali][j] = 0 indicates that either P; is already balanced
or the remaining capacity of P; is 0. Upon each allocation,
Q(P;) is also updated to reflect the allocation. This process is
repeated until all partitions are balanced.

Thanks to Phase-1’s vertex migration, each server may hold
a vertex portion of P;, requiring quotali][j] to be properly
distributed across servers. Here, we take a simple yet effec-
tive approach (line 7), where quotal[i][j] is distributed across
servers proportionally to the amount of work of P; held by
each server. To this end, each server first exchanges the amount
of work (vertices) it migrated to every other server with each
other. By doing this, each server knows exactly how much
work it imports from other partitions. Let /W (P;) denote
the amount of work server M [i]/P; imported from others. If
IW(P;) > Q(F;), each server can simply scale quotal[i][j] by

%, where w!(P;) denotes the amount of work of P; held

by each server. In case of IW(P;) < Q(F;), quotali][j] is

scaled by 1 — Ig(g;) for P; and by g((gi)) for others.

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2ded on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4: Phase-1b: Vertex Migration

Data: P;, quota, sortedH eap
for i = 0 — size(sortedHeap) do
HeapGet(sortedHeap, i, &v, &dest, &gain)
if v’s current owner o(v) is overloaded then
if quotao(v)][dest] > O then
mark v as moved to the dest partition
update Q(o(v)) and quota[o(v)][dest]

=7 T S I SR

Potential Gain Computation The potential gain of migrating
vertices from an overloaded partition P; to an underloaded
partition P; is defined as:

pg(Pi, P)) =Y g™ (v) (10)

veEP;

Each server only needs to consider migrating boundary vertices
of overloaded partitions to each underloaded ones, and only
needs to count vertices that lead to positive gain for pg(P;, P;).
To facilitate our next step’s vertex migration, we maintain a
sorted heap to keep track of the gain of migrating each vertex
to each possible migration destination here.

Analysis As presented, Phase-1b only requires a small amount
of global coordination to compute the load distribution for
quota allocation decisions. In addition to this, Algorithm 3 can
be run in parallel on each server without coordination with
other nodes. The time complexity of Algorithm 3 is O(n x*
|Vi|+n?), since the complexity of the partition pair potential
gain computation phase (Line 2) and the final quota allocation
phase (Line 3-7) are O(n * |V;|) and O(n?), respectively.

Also, Algorithm 3 only requires a small amount of addi-
tional memory, including two arrays of size n (for Q(P;) and
dext(v, P;)), one n * n matrix (for pg(P;, P;)), a heap of n?
elements (to record the potential gain of each partition pair),
another heap of size n * |Vj| (to keep track of the gain of
migrating boundaries of overloaded partitions to all possible
migration destinations), and another n *n matrix (for the quota
allocation result).

2) Question #2: What to move: Given the quota alloca-
tion, each overloaded server knows how much work it should
migrate to each underloaded partition. Along with the sorted
heap we maintain while computing the potential gain, we can
easily figure out the vertices to migrate and their optimal
migration destinations, which is described by Algorithm 4.
Clearly, Algorithm 4 does not require any global coordination,
and its time complexity is O(n * |V;|). This indicates that our
Phase-1b vertex migration is also lightweight.

C. Phase-2: Physical Vertex Migration

Based on the result of Phase-1 vertex migration, PLANAR
will physically migrate vertices that were chosen to move out
to their destinations (including the associated application data).
For example, in SSSP, each vertex often maintains two fields:
{prev(v), dist(v)}, where prev(v) is the vertex preceding
v on the current shortest path and dist(v) is the length of
the current shortest path [16]. To ensure correctness, we also
need to migrate these two fields along with the vertex. Clearly,
physical vertex migration is highly application-dependent and

developing a general-purpose solution is out of the scope of
this paper. Hence, the output of PLANAR will simply be an
array indicating the new location of each vertex, based on
which the physical migration can be performed either using
a customized migration service or a general migration service
(like the one provided by Zoltan [1]).

D. Convergence

To avoid unnecessary execution of PLANAR at the begin-
ning of each superstep, we check if the partitioning converges
and discontinue PLANAR if it is. However, PLANAR can be
re-enabled in the presence of sufficient load imbalance and
graph dynamism. We define as convergent the state where
the improvement achieved by each adaptation in terms of
the communication cost is within a user-defined threshold
o after 7 consecutive supersteps. Normally, the partitioning
converges quickly, since each adaptation usually produces a
better partitioning and after a certain point the partitioning
could not be further improved (Section VI-A).

However, there may exist cases where the improvement
achieved never meets the threshold, or it oscillates around
the threshold. To eliminate this issue, we double o every T
supersteps or once we detect two consecutive oscillations. We
define as oscillation the situation where a newly computed
partitioning fails to meet the threshold, but its immediate prior
has met the threshold. In this way, the algorithm will always
converge timely, thus reducing the overhead of PLANAR.

Also, there is a chance that PLANAR outputs a decomposi-
tion worse than its immediate prior during some adaptation
supersteps, since vertex migration is performed using only
local information available to each partition. One way to avoid
this is to rollback the movements we made. However, to do
this we have to put the convergence check before the physical
data migration phase. As a result, each server would first
need to exchange the up-to-date vertex locations with each
other, because each vertex needs to know the up-to-date vertex
locations of their neighbors for convergence check, leading to
additional coordination overhead. In contrast, if we put the
convergence check after the physical data migration phase,
we can combine the vertex location updates along with the
updates of other application data (i.e., the mapping of global
vertex identifiers to local vertex identifiers'), thus reducing
the communication overhead. Furthermore, the rollback may
be an overreaction, because these movements may lead to a
big performance improvement in the following adaptation su-
persteps. Besides, we only observed this negative performance
impact in few adaptation supersteps on the datasets we tested
and the deterioration was very small (less than 1%). This has
convinced us that it is not beneficial to tackle this issue.

It should be noted that we assume that the changes in
graph during each of PLANAR’s convergence supersteps is not
drastic. This is a reasonable assumption, since repartitioning
is performed in a periodic manner in real-world scenarios.

V. CONTENTION AWARENESS

We found that gathering neighboring vertices as close as
possible does not always lead to better performance [41]. This

In distributed graph computation, each vertex has one global identifier
unique across partitions and one local identifier unique within each partition.

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2€ed on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

is because many parallel programming models like MPI [23],
[21], the de facto messaging standard for HPC applications,
often implement intra-node communication (the communica-
tion among cores of the same compute node) via shared mem-
ory/cache [13], [4]. Thus, putting too much communication
within each compute node may result in serious contention for
the shared resources (i.e., last level cache, memory controller,
front-side buses, or the inter-socket links) in modern multicore
systems, having an adversarial impact on performance.

Fortunately, we can avoid the issue if we properly reflect
this trade-off in our cost model, by penalizing intra-node
network communication costs through the introduction of a
penalty score [41]. The score is computed based on the
degree of contentiousness between the communication peers.
By doing this, the amount of intra-node communication will
decrease accordingly. Hence, we simply refine the intra-node
communication costs as follows:

C(Pi,Pj) :C(Pi,Pj)—F/*(Sl—‘rSQ) (11)

where P; and P; are two partitions collocated in a single
compute node; A is a value between O and 1, denoting
the degree of contention; and s; denotes the maximal inter-
node network communication cost, while sy equals 0 if P;
and P; reside on different sockets and equals the maximal
inter-socket network communication cost otherwise. Clearly,
if A = 0, PLANAR will only consider the communication
heterogeneity, and A = 1 means that intra-node shared resource
contention is the biggest bottleneck and should be prioritized
over the communication heterogeneity. It should be noticed
that PLANAR with any A € (0, 1] considers both the contention
and the communication heterogeneity. Considering the impact
of resource contention and communication heterogeneity is
highly application- and hardware-dependent; users will need
to do simple profiling of the target applications on the actual
computing environment to determine the ideal A for them.

VI. EVALUATION

In this section, we first evaluate the sensitivity of PLANAR
to (a) its two important parameters (Section VI-A) and (b)
varying input decompositions computed by different initial
partitioners (Section VI-B). We then validate the effectiveness
of PLANAR using two graph workloads: Breadth-First Search
(BFS) [3] and Single-Source Shortest Path (SSSP) [16] (Sec-
tion VI-C). Finally, we demonstrate the scalability of PLANAR
using a billion-edge graph (Section VI-D). Towards this, we
implemented the two workloads and a prototype of PLANAR
using MPI [23], [21].

Datasets Table II describes the datasets used. By default, the
graphs were (re)partitioned with both the vertex weights (i.e.,
computational requirement) and vertex sizes (i.e., amount of
the data of the vertex) set to their vertex degree. Their edge
weights (i.e., amount of data communicated) were set to 1.
Vertex degree is a good approximation of the computational
requirement and the migration cost of each vertex, while an
edge weight of 1 is a close estimation of the communication
pattern of BFS and SSSP. Considering the communication cost
is more important than migration cost, all the experiments were
performed with oo = 10 (Eq. 3). Unless explicitly specified, the
graphs were initially partitioned by the deterministic greedy
heuristic, DG [34], across cores of the machines used (one

TABLE II: Datasets used in our experiments

\ Dataset I V] [[E] [Description ‘
wave [33] 156,317 2,118,662 2D/3D FEM
auto [33] 448,695 6,629,222 3D FEM
333SP [9] 3,712,815 22,217,266 | 2D FE Triangular Meshes
CA-CondMat [2] 108,300 373,756 Collaboration Network
DBLP [15] 317,080 1,049,866 Collaboration Network
Email-Eron [2] 36,692 183,831 Communication Network
as-skitter [2] 1,696,415 22,190,596 Internet Topology
Amazon [2] 334,863 925,872 Product Network
USA-roadNet [8] 23,947,347 58,333,344 Road Network
roadNet-PA [2] 1,090,919 6,167,592 Road Network
YouTube [15] 3,223,589 24,447,548 Social Network
com-LiveJournal [2] 4,036,537 69,362,378 Social Network
Friendster [2] 124,836,180 3,612,134,270 Social Network

TABLE III: Cluster Compute Node Configuration

PittMPICluster Gordon
(Intel Haswell Processor) (Intel Sandy Bridge Processor)

Node Configuration

Sockets 2 2
Cores 20 16
Clock Speed 2.6 GHz 2.6 GHz
L3 Cache 25 MB 20 MB
Memory Capacity 128 GB 64 GB
Memory Bandwidth 65 GB/s 85 GB/s

partition per core). The partitionings were then improved by
PLANAR until it converges. During the (re)partitioning, we
allowed up to 2% load imbalance among partitions. It should
be noted that DG/LDG were extended to support vertex- and
edge-weighted graphs for fair comparison.

Platforms We evaluated PLANAR on two clusters: PittMPI-
Cluster [29] and Gordon supercomputer [24]. PittMPICluster
had a flat network topology, where all the 32 compute nodes
were connected to a single switch via 56GB/s FDR Infiniband.
On the other hand, the Gordon network topology was a
4x4x4 3D torus of switches connected via QDR Infiniband
with 16 compute nodes attached to each switch (8GB/s link
bandwidth). Table III depicts the compute node configuration
of both clusters. All results presented were the means of 5
runs, except the execution of SSSP on Gordon.

Network Communication Cost Modelling The relative
network communication costs among partitions (cores) were
approximated using a variant of osu_latency benchmark [25].
To ensure the accuracy of the cost matrix, we bound each MPI
rank (process) to a core using options provided by OpenMPI
1.8.6 [23] on PittMPICluster and MVAPICH2 1.9 [21] on
Gordon. OpenMPI and MVAPICH2 were two different MPI
implementations available on the clusters.

A. Parametter Selection

Configuration This experiment studied the sensitivity of
PLANAR to its two critical parameters: o and 7 (Section IV-D).
Theoretically, o should be a value large enough, so that
PLANAR can converge quickly, especially for decompositions
that it cannot improve much. Also, it should be small enough,
offering PLANAR sufficient time to refine graph decomposi-
tions with large improvement space. Towards this, we applied
PLANAR to various graph decompositions computed by the
deterministic greedy (DG) partitioner across cores of two 20-
core compute nodes for 30 consecutive adaptation supersteps,
and examined the improvement achieved by PLANAR in terms
of communication cost in each adaptation superstep (against
the input decomposition to each adaptation superstep).

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2ded on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

X20 220
215 || wave 215 PA-roadNet
[} auto —o— 7} USA-RoadNet —o—
£10 -B33SP £10 -, CA-CondMat
3 5 35 DBLP —e—
g— 1 0 g 1 " 5
= 0 5 10 15 20 25 30 — O 5 10 15 20 25 30
Adaptation Supersteps Adaptation Supersteps
_ Fig. 7 _ Fig. 8
220 220
215 Amazon 215 YouTube
7} Email-Enron —o— 9] as-skitter —o—
£10 £10 com-j
(Y] [
] 35
E— 1 Srtrbetetbeoseboo—2000006 g‘ 1 \\ FOVGSNIVY
= 0 5 10 15 20 25 30 = 0 5 10 15 20 25 30
Adaptation Supersteps Adaptation Supersteps
Fig. 9 Fig. 10
100,000 T T T
o o HP
$ 10,000k m DG
= m LDG
51,0008 AW B mMETTS |
9]
8 100
E 107 m
O
© 1
Y3130, o S 4\00 Co, L2520, 25 Co,
Rl o b sty
89 Vg @é on %o, “Ss
Fig. 11: Communication costs of the initial decompositions

partitioned by HP, DG, LDG, and METIS into 40 partitions.

Results Figures 7 to 10 present the corresponding results.
Interestingly, we found that most of the improvements were
achieved in the first 5 adaptation supersteps. After that, the
improvement achieved in each adaptation superstep dropped
quickly below 1%, and as-skitter and Email-Enron were the
only two datasets exhibiting some small oscillations. Thus, in
our implementation, we set o and 7 to 1% and 10, respectively,
and do not perform any convergence check for the first 5
adaptation supersteps.

B. Microbenchmarks

Configuration This experiment examined the effectiveness of
PLANAR in terms of partitioning quality (Eq. 3 and 4), when
it was provided by various decompositions computed by HP,
DG, LDG, and METIS. HP is the default graph partitioner
used by many parallel graph computing engines; DG and
LDG are two state-of-the-art streaming graph partitioning

10,000

T T T
0 PLANAR+HP

® PLANAR+DG

o PLANAR+LDG

m PLANAR+METIS

allil

1,000F)

Comm Cost (1075)
=
~)
S S

[

Wy <, 26, .2,

Qp g V3580 9. %o ST

e Yo N @Q’A/ toe o ,70(; %, ,77; J\Zﬂfb@s’f’ f;\/ 5
p(q g0 20,50 2oy &)

(a) Communication Cost of the Resultmg Decompositions

heuristics [34]; and METIS is a state-of-the-art multi-level
graph partitioner [18]. The graphs were initially partitioned
across two 20-core compute nodes on PittMPICluster.

Quality of the Initial Decompositions (Figure 11) Figure 11
presents the initial communication costs of the decompositions
computed by HP, DG, LDG, and METIS for a variety of
graphs in log-scale. As expected, METIS performed the best
and HP was the worst. However, METIS is a heavyweight
serial graph partitioner, making it infeasible for large-scale
distributed graph computation either as an initial partitioner or
as an online repartitioner (repartitioning from scratch). It was
reported in [36] that METIS took 8.5 hours to partition a graph
with 1.46 billion edges. Surprisingly, DG performed better
than LDG, the best streaming partitioning heuristic among the
ones presented in [34]. This was probably because the order
in which vertices were presented to the partitioner favored DG
over LDG, since the results of streaming partitioning heuristics
rely on the order in which vertices are presented to them.

Quality of the Resulting Decompositions (Figures 12a
& 12b) Figures 12a and 12b, respectively, plot the log-scale
communication cost of resulting decompositions and the im-
provements achieved by PLANAR in terms of communication
cost against the initial decompositions. As shown, the better
the initial decomposition was the better the resulting decom-
position would be, and PLANAR reduced the communication
cost of decompositions computed by HP, DG, and LDG by up
to 68%, 46%, and 69%, respectively, whereas it only slightly
improved the decompositions computed by METIS. One reason
for this is that METIS usually produces decompositions much
better than others, providing PLANAR limited improvement
space. Yet, PLANAR still achieved an improvement by up to
4.6% for complex networks (right 5 datasets) against METIS.
On the other hand, this also showed the stability of PLANAR,
since it did not deteriorate any decompositions computed by
METIS. Also, we found that PLANAR with DG as its initial
partitioner can achieve even better performance than METIS
in real-world workloads (Section VI-C).

Migration Cost (Figures 13a & 13b) In the experiment,
we also examined the migration cost introduced by PLANAR
in terms of Eq. 4 and the accumulated vertex migration ratio
(# of vertices migrated as a percentage of the entire graph)
across all adaptation supersteps. Figures 13a and 13b present
the corresponding results. As shown, the better the initial
decomposition was, the lower the migration cost was. The
reason why the migration ratio exceeded 1 in some cases was

120% : : T T
3 O PLANAR+HP
1008 | g PLANAR+DG
S g0s @ PLANAR+LDG
5 °[""|m PLANAR+METIS
> 60%t e I
2
408} SS— -
: m m mm
N~ 20%F AU N N
0%
g3 T r es
SN oE ~s
fo@ofzoz b Qb ’QZ\{)

~0
4
(b) Improvement Achieved Against the Inltlal Decomposmons

Fig. 12: Communication cost of the resulting decompositions and improvement achieved after running PLANAR over varying
initial decompositions generated by HP, DG, LDG, and METIS across two 20-core machines.

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2ded on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

5)

<'10,000 T : : : :

S 0 PLANAR+HP

2 m PLANAR+DG

o 1,000F |@ PLANAR+LDG | i

3 m PLANAR+METIS

O 100 TheA HEg g gy

[~

.O

o FR TS] | S— L]

T

£ I}

1

o Y31, R O3 5205 Y8y CQ S0, Cop Ly 0, 2s Co,

= e Yo N @%S]gzoﬁoé@ 0 et d S ALl 5
o5 I 20 22, &5

(a) Migration Cost

2.0 ;
_3 0 PLANAR+HP
“ ® PLANAR+DG
B I g PLANAR+LDG
m PLANAR+METIS
<
OL.0r | Atp AT
-~
+
T
G0.5- e A H
o
o
0.0 I i
<
<

(b) Accumulated Vertex Migration Ratio

Fig. 13: Overhead of the adaptation on varying initial decompositions computed by HP, DG, LDG, and METIS into 40 partitions.

0 PLANAR+HP

| m PLANAR+DG Ty

....|@ PLANAR+LDG
m PLANAR+METIS |

Z @, o, & C [« [«
g Ve S Es S AT~
St 0957
DA

Fig. 14: PLANAR converge time in terms of supersteps

1 Migration Ratio —— 1 Migration Ratio —+—

0.8 Hop-Cuts 0.8
206 206
< 0.4 &£ 0.4
0.2 0.2

O | | | | | | 0 | | | | | | |

0 2 4 6 8101214
Time (supersteps)

0 2 4 6 8 1012
Time (supersteps)

Fig. 15: wave Fig. 16: com-j

because each vertex may be migrated multiple times during
the adaptation. We also observed that PLANAR improved the
decompositions computed by DG only with a very small
amount of data migration for most of the datasets. Also,
PLANAR only led to a very small amount of data migration
for decompositions with limited improvement space, further
demonstrating the stability of PLANAR.

Convergence Time (Figure 14) Another item of interest in
this experiment is the average number of supersteps PLANAR
took to converge (Figure 14). As presented, for graph de-
compositions that have limited improvement space, PLANAR
only took around 8 supersteps to converge. In contrast, graph
decompositions with large improvement space were provided
with sufficient time. This further validated the robustness of
o and 7’s default values. The reason why the converge time
dropped below 15 in some cases was because we made some
additional optimizations in the convergence check phase to
further reduce the overhead of the adaptation.

Convergence Process (Figures 15 & 16) Another thing of
interest is the exact converge process: the number of vertices
migrated by PLANAR (with DG as its initial partitioner) during
each adaptation superstep and the evolution of the correspond-
ing hop-cuts across supersteps. Figures 15 and 16 show the
accumulated vertex migration ratio and the normalized hop-

cuts (with the initial decomposition as the baseline) for the
wave and the com-lj dataset, respectively. In both figures,
superstep 0 corresponds to the initial decomposition. All the
datasets followed the same pattern where PLANAR greatly
reduced the hop-cuts in the first 5 adaptation supersteps, which
were also the places where most vertices got migrated.

C. Real-World Applications (BFS & SSSP)

Configuration This experiment evaluated PLANAR using BFS
and SSSP on YouTube, as-skitter, and com-1j datasets. Initially,
the graphs were partitioned across cores of three machines of
two clusters using DG. Then, the decomposition was improved
by PLANAR until convergence. During the execution, we
grouped multiple (8 for the YouTube and as-skitter dataset and
16 for the com-1j dataset) messages sent by each MPI rank to
the same destination into a single one. The reason why we
picked 8 and 16 was because larger values would make the
execution time too short, especially for the execution of BFS.

Resource Contention Modelling To capture the impact of
resource contention, we ran a profiling experiment for BFS and
SSSP with the three datasets on both clusters by increasing
A gradually from O to 1. Interestingly, we found that intra-
node shared resource contention was more critical to the per-
formance on PittMPICluster, while inter-node communication
was the bottleneck on Gordon. This was probably caused by
the differences in network topologies (flat vs hierarchical),
core count per node (20 vs 16), memory bandwidth (65GB
vs 85GB), and network bandwidth (56GB vs 8GB) of the
two clusters, and that BFS/SSSP had to compete with other
jobs running on Gordon for the network resource, while there
was no contention on the network communication links on
PittMPICluster. Hence, we fixed A to be 1 on PittMPICluster
and 0 on Gordon for our experiments.

Job Execution Time (Tables IV & V) Tables IV and V show
the execution time of BFS and SSSP with 15 randomly selected
source vertices on the three datasets. The job execution time
is defined as: JET =) | SET(i), where n corresponds to
the number of supersteps the job has, while SET () is the ith
superstep execution time of the slowest MPI rank. In the table,
DG and METIS mean that BFS/SSSP was performed on the
datasets without any repartitioning/refinement, UNTPLANAR is
a variant of PLANAR assuming homogeneous and contention-
free computing environment (serving as a representative of the
state-of-the-art adaptive solutions). We also show the overhead
of each algorithm (in parentheses). Note that METIS is per-
formed offline, and typically takes a long time to complete
(even hours for large graphs).

Authorized licensed use limited to: University of Pittsburgh Library System. Downlb2&d on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: BFS Job Execution Time (s)

[Algorithm/Dataset [[YouTube | as-skitter | com-]j |
PittMPICluster

DG 21 79 221
METIS 538 (off) | 66 (o) | 23 (ol
PARMETIS 21 (21.92) | 51 (0.75) | 175 (4.89)
UNIPLANAR 10 (1.78) | 36 (1.90) | 109 (4.13)
ARAGON 899 (21.18) 13 (1741) | 55 (61.97)
PARAGON 9.03 (4.12) 12 (3.44) 67 (10.43)
PLANAR 795 (6.74) 8.76 (6.91) 21 (17.20)

Gordon

DG 353 660 956
UNIPLANAR 222 (3.14) 217 (297) 587 (6.59)
ARAGON 240 (21.18) | 238 (17.10) | 501 (59.94)
PARAGON 217 (3.76) | 248 (2.98) | 558 (9.03)
PLANAR 166 (7.43) 205 (6.63) 477 (16.07)

g 7,000
~ 6,000 m Inter—-Node
QEJ 5,000 o Inter-Socket
3 4,000 o Intra-Socket
3 3,000
> 2,000
i W
0
O T IT, ©
f@j@f foxy fﬁ?@f O
%

as-skitter

(a) PittMPICluster

TABLE V: SSSP Job Execution Time (s)

[Algorithm/Dataset [[YouTube | as-skitter | com-lj |
PittMPICluster

DG 2166 1754 4693
METIS 530 (off) | 694 (off) | 907 (off)
PARMETIS 1908 (21.91) | 492 (9.70) | 3055 (4.76)
UNIPLANAR 1128 (261) | 615 (261) | 2083 (5.47)
ARAGON 303 (21.26) 291 (16.95) 1283 (61.86)
PARAGON 405 (4.08) 312 (3.36) 1439 (10.38)
PLANAR 257 (7.68) 288 (7.08) 890 (18.76)

Gordon

DG 3581 6517 11011
UNIPLANAR 2091 (4.62) 2184 (4.15) 7080 (9.04)
ARAGON 2874 (20.66) | 3474 (1541) | 7395 (68.75)
PARAGON 2613 (3.85) | 2741 (2.94) | 7363 (9.03)
PLANAR 2322 (9.16) 2801 (8.11) 6381 (17.57)

g 7,000
~ 6,000 m Inter—-Node
QEJ 5,000 o Inter-Socket
5 4,000 o Intra-Socket
3 3,000
> 2,000
S 0 S U S, 2 R T I3
O (S O\). "ﬁy *?{? {y (S 6{. ‘E? ﬁ«? C:y (S O«’ 4}? '?(9 {y
2%, Yo % ¢, 0, %, 2,9, %0 %
9 0% AR AN U Q%
5 =N =N
YouTube as-skitter com—17j
(b) Gordon

Fig. 17: The communication volume breakdown of SSSP on both clusters.

As expected, PLANAR beat DG, PARMETIS, and UNIPLA-
NAR in almost all cases. Compared to DG, PLANAR reduced
the execution time of BFS and SSSP on Gordon by up to
69% and 57%, respectively, and by up to 90% and 88% on
PittMPICluster, respectively. So, in the best case, PLANAR is
10 times better than DG. Yet, the overhead PLANAR exerted
(the sum repartitioning time and physical data migration time)
was very small compared to the improvement it achieved
and the job execution time. By comparing the results of
UNIPLANAR with DG, we can conclude that PLANAR not
only improved the mapping of the application communication
pattern to the underlying hardware, but also the quality of the
initial decomposition (edge-cut). What we did not expect was
that PLANAR, with DG as its initial partitioner, outperformed
the gold standard, METIS, in 3 out the 6 cases and was com-
parable to METIS in other cases, and that PLANAR performed
even better than both ARAGON and PARAGON. We attributed
this to the greedy nature of our Phase-1 vertex migration.

Communication Volume Breakdown (Figures 17a & 17b)
To further confirm our observations, we also measured the
total amount of data remotely exchanged per superstep by
BFS and SSSP among cores of the same socket (intra-socket
communication volume), among cores of the same compute
node but belonging to different sockets (inter-socket com-
munication volume), and among cores of different compute
nodes (inter-node communication volume). Since we observed
similar patterns for BFS and SSSP in all the cases, we only
present the breakdown of the accumulated communication
volume across all supersteps for SSSP on both clusters here.

As shown in Figures 17a and 17b, comparing to the
architecture-agnostic solutions (i.e., DG, METIS, PARMETIS,
and UNIPLANAR), PLANAR had the lowest intra-node (inter-
socket & intra-socket) communication volume on PittMPIClus-
ter and lowest inter-node communication volume on Gordon.
It should be noticed that on PittMPICluster intra-node com-

munication was the bottleneck, and vice verse on Gordon.
In comparison to ARAGON and PARAGON, PLANAR not
only led to lower communication volume on critical compo-
nents, but also had lower total remote communication volume.
Another interesting thing was that, in spite of the higher
total communication volume of architecture-aware solutions
(i.e., ARAGON, PARAGON, and PLANAR) when compared
to METIS, PARMETIS, and UNIPLANAR, architecture-aware
solutions still outperformed them in most cases due to the
reduced communication on critical components.

D. Billion-Edge Graph Scaling

Configuration This experiment investigated the scalability
of PLANAR using the friendster dataset (3.6 billion edges)
in three different setups: (1) Scalability of Graph Size; (2)
Scalability of Number Partitions; and (3) Hybrid. In Setup 1,
we demonstrated the scalability of PLANAR as the graph scaled
(from 0.9 up to 3.6 billion edges) but with a fixed number
of partitions (60). In Setup 2, we showed the scalability of
PLANAR using the original com-friendster dataset when it was
partitioned into varying number of partitions (from 60 up to
120). In Setup 3, we exhibited the scalability of PLANAR as the
number of partitions increased (from 40 up to 120) but with
an approximately fixed number of edges per partition. That
is, we varied the graph size accordingly (from 1.2 up to 3.6
billion edges) as the number of partitions increased. Towards
this, we generated some additional datasets by sampling the
edge lists of friendster dataset. We denoted the datasets as
friendster-p, where p (0 < p < 1) was the probability that
each edge was kept while sampling. Hence, friendster-p would
have around 3.6 * p billion edges. Interestingly, the number of
vertices remained almost unchanged in spite of the sampling.
The experiment was performed on PittMPICluster with BFS
message grouping size set to 256. We would only present the
results of DG, PARAGON, UNIPLANAR, and PLANAR, since

Authorized licensed use limited to: University of Pittsburgh Library System. Downlba3é2d on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

DG —%— PARAGON —v— DG —%— PARAGON —v— DG —%— PARAGON —v—
uniPLANAR PLANAR —&— uniPLANAR PLANAR —&— uniPLANAR PLANAR —&—
15000 15000 _.5000
("2}
12500 12500 —=4000
= 0 53000
—10000 —10000 =5000
— = "
w 7500 W 7500 L1000 X
w0 0 0 I I |
£ 5000 5 200 ° Now R w9
2500 2500 PR R R D
200 w ! w 200 PO ® ® & &
)) 2 B 9 o Cxy Ox, Mx, T, Ik, Ox e v i) o w
"9 ‘@ > e o o 0 o o o W ® » o o

Approximate # of edges (billions)

#-Machines*#-Cores
(a) Scalability of Graph Size (3*20 Partitions) (b) Scalability of # of Partitions (3.6B Edges)

#-Machines*#-Cores@#-Edges
(c) Hybrid Scalability

Fig. 18: BFS Job Execution Time (JET)

PARAGON —%— PLANAR —8—

500

PARAGON —%—

PLANAR —8— PARAGON —%— PLANAR —8—

1000 21000
0 0 800
2400 o 800 E 600
£300 £ 600 ; 400
= = § 200
+£200 + 400 2 0 I ! ! \ |
© © 4 o ~ w = 0 o))
§100 g 200 I T R
0 x, O, Px, T, Sk, O
% Y % % % "% % "% % % AR S

Approximate # of edges (billions)

#-Machines*#-Cores
(a) Scalability of Graph Size (3*20 Partitions) (b) Scalability of # of Partitions (3.6B Edges)

#-Machines*#-Cores@#-Edges
(c) Hybrid Scalability

Fig. 19: Repartitioning Time

METIS, PARMETIS, and ARAGON failed to (re)partition the
graphs even for the smallest graph of this experiment, due to
their heavyweight nature.

Results (Figures 18 & 19) Figures 18 plots the BFS execution
time with 15 randomly selected source vertices in different
setups. As shown, PLANAR had the lowest BFS execution
time in all cases. We also noticed that in Setup 1 (Figure 18a),
PLANAR had the lowest speed in which the BFS execution time
increased as the graph scaled, and that in Setup 2 & 3, the more
the machines used, the faster BFS completed. Interestingly, we
found that the improvement achieved by PLANAR gradually
decreased as the number of partitions increased. This was
probably because the fraction of intra-node communication
dropped greatly as the number of partitions increased due
to the increasing inter-node communication peers, weakening
the impact of architecture-awareness on PittMPICluster. Even
though the improvement decreased, PLANAR still achieved up
to 2.9x speedups with 6 machines (Setup 2). It should be noted
that PLANAR reduced the execution time of all machines
(6*20 cores) not just one.

Figure 19 shows the corresponding repartitioning time of
PLANAR and PARAGON. As shown, PLANAR’s repartitioning
time increased at a much slower rate than that of PARAGON
in all setups. The reason why the PLANAR had higher reparti-
tioning time for smaller graphs was because PLANAR requires
a migration phase at the end of each adaptation superstep (the
major source of the overhead). Fortunately, as the graph and
the deployment scale increased, PLANAR was the clear winner.
This was because PARAGON requires more knowledge about
the graph for repartitioning and has lower degree of reparti-
tioning parallelism. In fact, if we average the repartitioning

time across adaptation supersteps, the overhead introduced by
PLANAR in each adaptation superstep would be very small.

VII. RELATED WORK

Graph (re)partitioners are widely used to support scientific
simulation and large-scale distributed graph computation in
parallel computing infrastructures. We organize the existing
graph (re)partitioners into three categories: (a) heavyweight,
(b) lightweight, and (c) streaming, which are presented next.

Heavyweight Graph (Re)Partitioning Graph (re)partitioning
have been extensively studied (i.e., METIS [18],
PARMETIS [26], SCOTCH [31], CHACO [6], and ZOLTAN [1]),
but only PARMETIS and ZOLTAN support parallel graph
(re)partitioning. However, neither of them are architecture-
aware. Although [20], a METIS variant, considers the
communication heterogeneity, it is a sequential static graph
partitioner, which is inapplicable for large dynamic graphs.
Several recent works [40], [7] have been proposed to
cope with heterogeneity and dynamism. However, they are
too heavyweight for massive graphs because of the high
communication volume they generate while (re)partitioning.

Lightweight Graph Repartitioning Many lightweight graph
repartitioners [32], [37], [22], [14], [38] have been proposed
for efficiently adapting the partitioning to changes by incre-
mentally migrating vertices among partitions based on some
heuristics. Nevertheless, they are architecture-agnostic. Also,
many of them assume uniform vertex weights and sizes, and
some [37], [22] even assume uniform edge weights. Moreover,
they migrate vertices under the constraint that the load is
evenly distributed in a single phase. In contrast, PLANAR splits

Authorized licensed use limited to: University of Pittsburgh Library System. Downlbaded on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

vertex migration into 2 phases, in which we try to minimize
the communication cost without considering the balancing
requirement first and then focus on balancing the load.

Streaming Graph Partitioning A new family of graph
partitioning heuristics, streaming graph partitioning [34], [36],
[10], has been proposed recently for online graph partitioning.
They can produce partitionings comparable to METIS within a
relative short time. However, they are not architecture-aware.
Although [39] has presented a streaming graph partitioner that
is aware of both CPU and communication heterogeneity, it has
the same issue with dynamic graphs as DG/LDG. Furthermore,
unlike PLANAR, which strikes to minimize the communication
cost under the constraint that the load is balanced, [39] aims to
balance load (the computation time plus communication time)
as a whole. Article [10] also proposed an architecture-agnostic
adaptive graph repartitioner for dynamic graphs. Instead of
optimizing both the communication cost and the skewness
during each adaptation superstep as PLANAR does, it chooses
to optimize one heuristic at a time with a probability of 0.5.

VIII. CONCLUSION

In this paper, we presented a lightweight architecture-aware
graph repartitioner, PLANAR, for large dynamic graphs. PLA-
NAR can not only efficiently respond to graph dynamism by
incrementally migrating vertices among partitions, but can also
improve the mapping of the application communication pattern
to the underlying hardware topology. PLANAR only requires a
small amount of local information plus a minimal amount of
global coordination for repartitioning, making it quite feasible
for large-scale, graph-based big data applications. Considering
the size of real-world graphs, features like being adaptive,
lightweight, and architecture-aware (which are all present in
PLANAR) are absolutely essential for online repartitioners.
Our evaluation confirmed PLANAR’s superiority in terms of
performance improvement (up to 10x speedup) and scalability
(up to 3.6 billion edges).

ACKNOWLEDGMENTS

We would like to thank Peyman Givi, Patrick Pisciuneri, Mark
Silvis, and the anonymous reviewers for their help. This work was
funded in part by NSF awards CBET-1250171 and OIA-1028162.

REFERENCES

[1] http://www.cs.sandia.gov/zoltan/.
[2] http://snap.stanford.edu/data.

[3] A. Bulu¢ and K. Madduri, “Parallel Breadth-First Search on Distributed
Memory Systems,” CoRR, 2011.

[4] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and S. Moreaud,
“Cache-efficient, intranode, large-message MPI communication with
MPICH2-Nemesis,” in ICPP, 2009.

[5] U. V. Catalyurek, E. G. Boman, K. D. Devine, D. Bozdag, R. T. Heaphy,
and L. A. Riesen, “A repartitioning hypergraph model for dynamic load
balancing,” J Parallel Distr Com, 2009.

[6] http://www.sandia.gov/~bahendr/chaco.html.

[71 R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li, “Improving
large graph processing on partitioned graphs in the cloud,” in SoCC,
2012.

[8] 9th DIMACS Challenge. http://www.dis.uniromal.it/challenge9.
[9] 10th DIMACS Challenge. http://www.cc.gatech.edu/dimacs10/.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]
[27]
[28]

[29]
[30]

[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

L. M. Erwan, L. Yizhong, and T. Gilles, “(Re) partitioning for stream-
enabled computation,” arXiv:1310.8211, 2013.

B. Hendrickson and T. G. Kolda, “Graph partitioning models for parallel
computing,” Parallel computing, 2000.

R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jes-
persen, K. Taylor, and R. Biswas, “Performance impact of resource
contention in multicore systems,” in /PDPS, 2010.

H.-W. Jin, S. Sur, L. Chai, and D. K. Panda, “Limic: Support for high-
performance mpi intra-node communication on linux cluster,” in /CPP,
2005.

Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: a system for dynamic load balancing in large-scale
graph processing,” in EuroSys, 2013.
http://konect.uni-koblenz.de/networks/.

Y. Lu, J. Cheng, D. Yan, and H. Wu, “Large-scale distributed graph
computing systems: An experimental evaluation,” VLDB, 2014.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in SIGMOD, 2010.
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

A. Mislove, “Online Social Networks: Measurement, Analysis, and
Applications to Distributed Information Systems,” Ph.D. dissertation,
Rice University, 2009.

I. Moulitsas and G. Karypis, “Architecture aware partitioning algo-
rithms,” in ICA3PP, 2008.

http://mvapich.cse.ohio-state.edu/.

D. Nicoara, S. Kamali, K. Daudjee, and L. Chen, “Hermes: Dynamic
partitioning for distributed social network graph databases,” in EDBT,
2015.

http://www.open-mpi.org/.

https://portal.xsede.org/sdsc-gordon.
http://mvapich.cse.ohio-state.edu/benchmarks/.
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.

P. Pisciuneri, A. Zheng, P. Givi, A. Labrinidis, and P. Chrysanthis,

“Repartitioning Strategies for Massively Parallel Simulation of Reacting
Flow (Abstract),” Bull. Am. Phys. Soc., 2015.

P. Pisciuneri, S. L. Yilmaz, P. Strakey, and P. Givi, “An Irregularly
Portioned FDF Simulator,” SIAM J. Sci. Comput., 2013.
http://core.sam.pitt.edu/MPIcluster.

K. Schloegel, G. Karypis, and V. Kumar, “A unified algorithm for load-
balancing adaptive scientific simulations,” in Supercomputing, 2000.
http://www.labri.u-bordeaux.fr/perso/pelegrin/scotch/.

Z. Shang and J. X. Yu, “Catch the wind: Graph workload balancing on
cloud,” in ICDE, 2013.

http://staffweb.cms.gre.ac.uk/~wc06/partition/.

I. Stanton and G. Kliot, “Streaming graph partitioning for large dis-
tributed graphs,” in SIGKDD, 2012.

L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa, “The im-
pact of memory subsystem resource sharing on datacenter applications,”
in ISCA, 2011.

C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in WSDM, 2014.
L. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella, “xdgp: A
dynamic graph processing system with adaptive partitioning,” CoRR,
2013.

N. Xu, L. Chen, and B. Cui, “LogGP: a log-based dynamic graph
partitioning method,” VLDB, 2014.

N. Xu, B. Cui, L.-n. Chen, Z. Huang, and Y. Shao, ‘“Heterogeneous
Environment Aware Streaming Graph Partitioning,” TKDE, 2015.

A. Zheng, A. Labrinidis, and P. K. Chrysanthis, “Architecture-Aware
Graph Repartitioning for Data-Intensive Scientific Computing,” in Big-
Graphs, 2014.

A. Zheng, A. Labrinidis, P. Pisciuneri, P. K. Chrysanthis, and P. Givi,
“Paragon: Parallel Architecture-Aware Graph Partitioning Refinement
Algorithm,” in EDBT, 2016.

Authorized licensed use limited to: University of Pittsburgh Library System. Downlbadsd on November 12,2025 at 17:24:48 UTC from IEEE Xplore. Restrictions apply.

