N
Check for
Updates

CE-Storm: Confidential Elastic Processing of Data Streams

Nick R. Katsipoulakis, Cory Thoma, Eric A. Gratta,
Alexandros Labrinidis, Adam J. Lee, Panos K. Chrysanthis

Department of Computer Science, University of Pittsburgh, Pittsburgh, PA 15260, USA
{katsip, corythoma, eag55, labrinid, adamlee, panos}@cs.pitt.edu

ABSTRACT

Data Stream Management Systems (DSMS) are crucial for
modern high-volume/high-velocity data-driven applications,
necessitating a distributed approach to processing them. In
addition, data providers often require certain levels of confi-
dentiality for their data, especially in cases of user-generated
data, such as those coming out of physical activity/health
tracking devices (i.e., our motivating application). This
demonstration will showcase Synefo, an infrastructure that
enables elastic scaling of DSMS operators, and CryptStream,
a framework that provides confidentiality and access controls
for data streams while allowing computation on untrusted
servers, fused as CE-Storm. We will demonstrate both sys-
tems working in tandem and also visualize their behavior
over time under different scenarios.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query process-
ing; Distributed Databases

Keywords
Distributed Data Stream Management System; Continuous
Queries; Confidentiality; Elasticity

1. INTRODUCTION

The convergence of computing / sensing / mobile devices is
generating a plethora of diverse data streams and is one
critical aspect of the Big Data landscape [12], often re-
ferred to as the Velocity dimension. Modern data stream
management systems (DSMSs) have been proposed to ad-
dress the needs of monitoring applications over incoming
data streams. DSMSs have been around for many years,
as academic prototypes [4, 5, 7, 23] and commercially [1,
2]. A lot of the systems research work in DSMSs has dealt
with scheduling in single-server environments [8, 18, 13], load
shedding in single-server environments [20, 19, 16, 15], and
fault tolerance in distributed environments [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

SIGMOD ’15 May 31 - June 4, 2015, Melbourne, Victoria, Australia

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2758-9/15/05 ...$15.00.
http://dx.doi.org/10.1145/2723372.2735357

859

The system that we will demonstrate, CFE-Storm, has two
distinct components that are working in tandem. First of
all, we have Synefo, which provides a data/control rout-
ing infrastructure on top of the Storm engine [21], in order
to enable scale-out and scale-in of Continuous Query (CQ)
operators. Secondly, we have CryptStream, which provides
confidentiality and access controls for streaming data, ac-
cording to policies established by the data providers.

Motivating Application We assume an environment where
personal health data (e.g., heart beats per minute) and phys-
ical activity data (e.g., number of steps walked, number of
miles ran) of individuals, along with location and environ-
mental data (e.g., barometric pressure), are being generated
by monitoring devices such as Fitbit, Microsoft Band, Apple
iWatch, etc. This data serves as input to a set of monitoring
applications, which are implemented as C@Qs. Such applica-
tions can be running:

e on behalf of the user (e.g., notify me when I reach 10,000
steps in a day),

e on behalf of the user’s primary care physician (who has
been previously given full access by the user),

e by health insurance companies (to which the user may
have provided only aggregate-level permissions in order
to get a “healthy-living” discount),

e by scientists running experiments with micro-climate data
(to which the user has previously provided only barom-
eter reading access), and

e by the city (to which the user may have provided only
aggregate-level permissions on location data), in order to
help identify walk-friendly/bicycle-friendly areas.

Demonstration Overview This demonstration will vi-
sualize what is happening “under the hood” for CE-Storm
and its components Storm, Synefo, and CryptStream. At
first, we will showcase the different confidentiality levels that
CryptStream supports, implementing access control policies
for data providers, compute servers, or data consumers, for
a workload where there is no need for scale-out / scale-in.
Our demonstration will show which data tuples are trans-
mitted encrypted (color-coded for the different encryption
schemes), which tuples are special punctuation tuples, the
load at each compute node, the underlying topology, the ac-
cess control policies of each data provider, etc. Then, we
will demonstrate CryptStream running over Synefo with a
workload that requires scale-out, in order to avoid overload.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2723372.2735357&domain=pdf&date_stamp=2015-05-27

Over-time, the workload will return to normal levels and will
showcase the scale-in operation.

Next, we present the CE-Storm System Model (Sec. 2), fol-
lowed by a short introduction to Synefo (Sec. 3) and to
CryptStream (Sec. 4). We conclude with a detailed descrip-
tion of the demonstration setup and scenarios (Sec. 5).

2. SYSTEM MODEL

Fig. 1 depicts the stack of CE-Storm. On the bottom layer,
Storm’s [21] engine is used. We preferred Storm over other
systems, like Spark Streaming [23], mainly because the for-
mer is designed for per-tuple granularity during processing.
Above Storm, Synefo is our proposed elastic shared—nothing
approach for online scale—out/in stream processing. On top
of that, CryptStream is responsible for ensuring confidential-
ity and access control of streaming data, according to data
provider, server, or data consumer policies.

Synefo assumes a generic data-flow oriented computation
model. This means that input is typically in the form of data
streams and different data processing tasks can be executed
at each processing node (or component, ¢;). We assume a
distributed system, so the processing nodes are part of a
topology". Each data processing task will receive input from
one or more nodes; its output will be “fed” to another node
in the topology, in a pipeline fashion.

Our generic model allows for different styles of computation.
In particular, it can support DSMS-style computation: pre-
defined CQs, consisting of multiple operators executing at
one or more components, continuously processing the in-
coming streaming input and producing streaming output.
This generic model can also support multi-stage computa-
tion that is typical with Map/Reduce and other modern an-
alytics frameworks: each job j is broken down into a set of
tasks t € T, representing the consecutive stages of a data
transformation process. Tasks are connected to form an ex-
ecution tree (or a topology). A task is executed by one or
more components ¢; in parallel, and either disseminates data
in the topology, or processes incoming data.

3. SYNEFO OVERVIEW

Load management in DSMSs has previously been addressed

in stand-alone and distributed environments, primarily through

load shedding, i.e., by dropping some of the tuples when
there is an overload, in order to guarantee an acceptable
Quality of Service (QoS). Such QoS is usually described
in the form of the maximum acceptable response time or
delay target [20, 19]. Load shedding is typically able to
maintain latency and throughput at acceptable levels, how-
ever, this usually happens at the expense of the Quality of
Data (QoD) produced. Load balancing becomes even more
challenging when transaction processing or decision-making
workloads are involved. Previously demonstrated work has
shown how in—memory relational database management sys-
tems handle streaming data for the aforementioned types of
workloads [11].

Unfortunately, most (if not all) of the previous approaches

'We make the distinction between physical and active topol-
ogy; this is explained in the next section.

860

workers

Synefo
Server

Figure 1: The proposed system stack.

Synefo
spout

Synefo
bolt

gy

I

Storm Engine

| ERES |

Synefo
bolt

assume that available processing components are known be-
fore the start of the computation and all of them remain
active all the time during the computation, irrespective of
whether they are used in the computation or not [21, 3,
23]. This requirement can impact a system’s efficiency, in
terms of cost, energy consumption and performance. On the
one hand, if fewer components are provisioned, the system
will soon reach its maximum capacity, and performance will
deteriorate. On the other hand, if more components have
been provisioned but are under—utilized, there will clearly
be wasted resources, which would translate in extra energy
costs, extra wear on computing nodes, etc.

Synefo? aims to provide an elastic execution environment for
data—flow oriented computation, which can change the num-
ber of active processing components during runtime. Addi-
tional processing nodes can be included in the execution, if
some of the active nodes are struggling, and under—utilized
ones can be combined in order to keep the energy consump-
tion of the cluster low. Our proposed system initiates execu-
tion by dividing the available components into active (i.e.,
components participating in processing) and inactive (i.e.,
components which are part of the cluster, but are not pro-
cessing tuples). Synefo’s main role is to manage the activity
status of available processing components, and route tuples
to components accordingly. Our implementation works with
Storm and it consists of (a) a Storm component API (Synefo
bolt and spout), and (b) a coordinating entity for orchestrat-
ing the scale-out/in actions (Synefo server) (Fig. 1). Our
design choice to have active and inactive operational com-
ponents emanates from Storm’s design limitations and our
initial goal to have Synefo work with vanilla Storm clusters.

Online scale—out with shared state among processing com-
ponents has been previously proposed in the work of Fernan-
dez et al. [10]. Their prototype used virtual machine (VM)
backups of upstream operators, which were responsible for
disseminating state when operators were scaled out. How-
ever, the backup upstream operators will be a bottleneck
in congested environments. Also, maintaining shared state
among operators can become “painful” in a DSMS, where
hundreds of operators exist. Our approach aims to elimi-
nate shared state costs and achieve better scalability by fol-
lowing the share-nothing paradigm. Recent work from Wu

2Synefo comes from the Greek word cvrrepo which means
cloud.

(a) ops is over—utilized (b) ops’s state is repli- (c¢) Both operators are (d) Synefo triggers a (e) ops is inactive and
and op4 is inactive cated to op4 active scale—in op4 is processing tuples
Figure 2: Synefo’s scale—out and scale—in scenario

et al. [22] has demonstrated ChronoStream, an elastic dis- e Sends command tuples to all downstream bolts notifying
tributed stream processing engine. Synefo provides similar them about the scale—out operation
functionality, in terms of elasticity, but in a shared—nothing

] ’ e Updates routing table information, to include the newly
manner and is designed to work on top of Storm.

added bolt in the active downstream components.

Every time a data processing task is given to the DSMS,
an execution topology is created. There are two types of
topologies in Synefo: the physical topology of components
available in the distributed network of components, and the
active topology of components participating in the data pro-
cessing. Every time a scale-out/in command is given, com-

ponents are added to (or remove/d from) the active topology. 3.3 Synefo Bolt

At this point we have to mention that as in the Synefo server,
the Synefo spout has to maintain an active connection with
its worker counterpart in the server.

The Synefo bolt is the last part of our Synefo system and
is similar to a Synefo spout. The main difference between
bolts and spouts is that the former are extended to handle
incoming command tuples for scaling out/in and exchanging
state with other bolts.

Next, we give a brief overview of Synefo’s main parts:
(i) Synefo server, (ii) Synefo spout, and (iii) Synefo bolt.

3.1 Synefo Server

. o) Bolts are required to maintain operator state, such as inter-
The Synefo server monitors resource utilization levels in the mediate results or join window data. When a Synefo bolt

cluster 'and has an active role during the initiation F’f a d?ta receives a command tuple for scaling—out /in, this state needs
processing task in the DSMS. The server awaits for incoming to be transferred. If an additional Synefo bolt is added to
connections of Synefo Storm components. A Coordinator

thread is launched so that it synchronizes the execution of
all worker threads, which are responsible for accumulating
resource usage statistics from each component. By the time
all components have connected and registered to the server,
topology information is gathered and the execution of the
topology initiates.

that stage of the computation, the new bolt has to receive
the current state of the already active bolt. Similarly, when
a bolt is scaled—in (meaning that is not going to be active any
more) its state should be sent to all operating bolts perform-
ing a part of the same computation. Synefo bolts transfer
state transparently from the operation which is currently ex-
ecuted in a component. It is the operator’s implementation

responsibility to utilize the received state accordingly.
Our prototype follows a centralized management approach

for the Synefo server. This can potentially lead to the server
being the single point of failure of the application. We will
consider fault tolerance as part of our future work.

Fig. 2 illustrates a scale—out and scale—in operation in Synefo.
The circles represent active components executing data pro-
cessing tasks and the bars indicate the load on each one.
Components op1 and ops are sending their output to ops,
which has exceeded its operational capacity (Fig. 2a). There-

3.2 Synefo SpOllt fore, Synefo decides that ops should be scaled—out and iden-
The component responsible for disseminating data into the tifies ops as an inactive component available. Components
topology is the Synefo spout. This is just a sub—class of op1 and opz are directed to involve ops as their downstream
Storm’s BaseRichSpout, having been extended to: (i) initi- component, and ops transfers its state to ops (Fig. 2b). Af-
ate operation by registering to the Synefo server, and (ii) ter the scale—out finishes, we can see that the load has been
perform scale—out/in operations. In addition, during execu- balanced among components and, in fact, ops is underuti-
tion the Synefo spout reports resource usage data periodi- lized (Fig. 2c). Hence, Synefo initiates a scale-in procedure
cally and is able to execute scale—out/in commands directed (remaining state in ops is sent to ops) and components op;
by the Synefo server. A downstream component of a Synefo and opz are directed to exclude ops from their active com-
spout is assumed to always be a Synefo bolt, because a spout ponents (Fig. 2d). Finally, the components carry on with
represents a stream of incoming data in Storm. Every time the execution and component ops is inactive (Fig. 2e).

a scale-out/in command is received by a Synefo spout, it up-

dates its routing information accordingly. For instance, if a Our prototype has been implemented as a general extension
Synefo spout is directed to scale-out by adding a bolt in its to the current Storm API. We decided to maintain the sep-
active downstream tasks list, the following happens: aration of data routing from computation as is the case for

861

| Scheme || Type of Queries |

Supported operators

| Information Gained by Adversary |

Select, Project, Equi-Join, Count, Group By, Order by

RND None None

DET Equality

OPE Range Select, Join, Count
HOM Summations

Aggregates over summations

Nothing
Equality of attributes
A partial to full order of tuples
Nothing

Table 1: Summary of what types of queries and operators are supported by each encryption scheme, as well as what each

scheme could reveal to a potential adversary.

Storm. Therefore, it is the operators’ responsibility to keep
state consistent at a time of an imminent scale—out, so that
a Synefo bolt transfers it to its peer bolts correctly.

4. CRYPTSTREAM OVERVIEW

Traditional database systems rely on login and user authen-
tication to maintain access controls over their data. When
these systems are outsourced, simple user authentication
may not be enough since a third party now has access to
the data, and is in control of the physical location of data
storage. A malicious third party may wish to gain knowl-
edge of their clients by snooping on their data. Systems
like CryptDB [17] aim at allowing third party storage with-
out leaking plaintext values through the use of encryption.

While this helps ensure confidentiality for traditional database

models, the techniques used by CryptDB do not extend to
the data streaming paradigm. The main issue is that stream-
ing data often does not have the data consumer controlling
or owning any part of the data provider, and therefore can-
not control how to encrypt data entering the system. To
help alleviate this problem, we developed CryptStream.

Figure 3: Simple ABAC policy stating that the Client be
either a doctor or a nurse in the ICU.

CryptStream aims at enforcing access controls in DSMSs via
cryptographic protocols which prevent unauthorized parties
from accessing data. Working under the assumption of an
honest-but-curious adversary, CryptStream protects a data
provider’s data from third party cloud service providers or
other untrusted computing platforms. Access control is en-
forced through the union of Security Punctuations [14] and
Attribute Based Access Controls (ABAC). ABAC policies
grant or deny access based on what attributes the querier
possesses. ABAC policies form a tree where each leaf node
is an attribute and internal nodes are the “and” or “or” of
the child nodes. An example is given in Fig. 3. This ex-
ample illustrates a scenario where a data provider wants
the data consumer to be a doctor or a nurse in the ICU
(doctor V (nurse A ICU)). ABAC policies are transmitted
via a Security Punctuation (SP). A SP is a tuple emitted
into a data stream wherein a data provider includes infor-
mation on which data is being protected, how the data is
being protected (i.e. what access control policy is being en-
forced) along with timestamps, ids, and other information.

862

Since CryptStream assumes an untrusted server, ABAC poli-
cies are enforced via Attribute Based Encryption (ABE).
Both the security policy and data remain hidden to the
server since only an encrypted string passes through the
server. Work done prior to CryptStream utilized ABE for
all data transmissions, which lead to prohibitively large per-
formance overheads given the costly nature of ABE [6]. To
improve upon this method, ABE is only used to encrypt
cryptographic keys from faster protocols which allow com-
putation to be preformed on the server without large over-
heads. CryptStream will only pay the cost of ABE whenever
an access control policy is updated by data providers.

Similar to CryptDB, there are four encryption techniques
used by CryptStream: random (RND), deterministic (DET),
order preserving (OPE), and Homomorphic (HOM). Each
encryption type enables some sort of computation on the
server, but also may reveal some information to the server
about each tuple. RND provides the strongest guarantee
by leaking no information, but does so at the sacrifice of
computation, since none can be done server-side. DET al-
lows the server to decide if two values are the same, which
enables equality selection and join queries, but will leak tu-
ple equality. OPE provides more functionality than RND
and DET since it holds the property that if x < y then
OPE(z) < OPE(y). This allows the server to run range
selections and joins, but it does provide the server with or-
derings amongst tuples. Finally, HOM allows the server to
compute summations and does so without sacrifice in con-
fidentiality since no information is leaked. Table 1 summa-
rizes these techniques. It is important to note that the Data
Provider chooses which level to encrypt their data based
what they are willing to reveal to the server.

1000

Unencrypted o221
Encrypted exem
Strawman m—

Throughput (Tuples/s)

Join (DET) Sum (Paillier)
Operator

Figure 4: Throughput for each of the different operations
supported for both unencrypted and encrypted streams.
Join includes both equality and range oriented joins.

Equality (DET) Range (OPE)

CryptStream allows for both data consumers and servers to
provide security policies in addition to those from the data
providers. Data consumer policies utilize Security Punctu-
ations, but are not limited to ABAC policies as long as the
server can support the intended policy. Server policies can
be of any variety that is supported. CryptStream will first

check the server policy to make sure a data consumer is al-
lowed access by their internal policy. The data consumer
policy is then verified, and if both return true, the tuple
is sent. ABAC and ABE enforce the data provider access
control policies, so if the data consumer was not given per-
mission via their attributes, the tuple is useless to them.
CryptStream provides the above listed contributions with
modest overheads. Fig. 4 shows the overheads of each en-
cryption type above. Tests were run on a cluster of 10 Mac
Minis running with 2 GB of ram and a 1.83 GHz Intel CPU
1400 processor. All components were programmed in Java
and packaged in Jar files for distribution. The system ac-
cepted simulated twitter-like data from a workload genera-
tor which provided control over distribution and frequency of
keywords. Throughput is not greatly affected by the increase
in computation, and confidentiality remains preserved.

S. DEMONSTRATION OVERVIEW

Our demonstration will focus on showing: (i) CryptStream’s
ability to enforce confidentiality policies on streaming data,
(ii) Synefo’s scale-out and scale-in abilities, and (iii) our
visualization tool for Storm/Synefo/CryptStream.

We will be using the Motivating Application described in
Section 1 for our demonstration, where the input data streams
are physical activity and health data of individuals, which
come with different levels of confidentiality, depending on
the type of data consumers.

The audience will be able to see CryptStream’s confidential-
ity enforcement and the way sensitive data can be protected
from possible adversaries in a cloud infrastructure. Also, it
will be made clear how Synefo makes elasticity feasible in a
widely accepted stream processing framework like Storm.

5.1 Storm User Survey

The motivation behind the development of a visualization
framework for Storm came from a user study we performed
in the Fall of 2014. A survey about Storm’s usability was
presented to members of the Storm users mailing list in or-
der to gauge the difficulty of using Storm. After one week,
we have gathered 10 responses from a variety of end users,
ranging from academic researchers to data analysts. We
present some of those results, in aggregate form here. Ta-
ble 2a shows that more than 30% of the users mentioned
that debugging is the most disruptive task in Storm, followed
by logging and monitoring an application. In addition, we
wanted to get users’ opinions on features of Storm that need
to be improved (Table 2b). Most participants replied that
the visualization techniques of Storm are poor and need to
be enhanced with extra features.

5.2 Visualizing CE-Storm

The purpose of the visualization component of our demon-
stration is to show what is happening “under the hood” for
Storm, Synefo, and CryptStream. In particular, we will em-
ploy the familiar visual paradigm of a network of connected
nodes to illustrate the topology of the underlying system.
We will provide both topology “views”: the physical topol-
ogy, where each node of the network is a compute node, and
the logical topology, where each node of the network is a
data processing task or C@Q operator.

863

Operation || Percent |

debug 30.43 Feature Percent
log 26.08 visuals 35.71
monitor 26.08 docs 21.42
docs 13.04 new features 21.42
deploy 4.34 support 21.42

(a) Operation that users found (b) Storm features that need
most disruptive in Storm improvement.
Table 2: Storm User Study Results

For each node, we will primarily show the current load in-
formation and give the option to drill down to get more
detailed information. This would be other useful statis-
tics such as a breakdown of the different types of tuples
going through the system (e.g., punctuation vs regular, un-
encrypted/RND/DET/OPE/SUM), amount of state stored,
etc. Within each node we will be able to see a sample of tu-
ples going through the system. Tuples will be coded accord-
ing to their type, as well as an indication as to the encryption
used for a given attribute in the tuple. =~ We will provide
aggregate statistics for each edge of the network. Our vi-
sualization will include a panel with summary information
about the overall status of the system, including input and
output rates. We will be able to make changes to the input
workload using this panel.

We aim to make the demonstration fairly interactive. To-
wards that end we will have video-playback type functional-
ity. In particular, we will also provide a pause button, that
will then allow us to slow down the speed of the visualiza-
tion, reverse, fast-forward, or skip to live mode. It should be
noted that execution at Storm/Synefo/ CryptStream will not
be affected; we will only be able to see the outcome of the
execution at our own pace. Another interactive feature will
be the ability to drill down and get more information about
different parts of the system (e.g., for nodes/edges, as men-
tioned above or the different access control policies). Finally,
we will show changes to the system (e.g., changing policies,
forcing scale-out/in, etc) through the user-interface.

5.3 Demonstration Setup

The testbed of our demonstration is going to be a cluster
of EC2 instances, forming a distributed network of stream
operators. The entire stack of Fig. 1 will be setup in each
EC2 instance. For data input, we are going to use synthetic
data produced by our own custom stream generator, which
produces data that follow user—defined (i) frequency distri-
butions, (ii) vocabulary, and (iii) word sampling methods.

5.4 Demonstration Scenarios

Our live demonstration will have four distinct phases:

(i) Simple: A simple demonstration of CryptStream, with
two different policies, meant to familiarize the audience with
the visualization interface; (ii) Complex: A demonstration
of CryptStream, with a more complex scenario, having poli-
cies from data providers and from data consumers;

(iii) Scale—out: A demonstration of Synefo’s scale—out
mechanism, by utilizing a workload where the incoming rate
is too high for an operator to be handled by a single node;
(iv) Scale—in: A demonstration of Synefo’s scale-in mech-
anism, using a workload where a high input rate is reduced,

so that fewer nodes are needed for the processing of the op-
erator that was previously scaled—out. =~ We provide more
details for the four different phases next.

Simple Scenario We will demonstrate different access con-
trol policies, as explained in the Motivating example. Crypt-
Stream will enforce different levels of access by deploying its
set of encryption techniques (Section 4). This will illustrate
the ability of CryptStream to provide different levels of ac-
cess to different data consumers depending on the trust level
for that data consumer.

Complex Scenario We will demonstrate a more compli-
cated scenario, where access control policies come from data
providers, data consumers, and compute servers. We will
show detailed access control policies information and update
the policies to see how CryptStream handles the changes.

Scale—out Scenario The third scenario is going to focus on
the elastic ability provided by Synefo and the trade—off be-
tween elasticity and confidentiality experienced in complex
scenarios of CE-Storm. We will extend the Simple Scenario,
but have an increased data input rate above the system’s ca-
pacity. This increase in the volume of incoming data might
be caused by a “health scare” that requires more data to be
accumulated to better monitor changes in personal well be-
ing, or by New Year’s resolutions which prompt more people
to join a gym and try to get fit. In order to avoid dropping
tuples, Synefo will take action by scaling—out the congested
operators. This scale—out will be triggered automatically by
following user—defined usage thresholds (provided to Synefo
at start—up). Our system will act proactively and if an op-
erator reaches a usage percentage equal or above the user—
defined threshold, it will be scaled—out. An important part
of this scenario will be to demonstrate the cost of scaling—
out, in terms of confidentiality. For instance, some operators
with strict confidentiality policies might have to scale-out to
machines that are not trusted. Therefore, we will demon-
strate a number of trade—offs in terms of performance gain
compared to confidentiality constraints relaxation.

Scale—in Scenario The last scenario will demonstrate a
scale—in situation, where the data input rate falls below a
certain limit, resulting in computing nodes being underuti-
lized. This could happen because, for example, the health
scare went away, or with the arrival of March (for those
trying to stick to their New Year’s resolutions).

Acknowledgments

This material is based on work supported by the National
Science Foundation under grants CNS-1253204, I1S-0746696,
and OIA-1028162.

6. REFERENCES

[1] IBM System S. http://researcher.watson.ibm.com/
researcher/view_group_subpage.php?id=2534.

[2] SQLstream. http://www.sqlstream.com/.

[3] Summingbird.
http://github.com/twitter/summingbird.

[4] D. J. Abadi et al. Aurora: A new model and
architecture for data stream management. The VLDB
Journal, 12(2):120-139, Aug. 2003.

864

[5] Y. Ahmad et al. Distributed operation in the borealis
stream processing engine. In Proc. of ACM SIGMOD,
pages 882-884, 2005.

D. T. T. Anh and A. Datta. Streamforce: outsourcing
access control enforcement for stream data to the
clouds. In CODASPY, pages 13-24. ACM, 2014.

A. Arasu et al. Stream: The stanford data stream
management system. Technical Report 2004-20,
Stanford InfoLab, 2004.

B. Babcock, S. Babu, R. Motwani, and M. Datar.
Chain: Operator scheduling for memory minimization
in data stream systems. In Proc. of ACM SIGMOD,
pages 253-264, 2003.

M. Balazinska et al. Fault-tolerance in the borealis
distributed stream processing system. ACM Trans.
Database Syst., 33(1):3:1-3:44, Mar. 2008.

R. Castro Fernandez et al. Integrating scale out and
fault tolerance in stream processing using operator
state management. In Proc. of ACM SIGMOD, pages
725-736, 2013.

U. Cetintemel et al. S-store: A streaming newsql
system for big velocity applications. PVLDB,
7(13):1633-1636, 2014.

H. V. Jagadish et al. Big data and its technical
challenges. Comm. of the ACM, 57(7):86-94, Jul 2014.
L. A. Moakar, A. Labrinidis, and P. K. Chrysanthis.
Adaptive class-based scheduling of continuous queries.
In Proc. of IEEE SMDB Workshop, pages 1-6, 2012.
R. Nehme, E. A. Rundensteiner, and E. Bertino. A
security punctuation framework for enforcing access
control on streaming data. In Proc. of IEEE ICDE
Conference, pages 406-415, 2008.

T. N. Pham, P. K. Chrysanthis, and A. Labrinidis.
Self-managing load shedding for data stream
management systems. In Proc. of SMDB Workshop,
pages 1-7, 2013.

T. N. Pham, L. A. Moakar, P. K. Chrysanthis, and
A. Labrinidis. Dilos: A dynamic integrated load
manager and scheduler for continuous queries. In
Proc. of SMDB Workshop, pages 10-15, 2011.

R. A. Popa et al. CryptDB: protecting confidentiality
with encrypted query processing. In Proc. of ACM
SOSP, pages 85-100, 2011.

M. A. Sharaf et al. Algorithms and metrics for
processing multiple heterogeneous continuous queries.
ACM Trans. Database Syst., 33(2):5.1-5.44, 2008.

N. Tatbul, U. Cetintemel, and S. Zdonik. Staying fit:
Efficient load shedding techniques for distributed
stream processing. In Proc. of VLDB, pages 159-170,
2007.

N. Tatbul et al. Load shedding in a data stream
manager. In Proc. of VLDB, pages 309-320, 2003.

A. Toshniwal et al. Storm@Qtwitter. In Proc. of ACM
SIGMOD Conference, pages 147-156, 2014.

W. Yingjun and T. Kian-Lee. Chronostream: Elastic
stateful stream computation in the cloud. In Proc. of
IEEE ICDE Conference, 2015.

M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica.
Discretized streams: An efficient and fault-tolerant
model for stream processing on large clusters. In Proc.
of HotCloud Conference, pages 423—-438, 2012.

[6]

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

