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Abstract—Exploration over large datasets is a key first step in
data analysis, as users may be unfamiliar with the underlying
database schema and unable to construct precise queries that
represent their interests. Such data exploration task usually
involves executing numerous ad-hoc queries, which requires a
considerable amount of time and human effort. In this paper,
we present REQUEST, a novel framework that is designed to
minimize the human effort and enable both effective and efficient
data exploration. REQUEST supports the query-from-examples
style of data exploration by integrating two key components:
1) Data Reduction, and 2) Query Selection. As instances of
the REQUEST framework, we propose several highly scalable
schemes, which employ active learning techniques and provide
different levels of efficiency and effectiveness as guided by the
user’s preferences. Our results, on real-world datasets from Sloan
Digital Sky Survey, show that our schemes on average require
1-2 orders of magnitude fewer feedback questions than the
random baseline, and 3-16× fewer questions than the state-of-
the-art, while maintaining interactive response time. Moreover,
our schemes are able to construct, with high accuracy, queries
that are often undetectable by current techniques.

I. INTRODUCTION

In recent years, the amount of data has been increasing
tremendously. This raises the challenge for data analysts
to efficiently and effectively explore large volumes of data
for valuable insights. As traditional DBMSs are designed to
answer well formulated and precise queries, they are rather
inappropriate for exploratory discovery-oriented applications,
in which queries are typically unknown in advance (e.g., [12],
[19]). Particularly, in a data-driven analysis, there is a need to
perform data exploration tasks, in which the user often faces
two non-trivial and typically intertwined problems: 1) users
are unfamiliar with the underlying database schema, and 2)
users are unable to construct precise queries that represent
their interests.

Motivated by the need to address the problems outlined
above, recent research efforts have been directed towards
designing data exploration techniques that aim to assist users
in formulating and constructing their respective exploratory
queries (e.g., [3], [9], [13], [21], [5], [17], [6], [8]). Exam-
ples of such techniques include query recommendation (e.g.,
[3], [9]), query refinement (e.g., [13], [21]), and query-from-
examples (e.g., [5], [17], [6]). Among those techniques, query-
from-examples is rapidly becoming an attractive choice for
query formulation, especially for non-expert users, as it relies
solely on simple forms of feedback to be provided by those
users. This is opposed to query recommendation techniques
which require intensive query logs and user profiles that are
often unavailable when users are exploring datasets for the first

time. Similarly, query refinement techniques require the user
to provide some initial imprecise queries to be progressively
refined into a more certain one, a process which clearly
requires users to possess some good understanding of the
underlying database schema as well as the ability to formulate
meaningful queries.

The main idea underlying the query-from-examples tech-
niques, which is the focus of this work, is to automatically
predict and construct the user’s input queries based on their
feedback on a small set of sample objects [5], [17]. In par-
ticular, the user is iteratively presented by sample tuples (i.e.,
objects) from the database, and in turn the data exploration
platform progressively constructs and refines their exploratory
query. Clearly, this is an example of a “human-in-the-loop”
task, in which the typical setting is to start asking the user
“If you are interested in some object or not?”, followed by
repeatedly refining the questions until all (or most) interesting
objects are discovered. For instance, in AIDE [5], [6], the
user is prompted to label a set of strategically collected
sample objects as relevant or irrelevant to her exploration
task. Based on her feedback, AIDE generates a predictive
model which is used to collect a new set of sample objects.
These new samples are presented to the user and her relevance
feedback is incorporated into the model. In the background,
AIDE leverages the predictive model to automatically generate
queries that retrieve more objects relevant to the user’s task.

Clearly, the effectiveness of query-from-examples tech-
niques, such as AIDE, relies on achieving two main objec-
tives: 1) maximizing the accuracy of the employed model in
predicting the users’ exploratory queries, and 2) minimizing
the number of samples that are presented to the users for
their feedback. However, such two objectives are often in
conflict! For instance, maximizing the accuracy of a predictive
model often requires a large number of labeled samples,
whereas relying on a small set of labeled samples results in
a low-accuracy predictive model, and in turn imprecise query
formulation that falls short in capturing the user’s interests.

Consequently, in this work we propose a novel framework
for query-from-examples called REQUEST (Data Reduction
and Query Selection), designed to address the conflicting
objectives outlined above to enable both effective and ef-
ficient query-from-examples data exploration. In particular,
REQUEST aims to assist users in constructing highly accurate
exploratory queries, while at the same time minimizing the
number of samples presented to them for labeling. To achieve
that goal, REQUEST integrates the following two components:
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Fig. 1: 2-D Data Space.

1) Data Reduction: it employs efficient data reduction tech-
niques to minimize the amount of explored data, and in turn
the number of required labeled samples (e.g., [20], [11]), and
2) Query Selection: it employs effective active learning query
selection methods to maximize the accuracy of the predictive
model, and in turn the preciseness of the constructed queries
(e.g., [23], [24], [22]).

Given our REQUEST general framework (Section III), we
further propose several specific schemes that provide different
levels of efficiency and effectiveness as guided by the user’s
preferences (Section IV). Our experimental evaluation on the
SDSS dataset show that our schemes, can achieve the same
accuracy as state-of-the-art schemes while reducing the user’s
efforts incurred in providing feedback (i.e., labeling samples)
by up to 93% (Section V). Moreover, our schemes are also
able to construct, with high accuracy, queries that are often
undetectable by current techniques, even when large number
of samples are explored.

II. PROBLEM DEFINITION & BACKGROUND

Data analysts explore large volumes of data looking for
valuable insights, which is typically an ad-hoc and labor-
intensive process. Hence, automated data exploration solu-
tions have emerged to effectively guide users through that
challenging process. Examples of such solutions include data
visualization (e.g., [27], [8]), data summarization (e.g., [7],
[10]), and query formulation (e.g., [7], [14]). Our proposed
REQUEST framework addresses the query formulation aspect
of data exploration by means of employing a query-from-
examples (e.g., [5], [17], [6]) approach to the query construc-
tion problem, which is described in the next sections.

A. Data Exploration Task

An example of the data exploration task handled by RE-
QUEST is shown in Figure 1. The figure shows the data ob-
jects (i.e., tuples) in 2-dimensional database, where each data
object is represented by a 2-attribute data point. Meanwhile,
the dashed rectangles represent regions of the data space that
are of special interest to the user’s data exploration task. While
those interesting regions could be formulated in the form of a
selection query, the predicate values that define the ranges of
such query only becomes clear in “hindsight” after spending
long time exploring the underlying database. Consequently,

the goal of query-from-examples techniques, including RE-
QUEST, is to automatically and quickly formulate that query
with high precision. That is, to define the predicates of a range
selection query that is able to select all the objects which are
of interest to the user.

To further illustrate this, lets consider a simple data explo-
ration task in which a user is exploring a dataset to find and
compare a few laptops that match his/her needs. However,
the user is unfamiliar with the different specifications (i.e.,
dimensions/attributes) of laptops or what the range of values
is for each attribute (i.e., predicates) that would be suitable
for his/her needs. REQUEST will start the exploration task by
presenting the user with some sample database objects (i.e.,
laptops), and ask the user to label them as relevant or irrelevant
based on their attribute values (e.g., price, processor speed,
main memory capacity, weight, etc.). REQUEST will then
iteratively learn the user’s interest and use all labeled samples
as training data to build a predictive model to characterize and
formulate the user’s range selection query.

In each iteration, REQUEST will extract more samples and
present them to the user for feedback. Any newly labeled
objects will be incorporated with the already labeled sample
together to form a new training dataset to update the predictive
model. This exploration process is finished when the user
reaches a set of satisfactory relevant objects or when the user
does not wish to spend any more effort. Finally, the predictive
model is transformed into a selection query, in which the
predicate values that define each range are fully defined.

From the discussion above, it should be clear that the
choice of the predictive model is a critical decision in the
design of REQUEST. Similar to AIDE [5], in REQUEST we
adopt a decision tree classifier [15] as the predictive model
of choice. A decision tree classifier is well known for being
easily trained using a labeled dataset to construct a model that
is able to classify unlabeled data objects with high accuracy.
Furthermore, a decision tree has the additional advantage of
being easily transformed into a selection query. Particularly,
once a decision tree is trained, it can be seen as a tree-like
graph starting from a root node, which splits data to different
branches/nodes according to some attribute value of the data
being tested. A decision tree recursively splits data to sub-
branches until a leaf node is reached, where each leaf node
assigns a label to the classified labeled data. This enables a
straightforward mapping from decision trees to range queries
since the path to each leaf node can be interpreted as one
region (or a hyper-rectangle) that represents a set of predicates
which capture a region of the data space of interest to the user.
An example of such range query can be: SELECT * FROM
laptops WHERE price > $500 AND price ≤ $860 AND screen
≥ 11” AND screen < 14”.

B. Problem Settings
Given the data exploration task described in the previous

section, we describe the query-from-examples problem ad-
dressed in this work as follows. Consider a d-dimensional
database D of size N tuples. Further, consider L, which is
a small subset of the database D of size n tuples, where
n << N and each tuple in L is user-labeled as relevant
or irrelevant. Accordingly, the goal is to formulate a range
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selection query Q, which accurately captures the regions of
the data space that are of interest to the user. That is, all tuples
selected by Q are relevant to the user.

As mentioned earlier, the user is actually unaware of the
proper formulation of Q and can only recognize it in hindsight
based on the tuples returned from executing Q. Hence, the
objective is to predict the unknown query Q with high accu-
racy, which is naturally measured using the F -measurement,
the harmonic mean between precision and recall. Particularly,
for a database D of size N and a predicted query Q, all
the tuples in the database D selected by the query Q are
labeled positive, while all the remaining tuples in D are labeled
negative. Accordingly, our goal is to maximize the F -measure
provided by Q, which is defined as:

F (N) =
2 · Precision(N) · Recall(N)

Precision(N) + Recall(N)
(1)

Here, precision measures the portion of true relevant tuples
among all the tuples predicted as relevant (i.e., all the tuples
selected by Q). Hence, true relevant, or true positive, indicates
that a tuple is both: relevant to the user and has been selected
by query Q. If a tuple is irrelevant but selected by Q, it is
considered as false positive. Recall measures the ratio between
the true relevant tuples selected by Q to all the tuples which
are actually relevant to the user. The precision value of 1.0 is
the gold standard, indicating that every tuple selected by Q is
indeed relevant, while a good recall ensures that Q can select
a good percentage of the tuples of interest to the user.

C. Active Learning

The query by example data exploration task can be viewed
as a special application of Active Learning [23]. In the fol-
lowing, we explain the reasons why the related active learning
approaches cannot be applied directly to our problem.

Active Learning is an interactive learning framework to
achieve accurate classification with minimum human super-
vision. Particularly, a typical active learning approach would
employ a query selection method to sequentially select which
unlabeled example (i.e., object) in the database should be
presented to the user next for labeling. A query selection
method attempts to minimize the labeling costs by selecting
the most informative examples for building the classification
model. Different query selection methods to define the “infor-
mativeness” of examples have been proposed in the literature,
two of which are Uncertainty sampling [16] and query-by-
committee (QBC) [26].

Uncertainty Sampling: Uncertainty sampling is arguably the
most popular query selection method employed by active
learning approaches (e.g., [23], [16], [24]). The intuition
underlying uncertainty sampling is that patterns with high
uncertainty are hard to classify, and thus if the labels of
those patterns are obtained, they can boost the accuracy of
the classification models. Particularly, in binary classification
models (e.g., with class labels 0 and 1), the most uncertain
example x is the one which can be assigned to either class
label z(x) with probability 0.5.

Inspired by such idea of uncertainty, also known as least
confidence, [16] proposes a measurement of uncertainty for

binary classification models:

u(lc)(x) = 1− p(ŷ|x) (2)

where u(lc)(x) is the uncertainty score with least confidence
measurement of x. ŷ means the predicted class label of the
unlabeled x. Accordingly, after measuring the uncertainty of
each unlabeled sample, the unlabeled sample with highest
uncertainty is selected:

x∗ = argmaxxu(x) (3)

where u(x) can be any other measurement of informativeness
over the unlabeled sample x.
Query-by-committee: Another widely used query selection
method is the well known query-by-committee (QBC) ([26],
[22],[2]). QBC is basically a voting strategy, in which the
uncertainty score is calculated based on a committee of
multiple classification models, where each model is trained
over a subset of the labeled set. The prediction of an unlabeled
point under this voted uncertainty is calculated as:

p(1|x) =
∑

i∈C ŷ(i)

|C| (4)

where p(1|x) indicates the probabilistic prediction that x
belongs to class 1, C indicates the committee, |C| indicates
the size of the committee and ŷ(i) indicates the prediction
of x using the ith model in the committee. In this case, the
uncertainty score is calculated as:

u(v)(x) = 1− p(ŷ|x) (5)

where u(v)(x) is the uncertainty score with voted measurement
of x. ŷ indicates the predicted class label of the unlabeled
sample x.
Active Learning vs. Data Exploration: On the one hand, active
learning approaches have been shown to be effective in terms
of: 1) maximizing classification accuracy, and 2) minimizing
number of user-labeled samples. On the other hand, applying
traditional active learning approaches has the drawback of
introducing long delays as it requires performing multiple
iterations of exhaustive search over the database. For instance,
in uncertainty sampling, presenting one example to the user
for labeling requires computing the uncertainty scores for all
the unlabeled objects in the database to select the one with the
highest uncertainty score. This process is repeated with each
example selection, resulting in long waiting time before the
user is able to label the next example, which in turn renders
that approach impractical for many applications that access
relatively large volumes of data.

D. Automatic Interactive Data Exploration (AIDE)

To circumvent the scalability shortcomings of applying
active learning approaches in data exploration settings, AIDE
[5] has been proposed to enable automatic interactive data
exploration. As opposed to active learning approaches, AIDE
emphasizes the need for providing “interactive speed” when
performing data exploration tasks, and accordingly attempts
to minimize the processing time required for selecting those
objects to be presented to the user for labeling. In particular,
like active learning approaches, AIDE employs a classifier
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model for learning the user’s interest from labeled examples.
However, instead of exhaustively searching all the unlabeled
data objects, AIDE employs some data reduction techniques
to optimize the process of example selection.

Specifically, AIDE employs a decision tree, which is refined
as the user labels more examples and the resulting refined
decision tree is used to guide the selection of the next set of
examples to be labeled. To reduce the amount of data searched
for selecting those examples, AIDE performs the following
operations in each iteration after refining the decision tree:
Misclassified Exploitation: If an interesting data object that is
currently being misclassified is identified, AIDE will randomly
select more objects around that misclassified one within a
pre-defined area and present those additional samples to the
user for labeling. Boundary Exploitation: AIDE also randomly
selects examples from around the boundaries of each relevant
region that has been identified by the decision tree. Presenting
those additional examples to the user for labeling allows AIDE
to tune the boundaries of those relevant regions. Relevant
Object Discovery: For the areas of the data space that are
currently considered irrelevant by the decision tree, AIDE
selects some examples to further ensure their (ir)relevance.
Particularly, for those areas AIDE partitions the space with d-
dimensional grids, each grid defines a subspace on the original
domain, then randomly picks a sample from the center of each
grid cell. The grid size is adjusted with each refinement of
the decision tree, where a “zoom-in” operator is performed to
further split each grid cell into smaller grid cells, thus generate
more samples for finer granularity search.

Given the operations described above, in each iteration
AIDE will present the user with a batch of examples to label
which is the union of all the examples generated by those
three operations. Clearly, in comparison to active learning
approaches, AIDE searches through a much smaller set of
unlabeled data points in order to select the new set of examples
to be labeled. However AIDE has the following limitations:
1) it relies on a heavily parameterized model for navigating
the search space, which makes it rather difficult to deploy
in practice, and 2) reducing the search space of unlabeled
data comes at the expense of requiring the user to label more
samples to achieve high accuracy.

In the next section, we present our proposed REQUEST
framework, which addresses the limitations outlined in above.

III. THE REQUEST FRAMEWORK

REQUEST is designed to achieve the following goals: 1)
minimize the number of example objects that are presented
to the user for labeling, 2) minimize the processing cost and
delays incurred in selecting those examples, and 3) maximize
the accuracy of the constructed query in capturing the user’s
interests. The main idea underlying REQUEST is to combine
the advantages of data reduction techniques (used in data
exploration platforms) with the advantages of query selection
methods (used in active learning approaches).

As shown in Algorithm 1, REQUEST works in two stages,
namely: data reduction and query selection. In the first stage,
REQUEST reduces the original dataset D to a subset Ds,
such that |Ds| < |D| (line 1). In order to achieve effec-
tive data reduction, we consider different methods including

Algorithm 1 The REQUEST Framework

Require: The raw data set D; Batch Size B
Ensure: A range query Q

1: Subset Ds ← D
2: Labeled set L ← ∅
3: Unlabeled set U ← Ds

4: M ← initialize query selection method
5: while user continues the exploration do
6: for i = 1 to B do
7: Choose one x from U using M
8: Solicit user’s label on x
9: L ← L ∪ {x}

10: U ← U − {x}
11: end for
12: M ← trained with L to update M .
13: Train a decision tree with L to obtain Q
14: end while
15: Return the most recently obtained Q.

traditional sampling and user-guided sampling based on the
multi-instance active learning (MIAL) approach as discussed
in the next section. Then REQUEST initializes two sets of
data objects L and U for storing the labeled and unlabeled
data objects, respectively (line 2-3).

REQUEST also incorporates a query selection method that
is used for selecting the example objects to be presented to
the user for labeling (line 4). In this work, we employ and
extend variants of the well-known uncertainty query selection
methods, which are described in detail in Section III-B. As
long as the user is willing to label more examples (line 5),
REQUEST will keep invoking the query selection method M
to select a new example object x from Ds, and present it to
the user to label as relevant or irrelevant (lines 6-11). Once
the amount of labeled samples received from user reaches a
sample batch size (denoted as B), which is a tunable parameter
of the REQUEST to balance the effectiveness and efficiency,
then the classifier model employed by the query selection will
be updated according to the label assigned to x (line 12).

In particular, the label assigned to x will be used for
retraining the classifier model, which is an essential step
towards selecting the object presented to the user in the next
iteration. Once the iterative labeling process is completed, a
decision tree classifier is trained on all the labeled data and a
range selection query Q is constructed based on that tree, as
described in Section II (line 13).

Next, we describe in detail the different methods for data re-
duction and query selection considered under our framework.

A. Data Reduction

In active learning approaches, query selection methods are
applied over the entire set of unlabeled data objects to select
the next example to be presented to the user for labeling. As
discussed earlier, such exhaustive search incurs high process-
ing costs and leads to users experiencing long delays between
the presented examples. To the contrary, data exploration ap-
proaches employ data reduction techniques for minimizing the
number of unlabeled objects to be searched. However, current
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data reduction approaches, such as the ones employed by
AIDE (see Section II) have the drawback of presenting the user
with a large number of examples in order to construct a query
with high accuracy. In the REQUEST framework, we consider
simple yet effective data reduction methods that overcome the
aforementioned limitations, namely: Data-Driven Sampling,
and User-Driven Pruning.

1) Data-Driven Sampling: In traditional sampling, a small
subset of data objects Ds is randomly extracted from the
complete database D. As such, the query selection method
for selecting examples for labeling is applied on the sample
Ds to reduce the processing cost and waiting delays (see
Algorithm 1). For example, if N is the size of the complete
data and p is the sampling ratio, then Ds will include p×N
tuples, and the remaining tuples are discarded. Note that
p = 1.0 is a special case referred to as None, in which no
sampling is applied and all the database tuples are considered,
which is equivalent to traditional active learning approaches
in which no data reduction is employed.

2) User-Driven Pruning: Inspired by the Multi-Instance
Active Learning (MIAL) approach [25], we introduce another
method for selectively reducing the search space of unlabeled
objects. In MIAL, objects are grouped into a set of bags, and
the user is requested to give their feedback on a bag of objects
rather than a single object. Accordingly, MIAL assumes that
a bag is irrelevant if every object in that bag is of no interest
to the user; otherwise, the bag is interesting.

Such property of MIAL making it well-suited to exploration
tasks for which the volume of available data objects is large
but the target is represented by only a small set of data objects.
In [23], it was shown with examples, that as fully labeling all
data objects is expensive, it is possible to obtain labels both
at the bag level and directly at the data object level, which
inspires us to take advantage of coarse labelings to quickly
eliminate irrelevant subspaces, then use finer query selection
strategies at the object-level to polish the answer.

In REQUEST, we employ MIAL as the User-Driven Prun-
ing (UDP) technique to prune subspaces that are completely
irrelevant to the exploration task and in turn reduce the amount
of data considered for labeling. To achieve this, REQUEST
divides the multi-dimensional data space evenly into a number
of d-dimensional hyper-rectangles. That is, each dimension of
the data space is split evenly into a certain number of bins.
Thus, if each dimension is split into m bins, there will be md

hyper-rectangles in total. Then the user is presented with the
ranges covered by each hyper-rectangle and is asked to label
the rectangle as negative if it does not contain any relevant
objects, or as positive otherwise. All negative rectangles are
discarded, and all remaining positive ones are passed to the
query selection method.

B. Query Selection

Query Selection is the one component of our REQUEST
framework that aims to minimize the labeling effort while
maximizing the accuracy of the constructed queries. It is worth
mentioning that in this context, a “query” refers to the process
of selecting an example object to be presented to the user
for labeling. In REQUEST, we use uncertainty sampling to

quickly learn the interest of the user and steer them towards
the relevant data regions.

Uncertainty Sampling: As previously mentioned in Section
II, uncertainty sampling is a popular active learning technique
that aims to choose the data points which are most beneficial
to build a classification model that precisely captures both
relevant and irrelevant data regions.

According to Equation 2, to measure the uncertainty of a
data object x, we need a model that would always report the
probability of x being positive or negative. The decision tree
classifier (that we employed for range query) is not strictly a
probabilistic model, therefore in most cases, the decision tree
is not an ideal choice for calculating the uncertainty score.
Thus, another probabilistic classification model such as Naive
Bayes Classifier is needed to determine the uncertainty score.
This model will be built on the same labeled dataset as the
decision tree so that they can reflect the same “knowledge” of
the interest objects.

Naive Bayes Classifier: Naive Bayes classifier [18] is a
classification model, which can be perceived as a mixture
of multiple logistic regression models. In that sense, Naive
Bayes generates similar decision boundaries to a decision
tree (because multiple hyperplanes form an enclosed deci-
sion boundary similar to hyper-rectangle or hyper-ball) with
probabilistic scores for calculating uncertainty. Accordingly,
REQUEST trains our Naive Bayes classifier on the same set
of data (all user labeled objects) at the same time it trains the
decision tree classifier, therefore for a given time point T the
probabilistic score given by Naive Bayes classifier reflects the
uncertainty of any unlabeled data object at time T .

To be more precise, the uncertainty of a data object under
Naive Bayes classifier is determined as follows: given an
unlabeled data sample to be predicted, represented by x, it
assigns to this probability:

p(Ck|x) (6)

for each hidden class Ck. Another assumption of Naive Bayes
classifier is the conditional independence: Naive Bayes classi-
fier assumes that each feature is conditionally independent of
every other feature:

p(xi|xi� , Ck) = p(xi|, Ck) (7)

where xi is the ith feature of x and i� is x without the ith
feature.

Thus, the joint probability can be expressed as:

p(Ck|x1, x2, . . . , xm)

∝p(Ck, x1, x2, . . . , xm)

∝p(Ck)

m∏

i=1

p(xi)

where i is the enumeration of all features. This means that
under the above independent assumptions, the conditional
distribution over the hidden variable is:

p(Ck|x1, x2, . . . , xm) =
1

Z
p(Ck)

m∏

i=1

p(xi) (8)

where Z = p(x) is the normalization factor.
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Such conditional distribution reflects the likelihood of a data
object x being positive or negative (in our case relevant or
irrelevant), which is essentially the uncertainty score of x.

Committee of Naive Bayes Classifiers: Following the voted
uncertainty method mentioned in Section II, a small committee
of Naive Bayes classifiers x can be used as an alternative way
to determine the uncertainty score of an unlabeled object [22].
Under this method, the uncertainty score is calculated through
Equation 5. Additionally, according to [23], [26], [24], a small
committee (less than 6) work well in practice for such method.

In REQUEST, we employ both Naive Bayes Classifier and
Committee of Naive Bayes Classifiers for calculating the
uncertainty score. However, traditional uncertainty sampling
suffers from two major drawbacks 1) shortsightedness (as
pointed out in [4]), and 2) low scalability. Shortsightedness
refers to the issue that the uncertainty score of unlabeled
samples is based only on the information obtained from
labeled samples, which usually is a tiny portion compared
to the unlabeled objects, therefore, causes a biased when
selecting samples for labeling. Low scalability is caused by the
fact that traditional uncertainty sampling requires performing
an exhaustive search over all unlabeled datasets for every
sample that is presented to the user.

Randomized Uncertainty: To address the first drawback
mentioned above, the work in [29] combines uncertainty with
some degree of randomness. Particularly, for each query, an
example is probabilistically selected from all the unlabeled
objects for the user to label. The probability that an unlabeled
point x is selected is proportional to its uncertainty score:

p(x is selected) =
u(x)∑

xu∈U u(xu)
(9)

where U is the unlabeled set and u(x) is the uncertainty score
of an unlabeled sample x.

Since the probability that an unlabeled point x is chosen to
be presented to the user is equal to its normalized uncertainty
score, therefore, less uncertain samples may still have a small
chance of being accepted, which has the effect of reducing the
bias introduced by the labeled samples.

Randomized Accept/Reject Uncertainty (RARU): When ex-
ploring large datasets, randomized uncertainty still suffers
from low scalability for the fact that each example selec-
tion must go over all the unlabeled object to compute their
normalized score. Thus, to address the second drawback of
uncertainty sampling, we propose an accept/reject example
selection approach. Particularly, to choose an unlabeled sample
to be presented to the user, we first randomly pick an unlabeled
object x, then calculate the uncertainty score of x. To decide
whether x can be presented to the user we use the uncertainty
score of x as the way to determine its acceptance, such that
the probability of an unlabeled data sample x being accepted
under RARU is:

p(x is selected) = argmin
k∈0,1

Pr(Ck|x)
0.5

(10)

where Pr(Ck|x) is the probability of x being assigned a
binary class label Ck, and 0.5 is a normalizing factor since a
prediction score of 0.5 indicates the classifier is most uncertain
about an object.

If x is accepted, it will be presented to the user for labeling.
Otherwise, RARU will continue to select other unlabeled
objects randomly until one object is accepted (according to
Equation 10) and presented to the user.

Such Randomized Accept/Reject Uncertainty strategy pro-
vided an early termination to prevent the enumeration of all
unlabeled data items, while still preserving the feature of
randomized uncertainty that mitigates the shortsightedness of
the traditional uncertainty sampling.

IV. THE REQUEST SCHEMES

In this section we propose four specific schemes to support
the query-from-examples style of data exploration that are
based on our REQUEST framework. These schemes are:
1) The None+RARU Scheme, 2) The None+VotedRARU
Scheme, 3) The MIAL+RARU Scheme, and 4) The
MIAL+VotedRARU Scheme.

A. The None+RARU Scheme
This scheme focuses on the Randomized Accept/Reject

Uncertainty (RARU) as the query selection method with no
data reduction techniques used. In None+RARU, a single
Naive Bayes Classifier is employed to compute the uncertainty
scores. An issue of this scheme is the initial sample acquisi-
tion, since initially no relevant objects are discovered. There-
fore no uncertainty score can be computed. To solve this issue,
we randomly sample unlabeled data objects from the database
for labeling until the first relevant object is discovered, thus,
enables Naive Bayes classifier to compute the uncertainty
score of unlabeled objects. Once the first relevant object is
discovered, the choice of selecting subsequent samples for
labeling would be determined according to Equation 10.

B. The None+VotedRARU Scheme
The None+VotedRARU scheme is similar to the

None+RARU Scheme except the way how uncertainty
score is computed. In None+RARU Scheme, a single Naive
Bayes classifier is used to determine whether to reject/accept
a sample from being presented to the user. In the case of
None+VotedRARU Scheme, this decision is co-decide by a
committee of Naive Bayes classifiers. In particular, given the
labeled data L, we use k-fold cross-training method to train k
different classifiers and the uncertainty score of an unlabeled
object is computed according to Equation 5.

C. The UDP+RARU Scheme
For this scheme, we employ the User-Driven Pruning (UDP)

technique based on MIAL (see Section III) as the data re-
duction technique. We start with a partition of d-dimensional
data space into multiple d-dimensional grids with a tunable
parameter δ, such that each of the attributes is split into δ
equal width ranges, and each grid covers a range of 100/δ of
the domain for each attribute. We then query user on the ranges
covered by each grid and prune those grids that are labeled as
irrelevant. For each of the relevant grids, we would visit them
in a round-ribbing fashion and apply the RARU strategy (with
Naive Bayes classifier) to select samples from each grid for
labeling. Later, each labeled samples from any positive grids
would be feed into a decision tree model to capture relevant
regions.
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TABLE I: PARAMETERS

Total number of data objects 10× 106

Number of runs per result 10
Number of dimensions considered 2, 3, 4, 5
Number of relevant regions 1, 3, 5
Cardinality of the relevant regions 0.1% (S), 0.4% (M), 0.8% (L)
Data Reduction Strategies Sampling, UDP

Number of grids 3D (D = Number of Dimensions)
Query Selection Methods RARU, VotedRARU
Uncertainty Sampling algorithm Naive Beyes
Decision Tree Algorithm J48 (C4.5)
Considered Sample Batch Sizes 50
Number of Committees 5
Baseline Schemes AIDE, Random
Our Schemes None+RARU, None+VotedRARU

UDP+RARU, UDP+VotedRARU

D. The UDP+VotedRARU Scheme
This scheme is the same as the UDP+RARU Scheme,

except that the VotedRARU strategy is used to compute the
uncertainty score.

V. EXPERIMENTAL EVALUATION

In this section, we will present the results of our experiments
that compare the performance of our schemes to AIDE [5],
which is the state-of-the-art (see Section II-D).

A. Experiment Setup
SDSS Dataset In our experiments we used 40 GiB of real-

world dataset from Sloan Digital Sky Survey (SDSS) [1] that
consists of 10× 106 tuples.

Environment Since we are unable to obtain the original
implementation of AIDE, we faithfully implemented all al-
gorithms with Java JRE 1.7 and all the experiments were
run on an Intel Core i7 4-core CPU with 24GiB RAM. We
used the Weka [28] library for executing the J48 decision
tree algorithm. All experiments reported are averages of 10
complete runs. We have considered five numerical attributes
rowc, colc, ra, field and fieldID of the PhotoObjAll table.

Target Interest Regions The exploration task characterizes
user interests and eventually predicts the interest regions by
iteratively gathering user labeled tuples. As mentioned before,
we focus on predicting range queries (the user interest regions)
and in our experiments, we experiment with three different
interest region amounts {1, 3, 5}. Further, we vary the single
region complexity based on the data space coverage of the
relevant regions. Specifically, we categorize relevant regions
to small, medium and large. Small regions have cardinality
with an average of 0.1% of the entire experimental dataset,
medium regions have a cardinality of 0.4%, and large regions
have a cardinality of 0.8%.

User Simulation Given a target interest region, we simulate
the user by executing the corresponding range query to collect
the exact target set of relevant tuples. We rely on this “oracle”
set to label the tuples we extract in each iteration as relevant
or irrelevant depending on whether they are included in the
target region. We also use this set to evaluate the accuracy
(F-measure) of our final predicted range queries. Further, we
consider each sample as one question to the user. Thus, the
question asked by the data reduction strategy (e.g., UDP) are
also counted as one sample.

Parameters Table I shown a list of all settings and shames
of the experiment. By default we use 1× 106 distinct tuples,
a batch size of 50, a committee size of 5 and attributes rowc
and colc, unless otherwise specified. The words “f-measure”
and “accuracy” are interchangeable in the text below.

B. Experimental Results
Accuracy Comparison Figures 2-10 shown the number

of samples needed to reach an accuracy (f-measure) of 60%
and 80% of all participating algorithms with different range
queries. Here we very the target region size from small
to large, and change the target region numbers with three
different settings 1, 3 and 5. From these figures, we observed
that our scheme UDP+VotedRARU consistently demonstrate
the highest effectiveness when compare to other alternatives.
Such that, to reach an accuracy of 60% UDP+VotedRARU
only 150-200 samples for small regions, less than 80 samples
for medium regions and less than 70 samples for large regions
on average. To reach an accuracy of 80%, UDP+VotedRARU
requires on average on 350 samples for small regions, 140
samples for medium regions, and 120 samples for large
regions. Further our UDP+RARU also shown an excellent per-
formance and is only slightly behind the UDP+VotedRARU.

Although, None+RARU and None+VotedRARU without
using UDP do not achieve as effective as working with UDP.
However, they still demonstrate an acceptable performance due
to the efficiency of RARU, and are fully usable when facing
medium and large regions, as both of they only require less
than 800 samples and 370 samples to achieve an accuracy of
at least 80% for medium and large regions.

AIDE also showed a good performance for medium and
large regions especially for 60% of accuracy, as in most
case it requires 400 samples for medium and 330 samples
for large regions to achieve an accuracy of 60%. For large
regions, it requires less than 360 samples to achieve an
accuracy of 80%. But AIDE fails to discover really small
regions as it requires 1450-3500 samples to achieve a 60%
of accuracy and would require more than 5500 samples to
achieve 80% accuracy for small regions. The reason for such
behavior is when discovering very small regions, AIDE would
generate a large amount of samples due to its costly “zoom-
in” operations. Comparing AIDE to our UDP+VotedRARU,
our scheme requires 9x-16x fewer samples for small target
regions, 5x-10x fewer samples for medium target regions, and
3x-5x fewer samples for large target regions than AIDE.

We also compare all algorithms with Random which is a
baseline algorithm that randomly (based on uniform distri-
bution) selects samples from the exploration space, present
them to the user for feedback and then builds a decision tree
classifier based these samples. The result shows that Random
fails to discover small regions. Even when we increase the
number of samples to 9000, it still fails to reach an accuracy
of 60%. Random can discover medium and large regions but
with a great cost, such that it requires 2000−3000 samples for
medium regions and 1200 − 1800 samples for a large region
to reach an accuracy of 80%.

Runtime Comparison Figures 11-13 shown the runtime
(in logarithmic scale) of each algorithm to reach an accuracy
of at least 60% and 80%. In all cases, smaller target region
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Fig. 2: Accuracy, 2D, 1 Small Region Fig. 3: Accuracy, 2D, 3 Small Regions Fig. 4: Accuracy, 2D, 5 Small Regions

Fig. 5: Accuracy, 2D, 1 Medium Region Fig. 6: Accuracy, 2D, 3 Medium Regions Fig. 7: Accuracy, 2D, 5 Medium Regions

Fig. 8: Accuracy, 2D, 1 Large Region Fig. 9: Accuracy, 2D, 3 Large Regions Fig. 10: Accuracy, 2D, 5 Large Regions

Fig. 11: Runtime, 2D, 1 Small Region Fig. 12: Runtime, 2D, 1 Medium Region Fig. 13: Runtime, 2D, 1 Large Region

Fig. 14: UDP+VotedRARU, Increase Regions Sizes

(1 Region)
Fig. 15: UDP+VotedRARU, Increase Regions Numbers

(Large Region)

would increase the runtime. Naturally, random is overall the
fastest scheme as it requires almost no computation. Other
than random, the runtime is acceptable for all of our schemes,
such that for UDP+RARU and UDP+VotedRARU the runtime

to achieve 80% of accuracy is only 1-2 seconds for small
regions and less than 0.5 seconds for both medium and large
region, which is expected as our schemes only generate a small
number of query samples.
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Fig. 16: Accuracy,1 Small Region,

Small Dataset

Fig. 17: Accuracy, 3 Small Regions,

Small Dataset
Fig. 18: Accuracy, 5 Small Regions,

Small Dataset

Fig. 19: Runtime, 1 Small Region,

Small Dataset

Fig. 20: Runtime, 3 Small Regions,

Small Dataset
Fig. 21: Runtime, 5 Small Regions,

Small Dataset

Fig. 22: F-Measurement of UDP+VotedRARU,

1 small region, different dimensions

Fig. 23: Runtime of UDP+VotedRARU,

1 small region, different dimensions

Fig. 24: F-Measurement of UDP+VotedRARU,

1 small region, different dataset sizes
Fig. 25: Runtime of UDP+VotedRARU,

1 small region, different dataset sizes

None+RARU, None+VotedRARU and AIDE would require
higher runtime than UDP+RARU and UDP+VotedRARU as
they require more samples to reach 80% accuracy. But the
runtime for both None+RARU and None+VotedRARU are still
acceptable as they require less than 10 seconds for small and
less than 1 seconds for medium and large regions to achieve
80% accuracy. Note that although we have implemented AIDE
accurately and faithfully, some optimization may be missed,
as the result, the runtime may be two times slower than a fully
optimized version (according to the runtime reported in [5]).
In all runtime experiments, we only report the real runtime

that we have measured based on our implementation.

Zoom-in to the Best Scheme Figures 14-15 shown a closer
look at the effectiveness of the best scheme UDP+VotedRARU
as we increase the complexity of range query by varying the
number of relevant regions and the size of the relevant region.
We noticed that UDP+VotedRARU achieves a remarkable
performance as it only requires 110 samples in medium and
large regions, and 350 samples (out of 10 × 105 tuples) for
small regions to reach 80% accuracy. Further, the performance
of UDP+VotedRARU only decreases slightly when the number
of relevant regions is increased.
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Traditional Uncertainty VS. RARU We compare our
RARU with the traditional Uncertainty Sampling, both strate-
gies employ Naive Bayes Classifier to compute uncertainty.
Figures 16-21 show the effectiveness and efficiency of both
schemes. In these figures, we used U to denote Uncertainty and
VU to denote Voted Uncertainty. These experiments are based
on a small dataset that contains only 100k tuples (due to the
time complexity of traditional uncertainty sampling) and small
target regions. Note that, for Figures 19-21 the runtimes are
in logarithmic scale. As expected, the traditional Uncertainty
Sampling overall reaches the same level of accuracy with less
number of samples than RARU. Such that compare to RARU;
the traditional uncertainty saves up to 35% of samples when
UDP is employed, and up to 50% of samples when UDP
is not employed. However, traditional Uncertainty Sampling
can be up to 60 times slower than RARU when UDP is
employed and up to 100 times slower than RARU when UDP
is not employed. As the efficiency of traditional Uncertainty
Sampling is extremely low, it is still unfeasible to apply
it directly on the modern database systems for real-world
interactive data exploration tasks.

Impact of the Data Reduction Further, the effectiveness
of data reduction techniques is demonstrated with UDP, such
that apply UDP as data reduction on average requires 3×-
10× fewer samples than no data reduction for both traditional
Uncertainty Sampling and RARU. We also observed the same
amount of reduction in runtime (to achieve 60% of accuracy)
when UDP is employed, which is as expected, since both the
data space and the number of samples generated are reduced.

Dimensionality Figures 22-23 demonstrate the effective and
efficiency of UDP+VotedRARU as we increase the dimension-
ality of our exploration space from 2-D to 5-D with one small
target region. Our target range query have conjunctions on
two attributes. Our solution has correctly identified the two
attributes that define the target region, thus, able to discard not
related attributes from the decision tree to obtain the target
range query. As expected, high dimensions would require
more samples to reach the same accuracy as low dimensions.
However, the number of samples only increased slightly from
2D to 3D and 4D. Even for 5D, the number of samples needs
to achieve 60% of accuracy only increased 35% compare to
4D, and the number of samples needed for 80% is still within
700 samples even for 5-dimensional space.

Database Size Figures 24-25, illustrates the scalability
of UDP+RARU as we increasing the dataset size from 1
millions to 10 millions. The result shown that our method
is highly scalable as both the effectiveness and efficiency are
independent of the size of the data set. This is because in
RARU the time taken to generate one sample to present to the
user is depended on the distribution of the uncertainty score
of all objects in the dataset and is independent of the size of
the dataset.

VI. CONCLUSION

Motivated by the challenge of reducing human effect in
exploring large datasets, in this paper we proposed REQUEST,
a novel framework for the query-from-examples style of data
exploration. The REQUEST framework consists of two key
components, namely, data reduction and query selection.

We show the applicability of REQUEST by proposing an
efficient user-guided data reduction technique with Multi-
Instance Active Learning (MIAL), and a novel query selec-
tion method, called Randomized Accept/Reject Uncertainty
(RARU), that aims to provide high scalability. Specifically, we
designed and experimented with four schemes: None+RARU,
None+VotedRARU, MIAL+RARU, and MIAL+VotedRARU
as solutions to the query-from-examples data exploration.

Our experimental results have shown that our proposed
schemes achieve much higher performance in both effective-
ness and efficiency when compared to the state-of-the-art.
Further, the human efforts incurred in providing feedback was
reduced by up to 93%.
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