
2016 IEEE International Conference on Big Data (Big Data)

978-1-4673-9005-7/16/$31.00 ©2016 IEEE 284

ARGO: Architecture-Aware Graph Partitioning

Angen Zheng, Alexandros Labrinidis, Panos K. Chrysanthis, Jack Lange
Department of Computer Science, University of Pittsburgh

{anz28, labrinid, panos, jacklange}@cs.pitt.edu

Abstract—The increasing popularity and ubiquity of various
large graph datasets has caused renewed interest for graph
partitioning. Existing graph partitioners either scale poorly
against large graphs or disregard the impact of the underlying
hardware topology. A few solutions have shown that the nonuni-
form network communication costs may affect the performance
greatly. However, none of them considers the impact of resource
contention on the memory subsystems (e.g., LLC and Memory
Controller) of modern multicore clusters. They all neglect the
fact that the bandwidth of modern high-speed networks (e.g.,
Infiniband) has become comparable to that of the memory
subsystems. In this paper, we provide an in-depth analysis,
both theoretically and experimentally, on the contention issue
for distributed workloads. We found that the slowdown caused
by the contention can be as high as 11x. We then design an
architecture-aware graph partitioner, ARGO, to allow the full
use of all cores of multicore machines without suffering from
either the contention or the communication heterogeneity issue.
Our experimental study showed (1) the effectiveness of ARGO,
achieving up to 12x speedups on three classic workloads: Breadth
First Search, Single Source Shortest Path, and PageRank; and
(2) the scalability of ARGO in terms of both graph size and the
number of partitions on two billion-edge real-world graphs.

Index Terms—Heterogeneity; Contention; Multicore; Graph
Partitioning; Distributed Graph Processing;

I. INTRODUCTION

Large graph datasets are becoming increasingly popular.

For example, graphs, like Web Graphs, Biological Networks,

and Social Networks, are often at the scale of hundreds

of billions or even a trillion (10ˆ12) edges, and they are

continuously growing. As a consequence, many distributed

graph computing frameworks (e.g., Pregel [23], GraphLab [20]

and PowerGraph [11]) have been developed.

In such systems, distributing vertices evenly across parti-

tions often corresponds to an even load distribution, while min-

imizing the edge-cut (the number of edges connecting different

partitions) helps minimize the amount of data communication

incurred by the computation. Balanced graph partitioning has

been proved to be NP-hard [3]. Most of the solutions are

heuristic-based [12], [34]. The most well-known approaches

are multi-level ones [17]. However, these solutions often scale
poorly against large graphs [36], [27].

To address the scalability issue, a (re)streaming graph
partitioning model [36], [39], [27], [7] was recently proposed

for large graph partitioning. In this model, the graph is treated

as a stream of vertices. Upon arrival of a vertex, the partitioner

places the vertex to one of the partitions based on the distri-

bution of the vertices that arrived previously. Nevertheless,
none of the above partitioners considers the nonuniform

network communication costs of modern parallel computing

infrastructures [6], [41], [42].

Three recent works [6], [41], [42] attempted to tackle this

heterogeneity issue by trying to avoid any edges being cut

among partitions having higher network communication costs

(minimizing hop-cut). However, these graph partitioners are all

built on the assumption that the network is the bottleneck,

since they all aim to minimize either the edge-cut or the

hop-cut. The assumption is typically true for geo-distributed

clusters and the cloud computing environment. However, for

clusters connected via high-speed networks like InfiniBand,

this assumption no longer holds: the data transfer on these

networks has been reported to be almost as fast as moving data

from memory to CPU [9]. Actually, several recent works [45],

[44], [13] have found that the contention for the shared

hardware resources on the memory subsystems (e.g., last

level cache, memory controller, and front-side bus) of mod-

ern multicore machines can greatly impact the performance

of distributed workloads. Specifically, work [13] investigates

the contention issue for MPI [1] workloads, whereas our

works [45] and [44] are architecture-aware (heterogeneity-
and contention-aware) graph repartitioners designed to avoid

the heterogeneity and contention issue for distributed graph

workloads.

Contributions This paper advances the state-of-the-art with

regards to contention for distributed (graph) workloads with

the following three contributions:

1. We provide a holistic view on: (a) why we have to care

about the contention for distributed workloads (Section II);

and (b) to what extent it may impact the performance of

distributed workloads (Section V).

2. We present an architecture-aware graph partitioner, ARGO,

which avoids both the heterogeneity and the contention

issue without doing so at the cost of resource underuti-

lization, for static graph partitioning (Section III).

3. We evaluate our approach extensively using three large

real-world graphs, showing up to 12x speedups on three

classic graph workloads (Section VI & VII).

II. THE CURSE OF CONTENTION

Multicore machines usually consist of multiple sockets

and each socket has multiple cores. Each core is a logical

processing unit, but they are not physically isolated. Cores of

the same socket have to contend with each other for the shared

hardware resources. For example, in the architecture depicted

in Figure 1a, cores sharing the L2 caches have to compete

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

285

(a) Uniform Memory Access (UMA) Node (b) Nonuniform Memory Access (NUMA) Node

Fig. 1: Example Architectures of Modern Compute Nodes

Fig. 2: Memory transactions of inter-node data communica-

tion via RDMA [14]

TABLE I: Intra-Node Shared Resource Contention

Cores/Resources Sharing Contention
Core Groups Socket LLC LLC FSB/QPI(HT) Memory Controller

G1 � � � � �
UMA G2 � � �
Fig. 1a G3 �
NUMA G1 � � � �
Fig. 1b G2 �

with each other for the shared L2, Front-Side Bus (FSB), and

the Memory Controller. Although cores on different sockets

do not share the L2, they may still contend for the shared

FSB and Memory Controller. In fact, even if they are residing

on different sockets, they may have to contend for the shared

Memory Controller. Table I provides a concise summary for

the resources that different cores may have to contend for, in

the Uniform Memory Access (UMA) architecture of Figure 1a

and the Non-Uniform Memory Access (NUMA) architecture

of Figure 1b. The summary is based on whether the cores are

on the same socket and whether they share the last level cache
(LLC).

The impact of contention is becoming more and more

noticeable because network nowadays may no longer be the

bottleneck due to the presence of remote direct memory
access (RDMA) technology [9]. RDMA-enabled networks

allow a compute node to read data from the memory of

another compute node without involving the processor, cache,

or operating system of either node, enabling true zero-copy

Fig. 3: Theoretic bandwidth for different InfiniBand and

memory technologies (Binnig et. al. [9].)

Fig. 4: Memory transactions of intra-node data communication

via shared memory

data communication [14] (Figure 2). At the same time, the

bandwidth of modern RDMA-enabled networks has been

reported to be in the same ballpark as memory bandwidth [9].

As shown in Figure 3, DDR3 memory bandwidth is currently

between 6.25GB/s (DDR3-800) and 16.6GB/s (DDR3-2133)

per memory channel, whereas InfiniBand bandwidth ranges

from 1.7GB/s (FDR 1x) to 37.5GB/s (EDR 12x) per NIC port.

Thus, the memory bandwidth of a machine with 4-channel

DDR3-1600 memory can be roughly provided by four dual-

port FDR 4x NICS.

The fact that intra-node data communication is often

achieved via shared memory further amplifies the contention,

because communication requires additional data copies [16],

[5], leading to cache pollution and thus saturating the memory

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

286

controller. Figure 4 shows the corresponding memory/cache

transactions for sending a message from one core to another.

The sending core first needs to load the message from the

application send buffer into its cache (Step 1 in Figure 4) and

then write the data to the shared buffer (Step 2b). However,

the write may require loading the shared buffer block into the

sender’s cache first (Step 2a). Then, the receiving core reads

the data from the shared memory (Step 3). Finally, the receiver

writes the data to the receiving buffer (Step 4b), which may

again require loading the receiving memory block into the

receiver’s cache first (Step 4a).

Thus, if the sending core shares the same last level cache

with the receiving core, there will be multiple copies of the

same message in LLC. This is because in addition to the

cached message for the send and receiving buffer, the message

in the shared memory has also to be cached in the LLC. Even

if the sender and receiver do not share LLC, the LLC of both

sender and receiver may still have to maintain multiple copies

of the message as long as they reside on the same machine (one

for the shared memory buffer and the other one for the send

or receive buffer). Clearly, intra-node data communication

may lead to serious cache pollution and therefore saturate the

memory controller.

What is even worse is that graph workloads are known to be

communication-intensive, and that cores on the same machine

are often communicating with each other at the same time for

parallel computation, further increasing the contention for the

shared resources. The fact that graph workloads often have

poor locality [22] (because of the irregular and unstructured

nature of real-world graphs) and high memory access to com-

putation ratio [22] (since graph algorithms are often based on

the exploration of the graph structure with little computation

work per vertex) further aggravates the contention issue. We

have experimentally confirmed and quantified the performance

impact of the contention on the distributed graph workloads

in Section V.

Take-Away Focusing solely on minimizing the edge-cut or the
hop-cut may not be sufficient for scalable performance. This
is because edge-cut based solutions have no guarantee on
how the edge-cut is distributed across partitions. They may
end up with lots of data communication among partitions that
are assigned to the same machine, leading to contention on
the memory subsystems. On the other hand, hop-cut based
solutions advocate to group neighbouring vertices as close
as possible, further aggravating the contention the memory
subsystems.

III. ARCHITECTURE-AWARE GRAPH PARTITIONING

In this section, we first introduce the partitioning

model adopted by our proposed Architecture-Aware Graph

PartitiOning technique, ARGO (Section III-A). Then, we show

how ARGO takes the communication heterogeneity into ac-

count while partitioning (Section III-B). Finally, we describe

how ARGO considers the contentiousness of the underlying

hardware architectures (Section III-C).

A. ARGO: Graph Partitioning Model

ARGO follows the same streaming model first proposed

by [36]. In such a model, vertices arrive at the partitioner

in a certain order along with their adjacency lists. Upon the

arrival of each vertex, the partitioner decides the placement of

the vertex to one of the partitions based on the placements of

vertices previously arrived. The placement of the vertex never

changes once it is assigned to a partition.

A variety of heuristics have been proposed by [36] for the

vertex placement, among which the linear deterministic greedy
(LDG) performs the best. LDG tries to assign a vertex, v, to

a partition, Pi, which maximizes:

(1− w(Pi)

C(Pi)
) ∗

∑

e=(u,v)∈E and u∈Pi

w(e) (1)

where w(Pi) is the aggregated weights of vertices that have

been assigned to Pi (indicating the computational requirement

of the vertices of the partition), C(Pi) denotes the maximal

amount of work Pi can have, and w(e) is the edge weight

(reflecting the amount of data communication between neigh-

boring vertices). Essentially, LDG places each vertex to a

partition with the maximum number of its neighbors while

penalizing the placement based on the load of the partition.

B. ARGO: Incorporating Heterogeneity-Awareness

ARGO takes the nonuniform network communication costs

into account by replacing the vertex placement heuristics to

maximize the following objective:

1

comm(v, Pi) + 1
∗ (1− w(Pi)

C(Pi)
) (2)

where comm(v, Pi) is defined as

comm(v, Pi) =
∑

e=(u,v)∈E and u∈Pj and i�=j

w(e) ∗ c(Pi, Pj)

(3)

comm(v, Pi) reflects the communication cost that v would

incur during the computation if it is assigned to Pi. Here,

w(e) denotes the edge weight, whereas c(Pi, Pj) is the relative

network communication cost between the computing elements

that Pi and Pj are assigned to. The computing element can

either be a core (one partition per core), a socket (one partition

per socket), or a server (one partition per node). By default,

we assume that the computing elements are cores since we

target for clusters of multicore machines. Guided by a cost

matrix, ARGO will put neighboring vertices to partitions as

close as possible. We denote this version of ARGO as ARGO-

H, since it only considers the communication heterogeneity

while ignoring the contentiousness of the underlying hardware

architecture.

C. ARGO: Incorporating Contention-Awareness

As analysed in Section II and will be demonstrated in

Section V, edge-cut (e.g., LDG) and hop-cut (e.g., ARGO-

H) based solutions may lead to serious resource contention

on the memory subsystems of modern multicore clusters. One

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

287

common way to avoid this contention issue is to disallow the

use of all the cores of the machine, which leads to resource

underutilization.

Fortunately, we found that the contention is caused by

the communication among cores of the same node and can

be avoided by offloading a certain amount of intra-node

communication across compute nodes. This is because inter-

node data communication is often implemented using RDMA

and rendezvous protocols [37], which allows a compute node

to read data from the memory of another compute node

without involving the processor, cache, or operating system of

either node (Figure 2), thus alleviating the traffic on memory

subsystems and cache pollution. In fact, with Intel Data Direct

I/O technology [15], it is even possible to transfer data from

one machine into the cache of another. Another reason why of-

floading intra-node data communication across compute nodes

(via contention-aware graph partitioning) works is that graph

workloads are often data-driven. The computations performed

by a graph algorithm are dictated by the vertex and edge

structure of the graph on which it is operating rather than

being directly expressed in code [22].

Thus, to make ARGO contention-aware, we penalize intra-

node network communication costs via a penalty score in the

same way as in our previous work [45], [44]. The score is

computed based on the degree of contentiousness between

the communication peers. By doing this, the amount of intra-

node data communication and the contention on the memory

subsystems will decrease accordingly. Recall that guided by a

cost matrix, ARGO-H can gather neighboring vertices close to

each other (Eq. 2), which causes contention on the memory

subsystems due to the excess intra-node data communication.

To solve this, we simply refine the intra-node communication

costs as follows:

c(Pi, Pj) = c(Pi, Pj) + λ ∗ (s1 + s2) (4)

where Pi and Pj are two partitions collocated in a single

compute node; λ is a value between 0 and 1, denoting the

degree of contention; and s1 denotes the maximal inter-node

network communication cost, while s2 equals 0 if Pi and Pj

reside on different sockets and equals the maximal inter-socket

network communication cost otherwise. s1 is used to avoid

excess intra-node data communication, whereas s2 is used

to prevent load imbalance on the memory controllers and to

further avoid the contention on the shared LLC.

Clearly, if λ = 0, ARGO degrades to ARGO-H, and

λ = 1 means that contention on the memory subsystems

is the biggest bottleneck and should be prioritized over the

communication heterogeneity. Note that ARGO with any λ ∈
(0, 1] considers both the contention and the communication

heterogeneity. Considering the impact of resource contention

and communication heterogeneity is highly application- and

hardware-dependent; users will need to do simple profiling of

the target applications on the actual computing environment

to determine the ideal λ for them. Typically, for multicore

clusters with high-speed network, a larger λ is recommended,

and vise verse.

TABLE II: Datasets used in our experiments

Dataset |V | |E| Description

com-orkut [2] 3,072,627 234,370,166 Social Network
Friendster [2] 124,836,180 3,612,134,270 Social Network
Twitter [19] 52,579,682 3,926,527,016 Social Network

TABLE III: Cluster Compute Node Configuration

Socket
(2 Intel Haswell Sockets)

Memory

Cores/Socket Clock speed L3 Cache Capacity Bandwidth
10 2.6GHz 25MB 128 GB 65 GB/s

IV. EVALUATION SETUP

In our experimental study, we first quantified the perfor-

mance impact of the contention issue using three representative

graph workloads: Breadth-First Search (BFS), Single-Source

Shortest Path (SSSP), and PageRank in Section V. Then, we

evaluated the effectiveness of ARGO in avoiding contention

using the same workloads in Section VI. Finally, we examined

the scalability of ARGO in terms of both graph size and the

number of partitions in Section VII.

A. Workload Implementation

All the workloads were implemented using MPI [1] based

on the idea presented in [4], [21]. The specific MPI im-

plementation we used in the experiment was OpenMPI

1.8.6 [28]. Note that the workloads were implemented using

MPI Isend/MPI Irecv functions.

B. Datasets

Table II describes the datasets used. com-orkut and Friend-

ster datasets were undirected, whereas the original Twitter

dataset was directed but was treated as a undirected graph

in the experiment. Note that these datasets were all scale-
free and small-world graphs. The vertex degree-distribution

of the scale-free graphs asymptotically follows a power law

distribution [8], [30], whereas small-world graphs are known

to have low diameters.

Throughout the paper, the graphs were partitioned with the

vertex weights (i.e., computational requirement) set to their

vertex degree and edge weights (i.e., amount of data commu-

nicated) set to 1. Vertex degree is a good approximation of the

computational requirement of each vertex for the execution of

BFS, SSSP, and PageRank, while an edge weight of 1 is a

close estimation of their communication patterns. By default,

the graphs were partitioned across cores of a given set of

machines with one partition per core. During the partitioning,

we allowed up to 2% load imbalance among partitions.

C. Algorithms

We compared ARGO to three graph partitioners: (a) METIS,

the most well-known multi-level graph partitioner [26], (b)

LDG, a state-of-the-art streaming graph partitioner [36], and

(c) ARGO-H (Section III).

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

288

TABLE IV: BFS, SSSP, and PageRank Execution Time in Seconds on com-orkut Dataset Under Different Configurations

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

METIS LDG ARGO-H METIS LDG ARGO-H METIS LDG ARGO-H

1:2:8 53.05 95.82 68.61 633 2,632 1,549 174 690 859
2:2:4 55.01 105.71 88.17 654 2,565 1,505 222 619 618
4:2:2 36.85 55.82 64.02 521 631 861 202 269 247
8:2:1 19.16 45.81 14.84 222 280 132 95.84 133 108

TABLE V: BFS, SSSP, and PageRank LLC Misses in Millions on com-orkut Dataset Under Different Configurations

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

METIS LDG ARGO-H METIS LDG ARGO-H METIS LDG ARGO-H

1:2:8 609 424 283 10,292 44,117 23,632 1,945 6,216 10,209
2:2:4 662 601 766 10,626 44,689 23,770 2,719 6,836 9,087
4:2:2 59 73 70 2,541 1,061 2,787 48 100 82
8:2:1 52 67 66 96 187 141 44 98 87

D. Evaluation Platform

All the experiments were performed on a 32-node university

cluster [33]. The cluster had a flat network topology with all

the compute nodes connected to a single switch via 56Gbps

FDR Infiniband. Table III depicts the node configuration of

the cluster.

E. Network Communication Cost Modeling

The relative network communication costs among partitions

(cores) were approximated using a variant of osu latency

benchmark [29]. To ensure the accuracy of the cost matrix,

we bound each MPI rank (process) to a core using options

provided by OpenMPI 1.8.6 [28].

V. PERFORMANCE IMPACT OF RESOURCE CONTENTION

In this section, we experimentally demonstrated and quan-

tified the performance impact of the contention on distributed

graph computing using METIS, LDG, and ARGO-H. This

is achieved by comparing runs of an MPI implementation

of PageRank, BFS, and SSSP with different process (rank)

affinity patterns.

For presentation clarity, we labelled an execution of a

workload under a specific partition (rank) to core mapping

as m:s:c, where m, s, and c, respectively, denote the number

of machines used, the number of sockets used per machine,

and the number of cores used per socket. For example, label

1:2:8 indicates that the experiment was performed on one

dual-socket machine with eight MPI ranks per socket (one

rank per core). To quantify the performance impact of the

contention, we ran each workload with a fixed number of MPI

ranks (16) under four different configurations: {1:2:8, 2:2:4,
4:2:2, 8:2:1}. Note that the degree of contention gradually

decreased from configuration 1:2:8 to configuration 8:2:1.

This is because the number of active cores per socket of

the configurations gradually decreased from 8 to 4, to 2, and

finally to 1. This also explains why we only used 16 cores per

node at most (8 cores per socket) in this experiment, although

each compute node of the cluster had 20 cores.

To mitigate the impact of other factors, executions of

BFS/SSSP under different configurations all started from the

same set of randomly selected source vertices (10 by default).

Also, given the long execution time of the jobs, we grouped

multiple (256) messages sent by the same MPI rank to the

same destination into a single one. In the experiment, the

dataset was partitioned into 16 partitions across corresponding

cores (one partition per core) using METIS, LDG, and ARGO-

H. Note that we observed similar results on the other datasets

of Tabel II.

A. Results in terms of execution time (Table IV)

Table IV shows the resulting execution time of the work-

loads under different configurations on the com-orkut dataset

(Table II). As expected, the higher the contention was, the

longer the execution time would be. When compared with

configuration 8:2:1, the slowdown caused by the contention

can be as high as 5.94, 11.69, and 7.94 times for the execution

of BFS, SSSP, and PageRank, respectively. We also noted that

even if we reduced the number of active cores per socket

by half (configuration 2:2:4), the application may still suffer

from serious contention. The reason why the execution of BFS

under configuration 2:2:4 sometimes took longer than that of

configuration 1:2:8 was probably because configuration 2:2:4
and configuration 1:2:8 has similar degree of contentiousness,

but configuration 2:2:4 required data communication across

machines (which was typically slower than intra-node data

communication).

Another interesting observation was that METIS performed

better than LDG and ARGO-H in most configurations except

configuration 8:2:1. This was probably because the partition-

ings computed by METIS had the lowest edge-cut and thus

lowest amount of contention on the memory subsystems. The

reason why ARGO-H was worse than METIS and sometimes

even worse than LDG in dense configurations (i.e., 1:2:8,
2:2:4, and 4:2:2) was because ARGO-H was a hop-cut based

solution. It aims to avoid inter-machine data communication

by gathering neighbouring vertices as close as possible, which

may lead to significant intra-node data communication and

thus increase the contention on the memory subsystems.

However, ARGO-H outperformed METIS and LDG on two

out of the three workloads under configuration 8:2:1. This

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

289

TABLE VI: BFS, SSSP, and PageRank Execution Time (Second) on com-orkut Dataset with Varying Message Grouping Size

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

64 128 256 64 128 256 64 128 256

METIS 196 27.27 8.59 3,730 787 125 1,435 121 32.74
LDG 136 33.32 9.52 3,003 523 71.84 1,110 161 48.93

ARGO-H 306 40.84 9.28 4,750 1,033 147 2,088 179 31.81
ARGO 73.11 19.12 5.20 1,528 196 49.84 406 71.74 16.68

TABLE VII: BFS, SSSP, and PageRank LLC Misses in Millions on com-orkut Dataset with Varying Message Grouping Size

Configuration
BFS (10 Source Vertices) SSSP (10 Source Vertices) PageRank (30 Iterations)

64 128 256 64 128 256 64 128 256

METIS 843 50 17 38,942 6,313 471 10,605 529 22
LDG 194 27 22 30,096 1456 59 4,605 69 43

ARGO-H 1,702 36 22 51,774 8,173 589 17,360 748 35
ARGO 35 26 21 8,702 163 49 142 49 37

was expected because under configuration 8:2:1 reducing

inter-machine data communication became more critical than

mitigating the contention. This also confirmed the fact that the

network may not always be the bottleneck. The reason why

ARGO-H did not outperform METIS on PageRank execution

was probably because PageRank was more communication-

intensive than BFS and SSSP, and thus the contention on the

memory subsystems was still the dominant factor even under

the sparsest configuration.

B. Results in terms of LLC misses (Table V)

To confirm that the slowdown was indeed caused by the

contention on the memory subsystems, we also reported the

LLC misses for each execution of the workloads in Table V.

The LLC misses were collected via the PAPI L3 TCM event

provided by the hardware performance counter programming

tool, PAPI [31], and the values reported were the average

LLC misses across partitions (MPI processes). By comparing

Tables V and IV, we observed that the timing results were

highly consistent with the LLC miss results. The denser the

configuration was, the larger the LLC misses and thus the

longer execution time of the workload would be. We also

observed that under configuration 8:2:1 ARGO-H had much

higher LLC cache misses than that of METIS for BFS and

SSSP, but it still outperformed METIS in terms of the execution

time. This further confirmed our assumption that under config-

uration 8:2:1 reducing inter-machine data communication was

more critical to the performance than mitigating contention

on memory subsystems (e.g., cache pollution caused by inter-

socket data communication), for BFS and SSSP.

C. Discussions

The above experimental results can be summarized as

follows:

Take-Away 1 The contention on the memory subsystem
can also have significant performance impact on distributed
workloads, especially for multicore machines connected via
high-speed networks.

Take-Away 2 Heterogeneity-aware graph (re)partitioners
are designed for cases where the network is the bottleneck,
especially for geo-distributed clusters or cloud computing
environments.

VI. EFFECTIVENESS IN AVOIDING CONTENTION

This experiment evaluated the effectiveness of ARGO in

avoiding contentiousness using BFS, SSSP, and PageRank on

the com-orkut dataset. In the experiment, the dataset was par-

titioned across three 20-core compute nodes with one partition

per core. As demonstrated in Section V, the contention on the

memory subsystems on the cluster was the primary bottleneck.

Hence, we set λ to 1 for all the experiments presented below.

A. Results in terms of Execution Time (Table VI)

Table VI shows the workload execution time on decompo-

sitions computed by METIS, LDG, ARGO-H, and ARGO with

three different message grouping sizes: 64, 128, and 256. As

expected, ARGO had the lowest workload execution time in all

cases. In comparison to METIS, LDG, and ARGO-H, ARGO,

respectively, speeded up the execution of BFS by up to 2.67,

1.85, and 4.18 times; the execution of SSSP by up to 4, 2.66,

and 5.26 times; and the execution of PageRank by up to 3.53,

2.93, and 5.14 times.

Interestingly, we found that ARGO-H performed the worst

in almost all cases. This was also expected because ARGO-

H aimed to grouping neighbouring vertices as close as pos-

sible, which may cause an increase in the intra-node data

communication and thus aggravate the contention on the

memory subsystems. However, as the message grouping size

increased, the gap between ARGO-H and METIS/LDG was

gradually closed up. This was because, the larger the message

grouping size was, the fewer the messages were exchanged

and thus the less contention on the memory subsystems.

As a result, the importance of reducing inter-machine data

communication gradually increased, calling for heterogeneity-

aware graph partitioners. This also explained the reason why

the improvement achieved by ARGO decreased sometimes as

the message grouping size increased.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

290

 0

 2,000

 4,000

 6,000

 8,000

 10,000

M
ETIS

LDG
ARGO−H
ARGO

M
ETIS

LDG
ARGO−H
ARGO

M
ETIS

LDG
ARGO−H
ARGO

C
om

m
 V

ol
um

e(
M

B
)

64 128 256

Inter−Node
Inter−Socket
Intra−Socket

(a) BFS Communication Volume

 0

 5,000

 10,000

 15,000

 20,000

M
ETIS

LDG
ARGO−H
ARGO

M
ETIS

LDG
ARGO−H
ARGO

M
ETIS

LDG
ARGO−H
ARGO

C
om

m
 V

ol
um

e(
M

B
)

64 128 256

Inter−Node
Inter−Socket
Intra−Socket

(b) SSSP Communication Volume

 0

 5,000

 10,000

 15,000

 20,000

M
ETIS

LDG
ARGO−H
ARGO

M
ETIS

LDG
ARGO−H
ARGO

M
ETIS

LDG
ARGO−H
ARGO

C
om

m
 V

ol
um

e(
M

B
)

64 128 256

Inter−Node
Inter−Socket
Intra−Socket

(c) PageRank Communication Volume

Fig. 5: Breakdown communication volume for the execution of BFS, SSSP, and PageRank on com-orkut partitionings, and

ARGO. Here, intra-socket, inter-socket, and inter-node, respectively, represent the communication volume among partitions that

were assigned to the same sockets, the communication volume among partitions that were residing on different sockets but on

the same machines, and the communication volume among partitions of different machines.

Take-Away ARGO performs better for workloads with a large
number of small message exchanges, whereas ARGO-H seems
to be more suitable for workloads with lots of large message
exchanges.

B. Results in terms of LLC Misses (Table VII)

To further show that the improvement was indeed caused by

the reduced contention on the memory subsystems. We also

recorded the LLC misses for the execution of the workloads

in Table VII. As shown, the LLC miss results were highly

consistent with the timing results: (1) ARGO had the lowest

LLC misses in almost all cases whereas ARGO-H had the

highest LLC misses in most cases; and (2) the larger the

message grouping size was, the fewer the misses were.

Interestingly, we found that with message grouping size of

256, METIS actually had lower LLC misses than that of ARGO

for the execution of BFS and PageRank. However, ARGO

still beat METIS in terms of execution time (Table VI). We

attributed this to two facts (1) that intra-node data communi-

cation required the involvement of the CPU (CPU spending

time in communicating the data), while inter-machine data

communication relieved the CPU from the communication

(allowing it to focus on computation: processing the messages

received); and (2) that the larger message grouping size

allowed a larger degree of the overlap between the computation

and communication, further amplifying the benefits of RDMA-

enabled networks.

Take-Away It is important to take both the contention on the
memory subsystems and the communication heterogeneity into
account while partitioning.

C. Results in terms of Communication Volume (Figure 5)

To further confirm that the reduction in the contention was

indeed caused by the reduced intra-node data communication,

we also present the breakdown communication volume for

each execution of the workloads in Figure 5. As shown, ARGO

had the lowest intra-node data communication in all cases,

while ARGO-H had the highest intra-node data communica-

tion. When compared with METIS and LDG, ARGO, respec-

tively, reduced the intra-socket data communication by up to

70% and 40% for the execution of BFS, by up to 70% and

50% for the execution of SSSP, and by up to 70% and 50% for

the execution of PageRank. All these matched the timing and

LLC misses results. Another interesting observation was that

even though METIS had lower overall communication volume

than that of ARGO, ARGO still outperformed METIS in terms

of execution time due to the reduced communication volume

in critical components (intra-node data communication).

Take-Away Putting too much data communication into cores
of the same machine may lead to significant contention on the
memory subsystems and thus hurt the performance. Counter-
intuitively, offloading a certain amount of intra-node data
communication across machines may sometimes achieve better
performance due to the presence of RDMA-enabled networks.

VII. SCALABILITY STUDY

A. Scalability in terms of Graph Size (Table VIII)

Configuration This experiment evaluated the scalability of

ARGO as the size of the graph increased. Towards this, we

generated six additional datasets by sampling the edge set

of the Friendster and Twitter datasets. Then, we examined

the execution time of the workloads on the datasets when

they were partitioned across four 20-core machines (with one

partition per core and message grouping size of 512). Note

that METIS failed to partition the datasets.

Results Table VIII shows the corresponding workload execu-

tion time as the size of the graphs increased. As can be seen,

ARGO outperformed both LDG and ARGO-H in all cases,

whereas ARGO-H was always the worst. Compared to LDG,

ARGO achieved by to 2.71x, 2.72x, and 3.58x speedups for

the execution of BFS, SSSP, and PageRank, respectively. As

expected, the speedups against ARGO-H were much higher,

since what ARGO-H did during the partitioning aggravated

the contention issue. The speedups were quite consistent in

spite of the increasing graph size, showing the stability and

scalability of ARGO.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

291

TABLE VIII: BFS, SSSP, and PageRank Execution Time in Seconds as the Graph Size Increased

of Edges (in Billion)
BFS (5 Source Vertices) SSSP (5 Source Vertices) PageRank (15 Iterations)

LDG ARGO-H ARGO LDG ARGO-H ARGO LDG ARGO-H ARGO

Friendster
0.9 10.74 16.46 7.93 111 266 54.46 36.79 65.92 18.80
1.8 37.46 74.76 24.24 599 1,700 243 156 479 108
2.7 78.78 147 49.87 2,273 3,429 1,007 476 4,972 1346
3.6 156 470 80.26 3,243 4,531 1,687 757 2,259 361

Twitter
0.98 13.10 15.68 7.58 126 414 66.09 51.46 79.88 33.65
1.96 44.94 157 28.44 1,190 1,932 437 262 1,019 169
2.94 146 399 72.08 3,788 4,690 2,071 1,071 2,071 430
3.92 285 607 105 6,875 8,610 4,688 2,208 2,951 617

TABLE IX: BFS, SSSP, and PageRank Execution Time in Seconds as the # of Partitions Increased

Number of Partitions
BFS (5 Source Vertices) SSSP (5 Source Vertices) PageRank (15 Iterations)

LDG ARGO-H ARGO LDG ARGO-H ARGO LDG ARGO-H ARGO

Friendster
80 156 470 80.26 3,243 4,531 1,687 757 2,259 361

100 68.66 212 37.72 1,747 3,304 541 350 1,248 182
120 42.71 210 21.52 878 2,210 262 252 975 141
140 42.63 121 22.07 384 2,059 162 152 626 83.43
160 29.20 81.81 20.45 228 1,732 151 134 441 65.40
180 24.26 61.88 18.81 201 1,350 72.42 82.94 282 52.49
200 20.17 48.47 18.83 146 1,079 120 58.28 244 51.79

Twitter
80 285 607 105 6,875 8,610 4,688 2,208 2,951 617

100 124 457 69.83 3,647 4,859 2,062 651 2,012 359
120 85.93 160 39.10 2,297 3,903 848 488 1,427 241
140 75.20 149 24.81 948 2,737 351 264 880 128
160 35.32 145 23.84 475 1,765 174 173 305 108
180 25.37 80.12 22.88 283 1,754 158 118 260 64.37
200 28.24 57.74 21.36 261 1,177 135 116 214 63.81

B. Scalability in terms of # of Partitions (Tables IX & X)

Configuration This experiment inspected the effectiveness of

ARGO as the number of partitions increased. Towards this, we

partitioned the original Friendster and Twitter dataset across

four up to ten 20-core machines (one partition per core) and

then examined the BFS, SSSP, and PageRank execution time

on the partitionings (with message grouping size of 512)

computed by LDG, ARGO-H, and ARGO.

Results in terms of Execution Time (Table IX) Table IX

presents the corresponding results. As expected, ARGO per-

formed the best in all cases whereas ARGO-H performed the

worst. In comparison to LDG, ARGO, respectively, speeded up

the execution of BFS by up to 3.03x, the execution of SSSP

by up to 3.36x, and the execution of PageRank by up to 3.58x.

The corresponding speedups against ARGO-H were as high as

9.78x, 12.70x, and 6.9x, respectively.

We also noted that the workload execution time decreased,

as the number of partitions increased. One of the reasons for

this was that as the number of partitions increased, the degree

of parallelism also increased. Another possible reason was that

the degree of contention on the memory subsystems decreased

due to the reduced intra-node data communication volume.

TABLE X: Partitioning Time in Seconds

of Partitions
Friendster Twitter

LDG ARGO LDG ARGO

80 68.70 313 99.02 110.09
100 71.57 387 59.74 157.57
120 72.37 477 68.99 176.86

The drop in the intra-node data communication was caused by

the increasing number of inter-machine communication peers.

For example, with four machines (80 partitions), each partition

only had 60 inter-machine communication peers, whereas with

five machines (100 partitions), the number of inter-machine

communication peers of each partition increased to 80. This

also explains the reason why the improvement achieved by

ARGO became smaller as the number of partitions increased.

Nevertheless, one thing should be aware of here was that the

size of the graph remained unchanged and that ARGO reduced

the execution time of each core used by this much.

Results in terms of Partitioning Overhead (Table X)
We also reported the partitioning overhead (vertex placement

decision time) of ARGO in Table X. The longer partitioning

time of ARGO was caused by an optimization we made: ARGO

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

292

loaded vertices of the graph from the file system in blocks

and streamed each in-memory vertex block twice to further

improve the partitioning quality. Thus, ARGO was a partial

restreaming graph partitioner. Fortunately, the partitioning only

has to be performed once and can be used multiple times.

Also, graph processing often require the processing of the

entire graph (e.g., SSSP for a large set of source vertices or

PageRank with more iterations) which will have significantly

longer execution time when compared with partitioning time.

VIII. RELATED WORK

Distributed Graph Computing Many distributed graph

computing frameworks, such as Pregel [23], Giraph [10],

GraphLab [20], PowerGraph [11], Mizan [18], Giraph++ [38],

GoFFish [35], and Blogel [43], have been proposed for big

graph processing. These systems hide the complexity of data

partitioning, computation parallelization, and fault tolerance

from users, providing a simple and elegant way for users to

design and implement scalable distributed graph algorithms.

Pregel, as one of the most popular graph computing engines,

adopts a vertex-centric model. In such a model, users only

need to specify the logic for one vertex, whereas the system

will hide the complexity of executing the logic on all vertices

in a distributed fashion. The execution is carried out in a

sequence of supersteps separated by a global synchronization

barrier. In each superstep, the vertex can change its state and

the state of its outgoing edges, send messages to its neighbours

to be processed in the next superstep, or even modify the

structure of the graph. Vertices can vote to halt at the end

of each superstep and be reactivated by messages from its

neighbors. The execution ends when all vertices are inactive.

Graph Partitioning Most of the systems partition the vertices

of the graph across workers by cutting edges (edge-cut), except

PowerGraph which partitions the edges of the graph across

workers by cutting vertices (vertex-cut). Edge-cut based graph

partitioning has been studied for decades [12], [34]. The well-

studied multilevel graph partitioners, like METIS [26], are

known for their capability of producing high-quality decompo-

sitions. However, they scale poorly against large graphs even

if performed in parallel since they require full knowledge of

the graph for partitioning.

Streaming [36], [39], [27] and restreaming [27] partitioners

are the recent solutions to large graph partitioning. In the

streaming setup, the graph is treated as a stream of vertices.

Upon arrival of a vertex, the partitioner places the vertex to

one of the partitions permanently based on the distribution

of the vertices that previously arrived. As can be seen, the

information that the partitioner can use for vertex placement

decision is limited. To address this, restreaming partitioning

consists of several passes of streaming partitioning and allows

subsequent passes can have access to the results of previous

passes. By doing this, the partitioner is capable of leveraging

more information about the graph for partitioning. They were

reported to be able to output decompositions comparable to

METIS but within a relatively short time.

Recently, a new distributed graph partitioner, Sheep [24],

has been proposed for large graph partitioning. It is similar

in spirit to METIS. They both first reduce the original graph

to a smaller tree or a sequence of smaller graphs, then do a

partition of the tree or the smallest graph, and finally map the

partitioning back to the original graph. In terms of partitioning

time, Sheep performs better than both METIS and streaming

partitioners. For partitioning quality, Sheep is competitive with

METIS for a small number of partitions and is competitive with

streaming graph partitioners (such as LDG [36]) for larger

numbers of partitions. Since Sheep has similar characteristics

as METIS and streaming partitioners in terms of partitioning

quality, we omitted its comparison, especially considering

METIS and LDG are more prevail graph partitioners.

Several heterogeneity-aware graph partitioners [6], [41],

[42] have been proposed. However, none of them considers the

contention issue on the memory subsystems of modern mul-

ticore machines. The only two heterogeneity- and contention-

aware work are our prior work [45], [44]. Nevertheless, they

are graph repartitioners, whereas ARGO is a graph partitioner.

This is also the reason why we did not compare ARGO to [45],

[44]. Additionally, this paper extends our prior work [45], [44]

by providing a holistic view on (1) why contention on the

memory subsystems may become a problem for distributed

(graph) workloads (Section II); and (2) to what extent the

contention may harm the performance (Section V).

In fact, several vertex-cut graph partitioners [40], [32],

[11], [25] were also proposed to improve the performance

of distributed graph computation. Although they belong to

a different type graph partitioners, they all have to face the

heterogeneity and contention issue as edge-cut solutions. In

fact, work [25] is a first attempt to address the heterogeneity

issue for vertex-cut solutions.

IX. CONCLUSION

In this paper, we first demonstrated that the contention in the

memory subsystems of modern multicore clusters with high-

speedup networks can have significant performance impact

on distributed workloads. Then, we presented an architecture-

aware graph partitioner, ARGO, which considers the impact of

both the contention on the memory subsystems and the hetero-

geneity in the network communication costs while partitioning.

Our experimental results show that ARGO achieved up to 12x

speedups for the execution of BFS, SSSP, and PageRank on

real-world graphs and scaled quite well in terms of both graph

size and the number of partitions.

ACKNOWLEDGMENT

We would like to thank Peyman Givi, Patrick Pisciuneri, and the

anonymous reviewers for their help on the paper. This work was

funded in part by NSF awards CBET-1250171 and CBET-1609120.

REFERENCES

[1] https://en.wikipedia.org/wiki/Message Passing

Interface.

[2] http://snap.stanford.edu/data.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

293

[3] K. Andreev and H. Racke. Balanced graph partitioning.

Theory of Computing Systems, 2006.

[4] A. Buluç and K. Madduri. Parallel Breadth-First Search

on Distributed Memory Systems. CoRR, 2011.

[5] D. Buntinas, B. Goglin, D. Goodell, G. Mercier, and

S. Moreaud. Cache-efficient, intranode, large-message

MPI communication with MPICH2-Nemesis. In ICPP,

2009.

[6] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li.

Improving large graph processing on partitioned graphs

in the cloud. In SoCC, 2012.

[7] G. Echbarthi and H. Kheddouci. Fractional greedy

and partial restreaming partitioning: New methods for

massive graph partitioning. In BigGraphs, 2014.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-

law relationships of the internet topology. In SIGCOMM,

1999.

[9] C. B. A. C. A. Galakatos and T. K. E. Zamanian. The

End of Slow Networks: It’s Time for a Redesign. VLDB,

2016.

[10] Giraph. http://giraph.apache.org/.

[11] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. PowerGraph: Distributed Graph-Parallel

Computation on Natural Graphs. In OSDI, 2012.

[12] B. Hendrickson and T. G. Kolda. Graph partitioning

models for parallel computing. Parallel computing, 2000.

[13] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri,

S. Gavali, D. Jespersen, K. Taylor, and R. Biswas.

Performance impact of resource contention in multicore

systems. In IPDPS, 2010.

[14] RDMA protocol: improving network performance.

http://h21007.www2.hpe.com/portal/download/files/

unprot/c00589475.pdf.

[15] http://www.intel.com/content/www/us/en/io/

data-direct-i-o-technology.html.

[16] H.-W. Jin, S. Sur, L. Chai, and D. K. Panda. Limic: Sup-

port for high-performance mpi intra-node communication

on linux cluster. In ICPP, 2005.

[17] G. Karypis and V. Kumar. Multilevel graph partitioning

schemes. In ICPP (3), 1995.

[18] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom,

D. Williams, and P. Kalnis. Mizan: a system for dy-

namic load balancing in large-scale graph processing. In

EuroSys, 2013.

[19] http://konect.uni-koblenz.de/networks/.

[20] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E.

Guestrin, and J. Hellerstein. Graphlab: A new framework

for parallel machine learning. arXiv:1408.2041, 2014.

[21] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale

distributed graph computing systems: An experimental

evaluation. VLDB, 2014.

[22] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. Berry.

Challenges in parallel graph processing. Parallel Pro-
cessing Letters, 2007.

[23] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,

I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system

for large-scale graph processing. In SIGMOD, 2010.

[24] D. Margo and M. Seltzer. A Scalable Distributed Graph

Partitioner. VLDB, 2015.

[25] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel. GrapH:

Heterogeneity-Aware Graph Computation with Adaptive

Partitioning. In ICDCS, 2016.

[26] http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

[27] J. Nishimura and J. Ugander. Restreaming graph parti-

tioning: simple versatile algorithms for advanced balanc-

ing. In KDD, 2013.

[28] http://www.open-mpi.org/.

[29] http://mvapich.cse.ohio-state.edu/benchmarks/.

[30] E. Papalexakis, B. Hooi, K. Pelechrinis, and C. Faloutsos.

Power-Hop: A Pervasive Observation for Real Complex

Networks. PloS one, 2016.

[31] http://icl.cs.utk.edu/papi/.

[32] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and

G. Iacoboni. HDRF: Stream-Based Partitioning for

Power-Law Graphs. In CIKM, 2015.

[33] http://core.sam.pitt.edu/MPIcluster.

[34] K. Schloegel, G. Karypis, and V. Kumar. Graph par-
titioning for high performance scientific simulations.

AHPCRC, 2000.

[35] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Na-

garkar, S. Ravi, C. Raghavendra, and V. Prasanna. Goff-

ish: A sub-graph centric framework for large-scale graph

analytics. In EuroPar. 2014.

[36] I. Stanton and G. Kliot. Streaming graph partitioning for

large distributed graphs. In SIGKDD, 2012.

[37] S. Sur, H.-W. Jin, L. Chai, and D. K. Panda. RDMA

read based rendezvous protocol for MPI over InfiniBand:

design alternatives and benefits. In PPoPP, 2006.

[38] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and

J. McPherson. From think like a vertex to think like a

graph. VLDB, 2013.

[39] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vo-

jnovic. Fennel: Streaming graph partitioning for massive

scale graphs. In WSDM, 2014.

[40] C. Xie, L. Yan, W.-J. Li, and Z. Zhang. Distributed

Power-law Graph Computing: Theoretical and Empirical

Analysis. In NIPS. 2014.

[41] N. Xu, B. Cui, L.-n. Chen, Z. Huang, and Y. Shao.

Heterogeneous Environment Aware Streaming Graph

Partitioning. TKDE, 2015.

[42] J. Xue, Z. Yang, S. Hou, and Y. Dai. When computing

meets heterogeneous cluster: Workload assignment in

graph computation. In BigData, 2015.

[43] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-

centric framework for distributed computation on real-

world graphs. VLDB, 2014.

[44] A. Zheng, A. Labrinidis, and P. K. Chrysanthis. Planar:

Parallel Lightweight Architecture-Aware Adaptive Graph

Repartitioning. In ICDE, 2016.

[45] A. Zheng, A. Labrinidis, P. Pisciuneri, P. K. Chrysanthis,

and P. Givi. Paragon: Parallel Architecture-Aware Graph

Partitioning Refinement Algorithm. In EDBT, 2016.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 11,2025 at 21:26:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

