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Abstract—To support effective data exploration, there is a
well-recognized need for solutions that can automatically rec-
ommend interesting visualizations, which reveal useful insights
into the analyzed data. However, such visualizations come at the
expense of high data processing costs, where a large number
of views are generated to evaluate their usefulness. Those costs
are further escalated in the presence of numerical dimensional
attributes, due to the potentially large number of possible binning
aggregations, which lead to a drastic increase in the number
of possible visualizations. To address that challenge, in this
paper we propose the MuVE scheme for Multi-Objective View
Recommendation for Visual Data Exploration. MuVE introduces
a hybrid multi-objective utility function, which captures the
impact of binning on the utility of visualizations. Consequently,
novel algorithms are proposed for the efficient recommendation of
data visualizations that are based on numerical dimensions. The
main idea underlying MuVE is to incrementally and progressively
assess the different benefits provided by a visualization, which
allows an early pruning of a large number of unnecessary op-
erations. Our extensive experimental results show the significant
gains provided by our proposed scheme.

I. INTRODUCTION

Data visualization is gaining growing interest as an indis-
pensable tool for data exploration and analysis in a widely
diverse set of discovery-oriented applications [9], [23]. In such
applications, data analysts explore large volumes of data look-
ing for interesting visualization that reveal new and valuable
insights. Such process is typically ad-hoc and labor-intensive,
especially for high-dimensional databases. Motivated by the
need for efficient data analysis and exploration, several solu-
tions for recommending visualizations have recently emerged
to guide analysts throughout that rather time-consuming pro-
cess (e.g., [22], [21], [14], [13]).

The main idea underlying those solutions is to automati-
cally generate all possible views of data, and recommend the
top-k interesting views, where an interestingness of a view
is quantified according to some utility function. Recent work
provides strong evidence that a deviation-based formulation
of utility is able to provide analysts with interesting visual-
izations that highlight some of the particular trends of the
analyzed datasets [22]. In particular, the deviation-based metric
measures the distance between the probability distribution of
the specific dataset under analysis and that of a comparison
dataset, which is typically the entire database from which
that dataset is extracted. The underlying premise is that a
visualizations that results in a higher deviation is expected to
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Fig. 1: View on players of the GSW team (target view)
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Fig. 2: View on all players in the 2015 NBA (comparison view)

reveal some interesting insights that are very particular to the
analyzed dataset [22], [21].

While the deviation-based notion of utility has been shown
to be effective in recommending views with categorical dimen-
sional attributes, in this work we argue that it falls short in
capturing the requirements of numerical dimensions. Particu-
larly, in the presence of such numerical dimensions, binnied
aggregation is typically required so that to group the numerical
values along a dimension into adjacent intervals [6], [11].
Given the large number of options for binning a numerical
dimension, it is expected that different binning configuration
will result in different deviations, and in turn, different levels
of interestingness from the analyst point of view. For instance,
in a view with small number of bins, interesting insights are
expected to remain hidden under a smooth and coarse visual
representation. Meanwhile, in a view that contains a large
number of bins, insights might go unnoticed in a cluttered
or sparse visualization. To illustrate the impact of binning on
numerical dimensions, consider the following example:

Example 1: Consider a data analyst trying to gain insights
into the special factors that led the Golden State Warriors
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Fig. 3: Binned target view (i.e., GSW team) and comparison
view (i.e., all NBA teams)

(GSW) basketball team to win the 2015 NBA championship.
Consequently, the analyst uses the 2015 NBA players statistics
database [2] to compare the GSW team to the other teams in
the league. Particularly, the analyst poses a query

Q: SELECT % FROM players WHERE team=GSW,

which returns the statistics for all the players on the GSW
team. Such statistics include different dimensions (e.g., age,
number of games played, minutes played, etc.), and differ-
ent measures (e.g., player efficiency rating, 3-point attempt
rate, etc.). To recommend interesting bar chart visualizations,
different SQL aggregate functions are applied on the views
resulting from all the possible pairwise combinations of di-
mensions and measures, then the most interesting views are
presented to the analyst. Figure 1 shows one particular view
defined on the dimension minutes played (MP) and the
measure 3—point attempt rate (3PAr).Such view is
equivalent to:

V: SELECT MP, SUM (3PAr) FROM players
WHERE team=GSW GROUP BY MP

Meanwhile, generating the same view of the entire database
of all players (i.e., without the WHERE team=GSW clause),
results in the visualization shown in Figure 2. At first glance,
comparing the two views fails to reveal any insights about
the GSW team. However, binning the two views as shown in
Figure 3 shows some very interesting observation. Particularly,
Figure 3 shows that for all NBA players, the 3PAr decreases
as they play more games throughout the season. Intuitively,
this is perfectly understandable since the fatigue incurred from
playing more games can affect their fitness and reduce their
3PAr. However, for the GSW players, that pattern is very
different from that general pattern. As Figure 3 shows, the
GSW players who spent more time on the field still achieve
very high 3PAr. In fact, their 3PAr is almost 4 times that
of the players in other teams. Clearly, that observation reflects
the high fitness and consistency of the GSW players, which
distinguishes them from the other players in the league, and
can shed some light into understanding their championship
win.

As the above example shows, choosing the right binning
is essential in the process of extracting insights from the data,
whether that process if performed manually or analytically. On
the one hand, a good binning allows to reduce both the clutter
and sparsity in the generated visualizations, which makes them
easy to use by the analyst to manually extract insights [7],
[3]. On the other hand, a good binning also allows to group

similar data together (e.g., group players according to their
MP), so that the special features of each group (e.g., 3PAr) is
aggregated and emphasized, which in turn allows quantitative
metrics, such as deviation, to capture the interesting patterns
exhibited by those features. We note, however, that choosing
the right binning for each visualization is a non-trivial task.
The benefits, as well as the challenges, of binning numerical
dimensions are well-recognized in the literature, especially in
the context of histogram construction for the purpose of selec-
tivity estimation and query optimization (e.g., [6], [11], [12]).
Such histograms provide a concise summary of the underlying
data distribution of an attribute, where the accuracy of that
summarization is dependent on the employed binning strategy.
Similarly, in bar chart visualizations, which is the focus of
this paper, the overall utility of a visualization is dependent on
the underlying binning. Consequently, the applicability of the
simple deviation-based notion of utility becomes very limited
in the presence of numerical dimension attributes.

To address such limitation, in this work, we propose the
MuVE scheme for Multi-Objective View Recommendation for
Visual Data Exploration. In MuVE, we introduce a novel
hybrid multi-objective utility function, which captures the
impact of numerical dimension attributes in terms of gener-
ating visualizations that are: 1) interesting, 2) usable, and 3)
accurate. Clearly, combining those often conflicting objectives
dramatically expands the search space of possible visualiza-
tions. Moreover, it significantly increases the processing time
incurred to asses the overall utility of each visualization, which
is assembled from the utility values of each of the three
objectives listed above.

Accordingly, in MuVE, we propose a suite of novel search
algorithms, which are particularly optimized to leverage the
specific features of the view recommendation problem. The
main idea underlying MuVE is to use an optimized incremental
evaluation of the multi-objective utility function, in which the
different objectives are computed progressively as needed. This
techniques allows for pruning a large number of unnecessary
views (i.e., low utility views), and in turn reduce the overall
processing time incurred for recommending the top-k views.
The main contributions of this work are as follows:

e We formulate and analyze the problem of recom-
mending visualizations in the presence of numerical
attribute dimensions (Section III).

e We introduce a novel hybrid multi-objective utility
function, which captures the impact of binning numer-
ical dimensions on the overall utility of recommended
visualizations (Section III).

e  We propose the MuVE scheme, which introduces a
novel search algorithm that is particularly optimized
to leverage the specific features of the view recom-
mendation problem (Section IV).

e We extend the MuVE scheme with further approx-
imations, which allow for significant improvement
in performance while maximizing the fidelity of the
recommendations (Section IV).

e  We conduct extensive experimental evaluation on real
datasets, which illustrate the benefits achieved by
MuVE (Sections V and VI).
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II. BACKGROUND AND RELATED WORK
A. View Recommendation

As in our example above, the process of visual data
exploration is typically initiated by an analyst specifying a
query () on a database Dp. The result of (), denoted as D,
represents a subset of the database Dp to be visually analyzed.
For instance, consider the following query Q:

Q: SELECT x FROM Dp WHERE T;

In @, T specifies a combination of predicates, which selects
a portion of Dp for visual analysis (e.g., team = GSW).

A visual representation of () is basically the process of
generating an aggregate view V' of its result (i.e., Dg), which
is then plotted using some of the popular visualization methods
(e.g., bar charts, scatter plots, etc.). Similar to traditional OLAP
systems and recent data visualization platforms [22], [21], [19],
[14], [13], our model is based on a multi-dimensional database
Dp, consisting of a set of dimension attributes A and a set
of measure attributes M. Additionally, [F is the set of possible
aggregate functions over the measure attributes M, such as
SUM, COUNT, AVG, STD, VAR, MIN and MAX. Hence, an
aggregate view V; over Dg is represented by a tuple (A4, M, F)
where A € A, M € M, and F' € F. That is, D¢ is grouped
by dimension attribute A and aggregated by function F' on
measure attribute M. As in [22], we considers aggregate views
that perform a single-attribute group-by and aggregation on
Dg. Accordingly, a possible view V; of the example query @
above would be expressed as:

V;: SELECT A, F (M)
GROUP BY A;

FROM Dpg WHERE T

where the GROUP BY clause specifies the dimension A for
aggregation, and F'(M) specifies both the aggregated measure
M and the aggregate function F'.

Typically, a data analyst is keen to find visualizations that
reveal some interesting insights about the analyzed data Dg.
However, manually finding those interesting and useful views
of data is a time-consuming, cumbersome task. The complexity
of this task stems from: 1) the large number of possible
visualizations, and 2) the interestingness of a visualization is
rather subjective. In particular, an analyst typically explores
a database with some vague idea of what she is looking
for, where insights become only clear in hindsight. Towards
automated visual data exploration, recent approaches have been
proposed for recommending interesting visualizations based on
some objective, well-defined quantitative metrics (e.g., [22],
[21], [14], [13]). Among those metrics, recent case studies
have shown that a deviation-based metric is able to provide
analysts with interesting visualizations that highlight some of
the particular trends of the analyzed datasets [22].

In particular, the deviation-based metric measures the dis-
tance between V;(Dg) and V;(Dp). That is, it measures the
deviation between the aggregate view V; generated from the
subset data Dg vs. that generated from the entire database
Dp, where V;(Dg) is denoted as target view, whereas V;(Dp)
is denoted as comparison view. The premise underlying the
deviation-based metric is that a view V; that results in a higher
deviation is expected to reveal some interesting insights that

are very particular to the subset Dqg and distinguish it from
the general patterns in Dp.

To ensure that all views have the same scale, each target
view V;(Dq) is normalized into a probability distribution
P[V;(Dq)] and each comparison view into P[V;(Dpg)]. For
example consider an aggregate view V = (A, M, F). The
result of that view can be represented as the set of tuples:
< (a1,q1), (a2, 92), ..., (at,g¢:) >, where t is the number of
distinct values (i.e., groups) in attribute A, a; is the i-th group
in attribute A, and g; is the aggregated value F'(M) for the
group a,;. Hence, V' is normalized by the sum of aggregate

t

values G = ) g,, resulting in the normalized probability
p=1
distribution P[V] =< %, %& ... %>,

For instance, in Example 1, Figure 1 shows a probability
distribution target view over the GSW team players (i.e.,
P[V;(Dq)]), whereas Figure 2 shows the corresponding prob-
ability distribution comparison view over all the players in the
2015 NBA database (i.e., P[V;(Dg))).

Accordingly, the deviation D(V;), provided by a view
Vi, is defined as the distance between those two probability
distributions. Formally, for a given distance function dist (e.g.,
Euclidean distance, Earth Mover’s distance, K-L divergence,
etc.), D(V;) is defined as:

D(Vi) = dist(P[Vi(Dq)l, P[Vi(DB)]) M

Consequently, the deviation D(V;) of each possible view V;
is computed, and the k views with the highest deviation are
recommended (i.e., fop-k) [22]. Hence, the number of possible
views to be constructed is N = 2 x |A| x |M| x |F|, which
is clearly inefficient for a large multi-dimensional dataset.
Thus, several techniques have been proposed for optimizing
the processing time incurred in recommending visualizations,
such as shared computation among views, early pruning of
low-deviation views, and sampling (e.g., [23], [22], [15]). Such
optimization techniques are general enough to be incorporated
in the backend database engine of any data visualization
platform, and are orthogonal to the optimizations proposed
in this work to address the impact of numerical dimensions,
which is described next.

B. Numerical Dimensions

In this paper, we mainly focus on the problem of rec-
ommending visualizations in the presence of numerical di-
mension attributes. While numerical dimension attributes (e.g.,
age, height, etc.) are abundant in scientific and commercial
databases, current visualization recommendation techniques
tend to mostly overlook such numerical dimensions, and rather
focus on the categorical ones. In the presence of numerical
dimensions, binned aggregation is typically required so that
to group the numerical values along a dimension into adjacent
intervals over the range of values covered by that dimension
[6], [11]. Accordingly, binning of numerical dimensions poses
several non-trivial challenges in terms of recommending vi-
sualizations that are not only interesting, but also accurate
and usable. Particularly, in addition to being interesting (i.e.,
highly deviated from the general data Dp), recommended
visualizations are expected to be accurate (i.e., minimize the
amount of error between the aggregated view V; and its
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corresponding dataset Dg) and usable (i.e., minimize the
amount of clutter in view V;). For instance, while the target
and comparison views shown in Figures 1 and 2 are highly
accurate (no binning applied), they are also barely usable
because of high clutter or high sparsity, which translates into
missing out on revealing interesting insights.

As mentioned earlier, the benefits, as well as the challenges,
of binning numerical dimensions are well-recognized in the
literature, especially in the context of histogram construction
(e.g., [6], [11], [12]), anomaly detection (e.g., [20]), and data
visualization (e.g., [13], [16]). For instance, binning (also know
as bucketing) is an essential step in constructing histograms
over numerical attributes for the purpose of selectivity estima-
tion and query optimization. Such histograms provide a concise
summary of the underlying data distribution of an attribute
(i.e., frequency of attribute values). While a histogram that is
based on a small number of bins provides a high degree of
compression, its accuracy can be quite poor. To the contrary,
adding more bins to a histogram, or equivalently decreasing
its bin width, has been shown to increase the accuracy of
a histogram at the expense of increasing the costs incurred
in processing, maintaining, and storing those additional bins.
Similarly, in bar chart visualizations, which is the focus of
this paper, too few bins result in loss of information and
compromise the accuracy of visualization, while too many bins
result in a cluttered low quality visualization.

Deciding the optimal bin width (or number of bins) for his-
tograms has been intensively studied in the statistics literature,
where several model-based approaches have been proposed
[6]. In contrast, the database literature mostly takes a model-
free approach, considering the dataset currently stored in the
database as the only data of interest. (We refer the reader to
[6], [11], for comprehensive surveys on that topic.) In this
work, we adopt the same approach and expand on existing
model-free database methods.

III. MULTI-OBJECTIVE VIEW RECOMMENDATION

In a nutshell, the goal of this work is to recommend the fop-
k bar chart visualizations of the results of query @) according
to some utility function. When all dimension attributes are
categorical, such goal simply boils down to recommending
the fop-k interesting views based on the deviation metric [22],
[21], as described in Section II-A. However, that simple notion
of utility falls short in capturing the impact of numerical di-
mensions. In particular, the presence of numerical dimensions
further introduces additional factors that impact the utility
gained from a recommended view, as described next.

A. Binned Views

To enable the incorporation and recommendation of visu-
alizations that are based on continuous numerical dimensions,
in this work we introduce the notion of a binned view. A
binned view V; ; simply extends the basic definition of a view
to specify the applied binning aggregation. Specifically, given
a view V; represented by a tuple (A, M, F), where A € A,
M eM, F €T, and A is a continuous numerical dimension
with values in the range L = [Lyin — Limaz], then a binned
view V3 is defined as:

Definition 1: Binned View: Given a view V; and a bin
width of w, a binned view V;; is a representation of view
V;, in which the numerical dimension A is partitioned into a
number of b equi-width non-overlapping bins, each of width
w, where 0 < w < L, and accordingly, 1 < b < 5

For example, Figure 3 shows a binned view, in which the
number of bins b = 3 and the bin width w = 994.

We note that our definition of a binned view resembles that
of an equi-width histogram in the sense that a bin size w is
uniform across all bins. While other non-uniform histograms
representations (e.g., equi-depth and V-optimal) often provide
higher accuracy when applied for selectivity estimation, and
query optimization they are clearly not suitable for standard
bar chart visualizations.

Given our binned view definition, a possible binned bar
chart representation of query () is expressed as:

Vip: SELECT A, F (M) FROM Dp WHERE T
GROUP BY A
NUMBER OF BINS b

The deviation provided by a binned view V; ; is computed
similar to that in Eq. 1. In particular, the comparison view is
binned using a certain number of bins b and normalized into a
probability distribution P[V; ;,(Dpg)]. Similarly, the target view
is binned using the same b and normalized into P[V; ;(Dg)].
Then the deviation D(V; ;) is calculated as:

D(Vip) = dist(P[Vip(Dg)l, P[Vip(Dp))) @

Clearly, for a binned view such as view V;,; defined above,
its usability in terms of visual quality and clutter reduction
[31, [7], is simply quantified in terms of the relative bin width,
which is defined as follows:

S(Vip) = 770 3)
where S(V; ) is in the range [0 — 1], such that S(V;;) =1
indicates highest quality.

Furthermore, a binned view V; ;, is obviously a summarized
approximation of the corresponding non-binned view V;. Thus,
it is essential to measure the (in)accuracy provided by V; ;.
To achieve this, consider a non-binned view V;, which is
defined as (A, M, F'). Further, and without loss of generality,
assume A is an ordered integer attribute. As described in the
previous section, the result of that view can be represented as
the set of tuples: <(a1,91), (a2,92),...,(aj, i), .-, (ar, g¢) >,
where ¢ is the number of distinct values (i.e., groups) in
attribute A. A binned view V;;, provides a concise approx-
imate representation of V; based on partitioning the ordered
attribute A into b bins. Particularly, each bin I, consists
of a start and end point, I, = (s;,e;), and a value gy,
which represents the aggregated value of the measure M
over all the values of dimension A in the range of I,. That
ZS’ ‘/i,b =< (Ilagl)v (127g2)7 ey (IT7.§£C)7 ey (Ibagb) >, where

< t.

This data reduction implies approximation errors in the es-
timation of the original non-binned aggregate values, where the
error incurred by that approximation increases with decreasing
the number of bins b. A widely used metric for measuring that
kind of (in)accuracy is the Sum Squared Error (SSE), which

Authorized licensed use limited to: University of Pittsburgh Library System. Downiéadkd on November 11,2025 at 21:29:49 UTC from IEEE Xplore. Restrictions apply.



has also been employed in the context of frequency histograms
[12], [5]. Applying the same metric for general aggregate
views is straightforward. In particular, the aggregate measure
corresponding to any dimension value in the contiguous range
Sz,8z + 1,..., e, is approximated using a single representative
value g/, which is computed as Z—i, where n, = e, — s, + 1
(i.e., the number of distinct values in bin b, ). Accordingly, each
g; € I is estimated as g; = g;. Hence, the SSE provided by
Vi.p, denoted as E(V; ), is computed as follows:

t
E(Viy) =Y (9o — g))*
p=1
and the relative SSE is computed as:

~ (99 — 9)°

R(Vip) =) Tp
p=1 p
Accordingly, the accuracy of a view V;; is simply computed

as: RV
(tz,b) (4)

where A(V; ;) is in the range [0 — 1], such that A(V;;) =1
indicates maximum accuracy (i.e., Zero error).

AVip) =1-

Clearly, incorporating the different metrics listed above
further complicates the problem of finding the top-k recom-
mended visualizations. This is mainly due to the different
binning options, which in turn leads to an increase in the
number of candidate visualizations. Next, we formally define
the problem of multi-objective view recommendation in the
presence of binned views, as well as the costs incurred in
solving such problem.

B. Problem Definition

In our proposed scheme MuVE, we employ a novel hybrid
multi-objective utility function, which integrates such factors,
namely:

1) Interestingness: Is the ability of a view to reveal some
interesting insights about the data under analysis, which
is measured using the deviation-based metric D(V; ;)
(Eq. 2).

2) Usability: Is the quality of the visualization in terms of
providing the analyst with an understandable uncluttered
representation, which is quantified via the relative bin
width metric S(V; ;) (Eq. 3).

3) Accuracy: Is the ability of the view to accurately capture
the characteristics (i.e., distribution) of the analyzed data,
which is measured in terms of the accuracy metric A(V; ;)
(Eq. 4).

Notice that the different factors listed above are often at
odds with each other. For instance, a view that contains a large
number of bins can provide high accuracy, at the expense of
being cluttered and difficult to understand by an analyst. To the
contrary, using a small number of bins leads to a very smooth
and coarse representation of the analyzed data, which can hide
its particular and interesting characteristics. To capture those
conflicting factors, MuVE employs a weighted sum multi-
objective utility function, which is defined as follows:

U(Vip) =ap x D(Vip) +aa x A(Vip) +as x S(Vip) (5)

where D(V; ;) is the normalized deviation of binned view V; ;
from the overall data, A(V;;) is the accuracy of V;,, and
S(Vip) is the usability of V.

Parameters ap, a4 and «g specify the weights assigned
to each objective in our hybrid utility function, such that
ap + ay4 + ag = 1. Those weights can be user-defined so
that to reflect the user’s preference between the three aspects
of utility. Alternatively, these can be system-defined and are
set automatically to meet certain objectives that are defined by
the application. Setting any of those weights to zero implies
that the user is indifferent to the objective associated with that
weight. For instance, setting both vy = 0 and as = 0 is
equivalent to basic definition of utility, which is only based
on deviation. Meanwhile, setting ap = a4 = ag implies
the user prefers to give equal weight to all three objectives.
Also, notice that all objectives are normalized in the range
[0—1]. Accordingly, the overall multi-objective utility function
takes value in the same range (i.e., [0 — 1]), where the goal
is to maximize that overall utility. Such goal is formulated as
follows:

Definition 2: Multi-Objective View Recommendation:
Given a user-specified query @ on a database Dp, a multi-
objective utility function U, and a positive integer k, find the
k aggregate binned views over D¢, which have the highest
utility values.

In summary, we posit that a view is of high utility, if it
shows a unique pattern that is based on accurate data and can
be visually identified and appreciated by the user. For instance,
referring back to our motivating example in Section I, while
Figure 1 shows a non-binned view (i.e., accuracy of 1.0), the
deviation provided by that view is only 0.17, and its usability
is ~0. Meanwhile, Figure 3 shows a binned version of the
same view obtained at ay = 0.2, ap = 0.6, ag = 0.2, which
results in deviation=0.29, usability=0.33, and accuracy=0.30.
That increase in both deviation and usability, allowed that
particular view to come first on the MuVE recommendation
list (i.e., top-I), and enabled for an insightful visualization of
the analyzed data.

C. View Processing Cost

Recall that in the absence of numerical dimensions (i.e.,
only categorical dimensions are considered), the number of
candidate views N to be constructed is equal to N = 2 x
|A] x |M]| x |F|. In particular, |A| x |M| x |F| queries are posed
on the data subset Dg to create the set of target views, and
another |A| x M| x |F| queries are posed on the entire database
Dp to create the corresponding set of comparison views. In
addition, a total of |A| x M| x |F| distance computations are
needed to calculate the deviation between each pair of target
and comparison views.

In the presence of numerical dimensions, the search space
(i.e., number of candidate views) is further expanded due to
the different binning options. Moreover, the complexity of the
operations performed on those views is also increased due
to incorporating additional objectives. In particular, for each
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candidate non-binned view V; over a numerical dimension A;,
the number of target and comparison binned views is equal
to: 2 x |M| x |F| x B, where B; is the maximum number of
possible bins that can be applied on dimension A; (i.e., number
of binning choices). Hence, in the presence of |A| numerical
dimensions, the total number of binned views grows to Np,
which is simply calculated as:

A
NB:Z2><\M|><\IF|><Bj
j=1

Furthermore, for each pair of target and comparison binned
views, the three metrics/objectives listed above are to be eval-
uated. Evaluating those metrics incurs the following processing
Costs:

e  Query Execution Time: Is the time required to process
the raw data to generate the candidate target and
comparison binned views, where the cost for gen-
erating the target view is denoted as Cy(V;;), and
that for generating the comparison view is denoted

as Ce(Vip).

e  Deviation Computation Time: Is the time required to
measure the deviation between the target and compar-
ison binned views, and is denoted as: Cy(V; ;). Notice
that this time depends on the employed distance
function dist.

e Accuracy Evaluation Time: Is the time required to
measure the accuracy of the binned target view in
representing the underlying data distribution and is
denoted as Cy(Vip).

Putting it together, the total cost incurred in processing a
candidate view V; is expressed as:

B

C(Vi) =Y Ce(Vip) + Ce(Vip) + Ca(Vip) + Ca(Vip) (6)
b=1

Hence, the total cost incurred in processing all candidate
binned views is expressed as:

Np
C=Y CW) (7)
=1

In the next section, we describe our efficient MuVE scheme
for minimizing that cost C, while maintaining the quality of
recommendation.

IV. SEARCH STRATEGIES

In this section, we present search strategies for finding the
top-k binned views selected for recommendation. For clarity
of presentation, we break down a search strategy into two
integral components, namely: 1) Horizontal Search, and 2)
Vertical Search, as shown in Figure 4. At a high level, the
objective of horizontal search is to find the optimal binning
for a given non-binned view, whereas the objective of vertical
search is to find the top-k binned views with the highest
utility values. In Section IV-A, we present different strategies
for horizontal search, including our optimized MuVE scheme,
whereas in Section IV-B, we expand on those strategies to
enable and integrate vertical search. Finally, in Section IV-C,

set of binned views for V,

YoIeag [edIuoA

: Vit | oo [ Vip | oo | Ve

Horizontal Search

Vn

set of non-binned views

Fig. 4: Horizontal and Vertical Searches for recommending
top-k visualizations

we present approximation techniques that further increase the
cost savings provided by MuVE, while maintaining the fidelity
of recommendation comparable to the optimal.

A. Horizontal Search

As discussed in the previous section, for a non-binned non-
binned view V; over a numerical dimension A;, the number
of possible target and comparison binned views is equal to:
2 x [M| x |F| x B;. Evaluating the utility of each pair of those
target+comparison binned views requires a total processing
time C(V;), which includes the times needed for query execu-
tion, deviation computation, and accuracy evaluation. The large
number of possible binned views, together with the complexity
of evaluating the utility function, makes the problem of finding
the optimal binning for a certain view V; highly challenging.
In the following, we present our proposed MuVE scheme
for finding such optimal binning, together with two baseline
schemes, namely 1) Linear Search (optimal baseline), and 2)
Local Search (approximate baseline). We defer our discussion
of vertical search algorithms to Section IV-B.

1) Linear Search: Linear search is basically an exhaustive
brute force strategy, which serves as a baseline for our evalua-
tion. In this strategy, given a certain candidate non-binned view
V;, all its corresponding binned views are generated and the
overall utility of each of those views is evaluated. Particularly,
a non-binned view V; = (A, M, F') is expanded into a set of
binned views: V; = {V; 1,V; 2, ..., Vip, ..., Vi, }, where b is the
number of bins, and L is the range of the continuous numerical
dimension A. Consequently, the value of b that results in the
highest utility is selected as the binning option for view V;
resulting in the binned view V; ,p;.

2) Local Search: Local search is a metaheuristic method
that is widely used in solving optimization problems. In
general, a local search algorithm starts out with an initial
solution and then attempts to find a better solution in the
neighborhood of that initial one. In this work, we adopt
dynamic Hill Climbing (HC), with halving search as another
baseline method [4]. Specifically, for the set of binned views
Vi ={Vi1,Via,...,Vir}, HC initially starts at some random
number of bins b, where 1 < b < [, and a step s = L.
In each iteration of HC, it considers two alternative settings
for the number of bins: b — s, and b + s, then moves to the
one which provides maximum utility. When HC cannot find a
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move that increases the utility, then s is halved. This halving
continues until s < 1. Despite of being susceptible to hitting
local maxima, HC is expected to provide significant reductions
in processing costs compared to the linear search methods.

3) The MuVE Scheme: Similar to the linear search de-
scribed above, for a given non-binned view V; = (A, M, F),
our MuVE scheme considers the set of all its possible binned
views: V; = {V; 1, Vi 2, ..., Vi, ..., Vi . }. Unlike linear search,
however, MuVE reduces the computational costs incurred in
processing that set by means of: 1) pruning unnecessary views,
and 2) pruning unnecessary utility evaluations.

To easily understand MuVE, notice that our problem of
searching the space and ranking binned views according to
our multi-objective utility function Eq. 5 is similar to Top-
K preference query processing. Particularly, for a view V;p,
the three objectives D(V; ), A(Vip), S(Vip) can be perceived
as the preference query over 3-dimensions. However, efficient
algorithms for preference query processing (e.g., [17], [8]), are
not directly applicable to our problem because firstly for any
view V; ; the values of D(V; ;) and A(V; ;) are not physically
stored and they are computed on demand based on the binning
choice b, secondly the size of the view search space V; is
prohibitively large and potentially infinite. To address these
limitations, MuVE adapts and extends algorithms for Top-K
query processing towards efficiently and effectively solving
the multi-objective view recommendation problem.

Before describing MuVE in details, we first outline a
baseline solution based on simple extensions to the Threshold
Algorithm (TA) [8]. Conceptually, to adapt the well-know TA to
the view recommendation model, each possible binned view
Vip is considered as an object with three partial scores: 1)
deviation apD(V; p), 2) Accuracy aqa A(V; ), and 3) Usability
agS(V;p). Those partial scores are maintained in three sepa-
rate lists: 1) D-list, 2) A-list, and 3) S-list, which are sorted
in descending order of each score. Under the classical TA
algorithm, the three lists are traversed sequentially in a round-
robin fashion. While traversing, the binned view with the
maximum utility seen so far is maintained along with its utility.
An upper bound on the utility (i.e., threshold) is computed by
applying the utility function to the partial components of the
last seen view in the three different lists. TA terminates when
the maximum utility seen so far is above that threshold or
when the lists are traversed to completeness.

Clearly, such straightforward conceptual implementation
of TA is infeasible to our problem due to the limitations
mentioned before. However, recall that the usability objective
S is based on the number of bins in a view and is calculated
as S(V;5) = % = ;. Hence, out of the three lists mentioned
above, a sorted list S can easily be generated at a negligible
processing cost. In particular, given a view V; over a numerical
dimension A of range L, MuVE progressively populates the
S-list with the values agS(Vi1),asS(Viz2),...,asS(Vir),
which are the values of the usability objective sorted in
decreasing order.

One possible approach for populating the D-list and A-
list is to first generate the S-list and then compute the
corresponding D(V; ;) and A(V; ;) values for each view V.
Those values are then sorted in descending order and the TA
algorithm is directly applied on all three lists. Clearly, that

approach has the major drawback of incurring the cost for
computing the deviation and accuracy of all the possible binned
views. Instead, we leverage the particular Sorted-Random (SR)
model of the Top-K problem to minimize the number of those
expensive estimation probes.

The SR model is particularly useful in the context of web-
accessible external databases, in which one or more of the
lists involved in an objective function can only be accessed in
random and at a high-cost [17], [8], [10]. Hence, in that model,
the sorted list basically provides an initial set of candidates,
whereas random lists (i.e., R) are probed on demand to get
the remaining partial values of the objective function. In our
model, the S-list already provides that sorted sequential access,
whereas the D-list and A-list are clearly external lists that are
accessed at the expensive costs of computing the deviation
and accuracy. Under that setting, while the S-list is generated
incrementally, two values are maintained (as in [17], [8]):
1) Useen: the maximum utility seen among all binned views
generated so far, and 2) U,,4,: a threshold on the maximum
possible utility for the binned views yet to be generated. These
two values enable efficient navigation of the search space by
pruning a significant number of possible binned views as well
as utility evaluations, which is achieved by means of two
simple techniques:

Incremental Evaluation: The main idea is to calculate the dif-
ferent components of the utility function U (V; ;) incrementally
and terminate the calculation once it is clear that V; 3 is not the
optimal binned view. To achieve this, when a candidate binned
view V;; is considered, its S(V; ;) value is compared to the
maximum utility seen so far, (i.e. Useern ), then the calculation
of its D(V; ;) and A(V; ;) values are eliminated (i.e., pruned)
if ap+aa+asS(Vip) < Useen- The idea is that since each
of D(V;,) and A(V; ;) is bounded to 1.0, then a binned view
Vi » that satisfies this condition will never have a utility greater
than Uge.,, which makes evaluating its deviation and accuracy
unnecessary. Such view will incur no processing costs since
S(Vip) is readily available given b, whereas the calculations
of D(V;3) and A(V; ) are pruned.

If the above condition is not satisfied, instead of calcu-
lating both D(V;;) and A(V;,), further incremental evalu-
ation is performed. Particularly, MuVE decides an order of
evaluation of those two objectives. If D(V;;) is evaluated
first, then if apD(Vip) + aa + asS(Vip) < Useen, then
Vip is safely pruned without the need for evaluating its
accuracy. Alternatively, if A(V;;) is evaluated first, then if
ap + aaA(Vip) + asS(Vip) < Useen then the deviation
objective is not calculated and V;; is pruned. To decide the
evaluation oder of those two objectives, MuVE applies a
simple priority function, such that if:

A ap

>
Ce(Vip) + Ca(Vip) = Ce(Vip) + Ce(Vip) + Ca(Vip)

then A(V;;) is evaluated first, otherwise D(V;;) is the one
to be evaluated first. The idea is to give higher priority to
evaluating an objective if it incurs less processing cost and/or
contributes more to the utility function that is to be maximized.
Recall that C;(Vi3), Ce(Vip), Ca(Vip), Ca(Viyp) are the costs
of evaluating the target view, comparison view, deviation, and
accuracy, respectively. To estimate such costs for a binned view
Vip» MuVE simply maintains a moving average of each of
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those costs over the previous V; 1, V; 2, ..., V; 1 binned views.
Particularly, whenever a short circuit fails and an objective
is evaluated, the cost for evaluating the operations involved
in that objective is updated as: C,(V;p) = BCz(Vip—1) +

b—2
% > Cy(Vi i), where x is any of the four operations listed
j=1

above, and S = 0.825 to give more weight to the most recent
costs.

Early termination: when a binned view V;; is considered for
evaluation, the threshold U,,,, is updated to U4, = ap +
aas+ agS(Vip) . That is, assuming that V; ;, will receive the
maximum score of 1.0 under both the deviation and accuracy
objectives. In that case, if Useen, > Upas, then it is guaranteed
that the actual utility of V;; cannot exceed Useen,. Moreover,
since all the following binned views starting at V; 1 will
have lower S values, then they are also guaranteed to provide
utilities less than Us..,. Hence, those views are pruned and
an early termination is reached.

B. Vertical Search

Recall that the goal of this work is to recommend the
top-k visualizations that maximize our multi-objective utility
function. In the previous section, we discussed horizontal
search strategies, which find the optimal binned V;,,; for a
given non-binned view V;. As discussed earlier, the space of
possible non-binned views, is of size N = 2 x |A| x |M] x |F|.
In the case where A is a set of numerical dimensions, then the
total number of corresponding possible binned views is Np,

|A|
where Ng = > 2 x |M]| x |F| x B;. Hence, the goal is simply
j=1

to find the top-k binned views across those Np views. We
note, however, that recommending two different binned views
that correspond to the same non-binned views adds little value
to the analyst and is rather redundant. Hence, if V,. 3, and V,, 5,
are two views in the top-k list, then = # y. Consequently, we
propose the following vertical search strategies.

In our first strategy for vertical search, we extend linear
search (as described in the previous section) for the purpose
of finding the top-k recommendations. Particularly, in this
simple strategy, the set of all possible non-binned views V
is traversed sequentially in an exhaustive manner. Then, each
view V; € V is expanded and searched horizontally to find its
optimal binned view V; ,p,:. As linear search finishes scanning
V, the optimal binned view corresponding to each view V; is
identified, and out of those, the k£ with the highest utility are
the ones to be recommended.

Note, however, that under this vertical linear search, the
vertical and horizontal searches are clearly decoupled. Hence,
while the vertical search is performed linearly, the choice of
the horizontal search strategy is open. Given the algorithms
discussed so far, this allows for the combinations denoted
as follows: linear-linear: in which linear search is used for
both the vertical and horizontal searches, and MuVE-Linear:
in which linear search is used for vertical search, whereas the
optimized MuVE, as described in the previous section, is used
for horizontal search. Obviously, the latter combination allows
leveraging the optimizations offered by MuVE to reduce the
cost of each horizontal search. Towards further optimizations,

in the following we discuss extending MuVE to perform both
the vertical and horizontal searches (i.e., MuVE-MuVE).

Extending MuVE to perform both horizontal and ver-
tical searches is straightforward. To explain that exten-
sion, recall that for performing horizontal search on a non-
binned view V; over a numerical dimension of range L,
MuVE progressively populates the S-list with the values
asS(Vii),asS(Via),...,asS(V; 1), which are the values of
the usability objective sorted in decreasing order. Hence, to
allow vertical search, MuVE traverses the set of non-binned
views V in a round-robin fashion, where in a round r each
view V; € V is appended to the S-list as V; ., given that r
is less than the maximum number of bins that is possible for
that view. Adding a view V; ;. to the S-list triggers evaluating
the multi-objective utility function U(V; ). That evaluation is
performed similar to the one described above for the horizontal
search, except that the pruning conditions employed for the
incremental evaluation are set for top-k instead of top-1.
Evaluating new views continues until all possible binned views
are generated or until early termination is reached, then the
top-k views with the highest utility are returned to the user.

In comparison to MuVE-Linear described above, using
MuVE for both vertical and horizontal search clearly offers
further reductions in cost by means of increasing the number
of pruned operations. To explain this, consider an uninteresting
view V; (i.e., a view with low deviation). If that view is
considered in isolation, as in MuVE-Linear, then significant
processing time will be spent on finding V; ;.. However,
U(Viopt) is expected to still be very small compared to
the other views, which are more interesting. Under MuVE,
however, those interesting views will lead to increasing the
value of Ugeep, Which in turn allows for pruning many of the
objective evaluations that were to be performed on V.

C. MuVE Approximations

All the search algorithms presented so far, except for Hill
Climbing, are accurate in the sense that they provide the
same top-k views as the baseline exhaustive linear search.
Meanwhile, Hill Climbing, being a local search algorithm, is
prone to hit some local maxima when used for horizontal
search, hence recommending views with lower utility. The
degree of inaccuracy exhibited by local search methods is
typically unpredictable and highly depends on the behavior of
the utility function to be optimized. To the contrary, MuVE
employs optimization techniques that allow for significant
performance gains, while at the same time providing the same
recommendations as the exhaustive baseline. In the following,
we introduce several approximations to the MuVE scheme
to further improve its performance, while incurring negligible
loss in the quality of recommendation.

1) View Refinement: In this approximation, instead of hor-
izontally expanding and searching each and every non-binned
view V; to find its optimal binned view V; ,,;, only a small
number of views are selected for that expensive horizontal
search. The main idea is to perform a simple vertical search to
quickly select that small set of views, which are then refined
using horizontal search to find the top-k recommended views.
To achieve this, the set of non-binned views V is searched
vertically using a predefined number of bins, which is the same
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for all views. Specifically, the utility of each non-binned view
Vi € V is computed as U (V; 4es), where def is the same value
for all views. Then the top-k views according to that binning
def are selected, which is easily performed using linear search
or MuVE. Consequently, utility of each one of those k selected
views (i.e., U(V; 4er)) is further refined using horizontal search
to find its optimal binning (i.e., V; op¢). Hence, only k views
are selected for horizontal search, which can be applied using
linear search, MuVE, or HC, as explained earlier. We note
that the default binning value def is a system parameter.
Our experimental evaluation shows that choosing a moderate
number of bins results in significant reductions in cost, while
at the same time providing high fidelity recommendations.

2) View Skipping: The main idea underlying that approx-
imation is to skip the horizontal search for some non-binned
views, thus saving the costs incurred in finding their V; ,,;. To
better understand this idea, recall that each non-binned view
V; is basically represented by a tuple (A, M, F') where A € A,
M €M, and F € F. Hence, for each numerical dimension A,
there exists a set of views V 4, which share the same dimension
A, while being defined using different measures and aggregate
functions, such that [V4| = |M]| x |F|. Accordingly, in this
approximation we assign the same binning to all the views in
the set V 4. To find that binning (i.e., number of bins), a view
V; is selected arbitrary from the set V 4. For that non-binned
view, horizontal search is performed normally using any of
the strategies outlined above (i.e., linear, HC, or MuVE), so
that to find its corresponding V; ,,:. Then that optimal number
of bins opt is assigned to all views in V 4, and their utilities
are evaluated accordingly. The premise is that the range of a
numerical dimension A is an important factor in deciding its
optimal binning. Hence, since all views in V 4 share the same
dimension A, then the optimal binning of those views will
have a very small variance from some mean value, which is
selected as described above and used to represent the set of
views V 4. Accordingly, the number of times horizontal search
is invoked is equal to the number of numerical dimensions (i.e.,
|A]). Those horizontal searches are easily integrated with one
of the vertical searches described above (i.e., linear or MuVE).

3) Range Partitioning: The idea for this approximation is
to reduce the complexity of the horizontal search based on
simple range partitioning techniques. Recall that a non-binned
view V; = (A, M, F') is expanded into a set of binned views:
Vi ={Vi1,Via,...,Vip,..., Vi L}, where b is the number of
bins, and L is the range of the continuous numerical dimension
A. By default, MuVE as well as linear search, assume the value
of b to be continuous in the range [1 — L] with incremental ad-
ditive step of 1.0, leading to corresponding binning of widths:
%, 5,...,1. Hence, a numerical dimension A with a large
continuous range results in a large number of binning options,
and in turn a high cost for performing horizontal search.
Accordingly, we employ two simple alternative methods for
range partitioning, namely: 1) additive, and 2) geometric.
The default partitioning described above is an instant of the
additive method, in which the incremental step s is set to 1.
In the general case, the incremental step s is a parameter,
hence, a non-binned view V; is expanded into a set of binned
views: V; = {V; 1, Vi14s, Vi142s, ..., Vi, }. Alternatively, in
the geometric method (e.g., [18]), V; is expanded into a set
of binned views: V; = {V; 50, V; 21,V 22, ..., V; . }. Naturally,
both methods are expected to reduce the processing time

incurred in horizontal search, at the expense of some reduction
in the fidelity of recommendation, which will be evaluated
experimentally in the next sections.

V. EXPERIMENTAL TESTBED

We perform extensive experimental evaluation to measure
both the efficiency and effectiveness of the different top-k
view recommendation strategies presented in this paper. Here,
we present the different parameters and settings used in our
experimental evaluation.

Setup: We built a platform for recommending visualizations,
which extends the SeeDB codebase [22] to support numeri-
cal dimensional values, binned aggregation, and the different
search strategies presented in this paper. Our experiments are
performed on a Corei7 machine with 16GB of RAM memory.
The platform is implemented in Java, and PostgreSQL is used
as the backend database management system.

Schemes: We investigate the performance of the different
combinations of the vertical and horizontal search strategies
presented in this paper. Our naming convention for those com-
binations is represented as: SearchH-SearchV, where SearchH
denotes the search strategy employed for horizontal search,
whereas SearchV is the one for vertical search. This leads to the
following combinations: Linear-Linear, HC-Linear, MuVE-
Linear, and MuVE-MuVE. For instance, in MuVE-Linear,
MuVE is used for horizontal search, whereas linear search
is applied for vertical search. In the presence of approx-
imation, as discussed in Section IV, we extend our nota-
tion to: SearchH(AppH)-SearchV(AppV). Hence, the possible
horizontal approximations are: SearchH(A), and SearchH(G),
which denote the additive and geometric range partitioning,
respectively. For vertical approximations, SearchV(R) denotes
the view refinement approximation, and SearchV(S) is for the
view skipping approximation.

Data Analsyis: We assume a data exploration setting in which
multi-dimensional datasets are analyzed. We use two datasets:
DIAB: dataset of diabetic patients [1] and NBA: dataset of
basketball players [2]. The DIAB dataset has 9 attributes
and 768 tuples. The independent numeric attributes of the
dataset are used as dimensions (e.g., age, BMI, etc.), whereas
the observation attributes are used as measures (insulin level,
glucose concentration, etc.). In our default setting, we select
3 dimensions, 3 measures, and 3 aggregate functions, which
results in a maximum of 2961 possible views. The NBA
dataset has 28 attributes and 651 tuples. Similar to DIAB,
dimensions are selected from independent numeric attributes
(e.g., age, number of minutes played, etc.), while measures
are selected from observations (e.g., player efficiency rating,
3-point attempt rate, etc.). Also, as in the DIAB dataset, we
experiment with 3 dimensions, and 3 aggregate functions,
while the number of measures vary between 3 and 13, with
3 being the default, which results in a maximum of 27,756
possible views. In the analysis, all the o values are in the
range [0— 1], where ap + a4 +ag = 1. In the default setting,
ap = 0.2, ay = 0.2, ag = 0.6, £k = 5, and euclidean distance
is used for measuring deviation, unless specified otherwise.

Performance: We evaluate the efficiency and effectiveness
of the different recommendations strategies in terms of the
following two metrics: (1) Cost: As mentioned in Section III,
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the cost of a strategy is the total cost incurred in processing
all the candidate binned views. We use wall clock time to
measure the different components included in that cost namely,
query execution time of target and comparison views, deviation
computation time, and accuracy evaluation time. Each setting
is executed 10 times and then average is taken as the cost
incurred; and (2) Fidelity: It is a measure of the degree of
accuracy achieved by a certain scheme. Particularly, if V,,,
is the set of top-k views recommended by a baseline optimal
scheme, whereas V... is the set of views recommended by an
approximated scheme, then fidelity is measured to capture the
difference between the sum of the utilities offered by V,,; and

U(Vopt)=U(Vree
Vyee. Formally: F' =1 — %pt())

VI. EXPERIMENTAL EVALUATION

In the following experiments, we evaluate the performance
of both our optimization techniques (Section VI-A), as well as
our approximation techniques (Section VI-B), under different
parameter settings.

A. Optimization Techniques

Impact of the o parameters (Figures 5 and 6): In this set
of experiments, we measure the impact of the o values on
processing time (i.e., cost). Figures 5 and 6 show how the cost
of the Linear-Linear, Linear-MuVE and MuVE-MuVE schemes
is affected by changing the values of ap, a4 and avg. Notice
that no approximations are employed in those schemes, hence,
the fidelity of all schemes is 100%.

In Figure 5, a4 is set to constant 0.2 while g and «pp are
changing. In particular, as shown in the figure, ag is increased,
while ap is implicitly decreased and is easily computed as
ap = 1—ag+a, . Figures 5a and 5b show that Linear-Linear
has almost same cost for all values of ag for both datasets,
which is expected since it performs exhaustive search over all
combinations of dimensions, measures, aggregate functions,
and number of bins. Therefore, its cost depends on the number
of all possible combinations, irrespective of the values of «.

Figures 5a and 5b also show that MuVE-Linear and MuVE-
MuVE have almost same cost as Linear-Linear for smaller
values of ag, but outperform it as the value of aig increases.
For instance, in Figure 5a at ag > 0.5, both schemes show
more than 70% reduction in cost as compared to the Linear-
Linear. This happens because in the MuVE schemes, when ag
is high, there are more chances of applying the short circuiting
and early termination conditions based on the usability value,
and in turn pruning many of the operations required for
evaluating deviation and accuracy. The amount of achieved
pruning is further increased under MuVE-MuVE, which is
able to prune those operations during both the vertical and
horizontal searches. For instance, Figure 5b shows that MuVE-
MuVE reduces the processing cost by almost 70%, compared
to MuVE-Linear, at ag = 0.6. MuVE-MuVE shows more
reduction in cost for the NBA dataset as compared to the DIAB
dataset because the NBA dataset has dimension attributes with
larger ranges, which results in large number of pruned views.

In Figure 6, g = 0.2, whereas ap is increasing and
accordingly a4 is decreasing. Figures 6a and 6b show the
effect of changing o values on cost. Particularly, Figure 6a
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Fig. 5: Impact of ap and ag on cost, while oy = 0.2

shows that MuVE-MuVE offers the lowest cost, especially in
the region where ap is low and correspondingly, a4 is high.
This is because interesting views with high accuracy will lead
to a higher Usep, which in turn allows for pruning the less
interesting views during the vertical search. This can be further
understood using Figure 6c¢, in which we plot the number of
views that are probed in full (i.e., both deviation and accuracy
are evaluated). Figure 6¢ also shows that MuVE-MuVE fully
probes a very low number of views at the high values of
ap. Interestingly, however, that large reduction in the number
of probed views does not translate into cost saving as it has
been the case at high a4 (Figure 6a). This is because at high
ap, MuVE-MuVE mainly prunes the operations for computing
accuracy, whereas at high o 4 it mainly prunes the operations
for computing deviation, which incurs higher processing cost
than that needed for computing accuracy.

Impact of k (Figure 7). In the previous experiments, the
value of k is set to 5 (i.e., top-5 views are recommended).
Figure 7 shows that Linear-Linear and MuVE-Linear are both
insensitive to the increase in the value of k. This is because
Linear-Linear is exhaustive search, whereas MuVE-Linear
also performs an exhaustive vertical search. In MuVE-MuVE
scheme, as soon as it has seen the top-k highest utility views,
early termination will be enabled leading to pruning many
unnecessary low utility views, and saving their processing
time. For instance, in case of top-1 MuVE-MuVE reduces cost
by up to 90% compared to the Linear-Linear scheme.

Scalability (Figure 8): From Section III-C, the theoretical
complexity of our recommendation problem is linear in terms
of the number of dimensions A, expressed as cA, where c is
the product of number of measures, aggregate functions and
bin settings. While such complexity applies to both Linear and
MuVE, in practice, however, ¢ is much smaller for MuVE due
to pruning. For example, Figure 8 shows our results on the
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NBA data, it can be inferred from this graph that ¢ for Linear
goes up to ~12, whereas it is only ~0.05 for MuVE.

B. Approximation Techniques

Impact of Additive Range Partitioning (Figures 9 and 10):
In Figures 9 and 10 we show the impact of having different
values of step. As expected, Figure 9 shows that the HC-
Linear search scheme provides the same cost regardless of the
employed step. This is simply because HC employes its own
stepping method, as explained earlier. Meanwhile, the cost of
Linear(A)-Linear decreases with the increase in step. This is
because when step > 1, the search space is reduced by a factor
of step, which results in that reduction of cost. The figure
also shows that MuVE(A)-Linear has low cost at step = 1
and after that its cost is almost the same as Linear(A)-Linear.
This is because, when step = 1 MuVE(A)-Linear gets the
opportunity of short circuits and early terminations, which are
activated because of the high utility provided by those views
with relatively small number of bins. With higher values of
step, this opportunity is missed and MuVE(A)-Linear behaves

Fig. 10: NBA: Impact of additive range partitioning on fidelity

almost the same as Linear(A)-Linear. Figure 10 shows the
impact of step on fidelity. For HC-Linear, similar to its cost,
its fidelity is insensitive to step and it always provides less than
50% fidelity. This is because HC-Linear is a local search based
scheme, which is expected to hit a local maxima, hence, failing
to achieve the global maxima, which results in low fidelity.
Meanwhile, Linear(A)-Linear, MuVE(A)-Linear and MuVE(A)-
MuVE show the same pattern with increasing the step value.

Impact of Geometric Partitioning (Figure 11 and 12): For this
set of experiments we set a4 = 0.2 and observe the effect of
changing ag on the fidelity and cost of when employing geo-
metric partitioning. Figure 11 shows that the cost of Linear(G)-
Linear remains constant because it exhaustively searches for
maximum utility view. Meanwhile, geometric partitioning re-
duces the cost of MuVE(G)-Linear and MuVE(G)-MuVE by
more than 50% compared to Linear(G)-Linear for high values
of ag. In Figure 12, we can see that the fidelity of HC-Linear
is decreasing with increase in ag while all other schemes
have around 100% fidelity. This is because the geometric
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partitioning always includes views with small/medium number
of bins (e.g., 2°,2',22,23), which are typically the ones that
provide high overall utility.

Approximation with View Refinement and Skipping (Figure 13):
Figure 13 shows the cost of Linear-Linear(R) and Linear-
Linear(S), which employ approximations during the vertical
search. As the figure shows, the cost of Linear-Linear(S) is
lower than Linear-Linear because it reduces the search space
by assuming that one bin size for a dimension would fit for
all measures and functions. Meanwhile, Linear-Linear(R),
with default binning def = 4, offers the lowest cost as it
vertically choses the top-k views in an initial pass and then
the horizontal search is done only for those top-k views. In
terms of fidelity, both Linear-Linear(S) and Linear-Linear(R)
achieve around 95% fidelity.

VII. CONCLUSIONS

Motivated by the need for supporting visualization recom-
mendation in the presence of numerical dimensions, in this
paper we proposed the MuVE scheme for view recommenda-
tion. MuVE recognizes the impact of numerical dimensions
and employ a multi-objective utility function, which captures
that impact in terms of deviation, accuracy, and usability.
Consequently, we propose efficient schemes for recommending
the top-k visualization that maximize that utility. Additionally,
we present approximation techniques that further increase the
cost savings provided by MuVE, while maintaining its fidelity.
Our experimental results show that employing the MuVE
scheme for both binning setting (i.e., horizontal search) and
top-k recommendation (i.e., vertical search) offers significant
reduction in terms of data processing costs.
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