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ABSTRACT
The ever increasing supply of data is bringing a renewed attention
to query personalization. Query personalization is a technique that
utilizes user preferences with the goal of providing relevant results
to the users. Along with preferences, diversity is another important
aspect of query personalization especially useful during data ex-
ploration. The goal of result diversification is to reduce the amount
of redundant information included in the results. Most previous
approaches of result diversification focus solely on generating the
most diverse results, which do not take user preferences into ac-
count. In this paper, we propose a novel framework called Prefer-
ential Diversity (PrefDiv) that aims to support both relevancy and
diversity of user query results. PrefDiv utilizes user preference
models that return ranked results and reduces the redundancy of
results in an efficient and flexible way. PrefDiv maintains the bal-
ance between relevancy and diversity of the query results by provid-
ing users with the ability to control the trade-off between the two.
We describe an implementation of PrefDiv on top of the HYPRE
preference model, which allows users to specify both qualitative
and quantitative preferences and unifies them using the concept of
preference intensities. We experimentally evaluate its performance
by comparing with state-of-the-art diversification techniques; our
results indicate that PrefDiv achieves significantly better balance
between diversity and relevance.

1. INTRODUCTION
Motivation As the amount of data being generated every day in-
creases exponentially, the term “Big Data” used to represent the
challenge of large-scale data processing, is being mentioned more
and more frequently in everyday life [11]. This reflects the fact that
people are increasingly relying on using data as an integral part of
their daily activities (e.g., decisions and collaborations).

The challenge of scalable data processing can be viewed from two
viewpoints. Traditionally, scalability has been viewed from a sys-
tems point of view, where challenges can be attributed to an in-
creasing rate of data on the one hand, and network bandwidth, pro-
cessing power, and storage limitation on the other hand. Scalability
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can also be viewed from a human point view [13]. Given the vol-
umes of data, the challenge here is how to avoid overwhelming the
users with irrelevant results.

Query personalization is a well-know technique in dealing with the
scalability challenges from a human point of view. Query person-
alization often happen at two different levels:
• Ranking (local property) – Ranking techniques utilize user pref-

erences with the aim of providing the most relevant results to
the users [14]. These techniques can be distinguished as quan-
titative-based, qualitative-based, or hybrid, based on the type
of user preferences that they can support.
• Diversification (global property) – Since highly ranked objects

could be similar to each other, diversification techniques aim
to reduce the amount of redundant information in the results.
These techniques typically group data in sets that are most “dis-
similar" with each other (e.g., [2, 7]).

Diversity has various definitions in the literature [5]. The most
common definitions are based on similarity, where diversity means
to include in the results objects that are dissimilar to each other
(e.g. [17]). Other definitions are based on either semantic cover-
age, where diversity means to include objects that belong to differ-
ent categories (e.g. [1]), or novelty, where diversity means to in-
clude data that contains new information (i.e., information that has
not been presented previously) (e.g. [4]). During the past, many
result diversification models have been proposed, e.g. MaxMin and
MaxSum (e.g. [3, 10, 16]) and DisC Diversity [6]. Most existing
approaches to data diversification follow a top-k approach for se-
lecting diverse results, by assuming a fixed number k denoting the
number of diverse results to be retrieved and assigning some diver-
sity score to each selected result.

Even though the goal of diversity is to ensure potentially important
data is not lost due to its low ranking, however the result of diversi-
fication does not automatically imply relevancy for the users. That
is, diversity cannot ensure relevancy as in the case of ranking and
to the best of our knowledge, there is no diversity technique that
utilizes user preferences to ensure data relevancy similar to rank-
ings. Such a technique could address the problem of diverse results
which are at the same time relevant to the users.

In this paper, we present Preferential Diversity (PrefDiv), a new
personalization technique that combines ranking and diversifica-
tion, effectively addressing diversity while maintaining the rele-
vance of the results according to user’s preferences. PrefDiv fol-
lows a top-k approach, utilizing models that return ranked results.
PrefDiv provides certain guarantees on the dissimilarity and cover-
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age of the results, similar to DiSC Diversity [6]. At a high level,
PrefDiv starts by selecting objects above a given score or inten-
sity value, i.e., the most relevant results according to a user’s pref-
erences, and returns k diverse objects so that these objects ex-
hibit a degree of dissimilarity under different dimensions and user-
controlled distribution of intensity values.

Contributions This paper’s contributions are as follows:

• We introduce a new framework called PrefDiv, which is ca-
pable of generating results that are not only relevant to users’
preferences but are also diverse. Our framework provides users
with a fine control over the trade-off between relevancy and di-
versity through intuitive tunable parameters.
• We design and implement a prototype of a real system for Pref-

Div and design algorithms to work with the HYPRE hybrid
preferences model [9] so that PrefDiv can take into consider-
ation both qualitative and quantitative preferences when gener-
ating preferred diversified query results.
• We experimentally show that PrefDiv can successfully increase

coverage of the result set compared to other alternatives, and
achieves a significantly better Relevancy-Diversity trade-off ra-
tio than other models.

Outline The rest of the paper is structured as follows. Section 2
presents the background and related works, Section 3 introduces
Preferential Diversity and Section 4 describes the experimental en-
vironments and comparisons between our approach with other meth-
ods. Finally, Section 5 concludes.

2. BACKGROUND AND RELATED WORK
Many ranking techniques using preferences have been proposed.
These are comprehensively surveyed in Stefanidis et al. [14]. As
mentioned above, these techniques can be distinguished based on
the type of preferences they support for filtering and ordering data.
Mostly these techniques can handle only one type of preferences,
either quantitative preferences or qualitative preferences. How-
ever, each preference type has its own advantages and disadvan-
tages. Hybrid schemes support both qualitative and quantitative
preferences in an attempt to exploit the advantages of both types
of preferences while eliminating their disadvantages [12, 9]. In our
work, we utilize the HYPRE model [9], which is the most recently
developed hybrid scheme.

The HYPRE model and prototype system integrate qualitative and
quantitative preferences by means of preference strength or inten-
sity. In other words, a preference in the HYPRE model, is not seen
as a binary option; instead, it allows users to express their pref-
erences along with the intensity of that particular preference, i.e.,
how “strongly" a user feels about a fact. In the HYPRE model,
users submit both qualitative and quantitative preferences along
with an intensity value. The HYPRE model stores preferences in
a labeled directed and acyclic graph. Each node in the graph rep-
resents a query predicate. Quantitative preferences are represented
using edges that have the same starting and ending point. Quali-
tative preferences are represented by edges between two different
nodes. Each edge is labeled with a value that represents the pref-
erence’s intensity. Preference intensity is a decimal value between
-1 and 1 and is used to express either a negative preference, a pos-
itive preference, or equality/indifference. In order to incorporate
the nodes in a qualitative preference into the total order generated
by the quantitative preferences, the qualitative preferences are con-

verted into quantitative preferences by deriving an intensity value
for these nodes based on the existing qualitative preference inten-
sity value and a quantitative preference intensity value (or a default
value if this does not exist). When a query is submitted, the system
selects the best combination of preferences from the user’s profile
to filter and rank the query results.

Given our goal of achieving preferential diversity and the effective-
ness of the HYPRE model in retrieving and ranking objects based
on intensity values, we investigated ways to enhance the result of
the HYPRE model with diversity using existing schemes. There
are two widely used diversification models, MaxMin and MaxSum.
The goal of these two diversification models is to select a subset S
from the object space R, so that the minimum or the total pairwise
distances of objects in S are maximized. Formally,

DEFINITION 1. MaxMin generates a subset of R with the max-
imum f = minpi,pj∈Sdist(pi, pj) where dist is some distance
function, pi 6= pj for all subsets with the same size.

DEFINITION 2. MaxSum generates a subset of R with the max-
imum f = Σpi,pj∈Sdist(pi, pj) where dist is some distance func-
tion, pi 6= pj for all subsets with the same size.

The most recently proposed diversity framework is DisC Diversity
[6]. DisC Diversity is a method seeking to solve the diversification
problem from a different perspective. In DisC Diversity, the num-
ber of retrieved diverse results is not an input parameter. Instead,
users define the desired degree of diversification based on a com-
bination of content dissimilarity and coverage between results. For
any given user query, let R denote the set of all objects in the query
result. DisC Diversity considers two objects oi and oj ∈ R to be
similar objects, if the distance between oi and oj is less than or
equal to a tuning parameter r (radius). It selects the representative
subset S ∈ R according to the following conditions: (1) for any
objects in R there should be at least one similar object in S and (2)
all objects in S should be dissimilar with each other. These two
conditions ensure both coverage and the dissimilarity property of
a diverse result set. With the tuning parameter r, DisC Diversity
is capable of supporting one important feature called zooming that
allows users to adjust the value r. When r is increasing the result
set becomes smaller and more diverse, and when r decreases, the
result becomes larger and less diverse.

Our PrefDiv has several similarities with DisC Diversity. The key
differences between PrefDiv and DisC Diversity are (1) PrefDiv
follows the top-k paradigm that provides users with the option to
specify the size of the final result set by assigning a value to param-
eter k, whereas DisC Diversity adjusts the size of the result set by
changing its radius parameter r and (2) PrefDiv focuses on both the
relevance of the result set with respect to the users’ preference and
the diversity of the result set; DisC Diversity focuses only on the
most diverse representative subset. In addition, our implementation
of PrefDiv achieves high coverage by means of the HYPRE model.
In the next section, we will present PrefDiv in detail.

3. PREFDIV
In this section, we present the intuition and details of our proposed
Preferential Diversity (PrefDiv) framework. Without loss of gen-
erality, we will present PrefDiv utilizing the HYPRE model which
has motivated PrefDiv and used in its experimental evaluation. In
this, PrefDiv utilizes the HYPRE model to retrieve relevant data



Table 1: Parameters of PrefDiv

Parameters Range Usage
I 0 ≤I≤ 1 Selects the objects with inten-

sity value ≥ I in the initial set.
k 0 ≤k≤ S1 Specifies the size of result set.
r 0 ≤r≤M 2 Determines weather a pair of

objects is similar.
A 0 ≤A≤ 1 Determines the number of ob-

jects to be promoted to the re-
sult set for each iteration.

1 S = Size of Data Set 2 M = Max distance of dataset

and then outputs a representative set that balances the trade-off be-
tween relevance and diversity.

As mentioned in the previous section, the HYPRE model is capa-
ble of generating results that are most relevant to each individual
user’s interests. It achieves this by combining the intensity values
of qualitative and quantitative preferences provided by each user.
However, the most relevant result set is not necessarily the best
quality result set. Experimenting with the HYPRE prototype, we
have observed that data with high intensity value tends to be more
similar to each other, compared to the other data in the result set of
a query. Actually, it is not uncommon for some objects that fit the
query requirements and the user’s preferences to be hidden from
the user due to their relatively low combined intensity values com-
pared to other objects. Although data with a high intensity value
have a higher possibility to fulfill a user’s interests, this same data
might not be able to provide a broad view of the data, which is es-
sential for data exploration. Thus, even though retrieving data with
a high combined intensity value is important, increasing the cover-
age of the result is equally important for improving the quality of
query results.

When the size of a result set is fixed, an increase in coverage can be
achieved by means of diversity. Increasing the coverage of a result
set that contains the highest intensity value data will reduce the to-
tal intensity value of the result set, since some high intensity value
data will be replaced with lower intensity value ones. This observa-
tion motivated our PrefDiv framework whose goal is to increase the
coverage of the result set while minimizing its impact on the total
intensity value, thus improving the overall quality of the results of
user queries. At the same time, PrefDiv aims to allow users maxi-
mum flexibility in adjusting the degree of diversification – similar
to DisC Diversity [6], and give the user full control over the trade-
off between relevancy and accuracy. PrefDiv achieves this through
four tunable parameters which are described next.

3.1 PrefDiv Parameters
There are four user-specified parameters that drive the behavior of
PrefDiv (summarized in Table 1):

• I , which is the intensity value used to select the initial or input
set of objects. It is passed to HYPRE, and HYPRE returns all
the objects with an intensity value that is greater or equal to I .
• k, which represents the number of objects in the final result.
• r, which represents the radius of similarity. By assigning dif-

ferent values for r, users can directly control the definition of
similar and dissimilar data items. Let oi and oj represent two
different objects in our result set, and dist(oi, oj) denote the

Algorithm 1 PrefDiv

Require:
1: A set of objects P , a size k, a relevancy parameter A, and a

radius r.
Ensure:
2: A subset R of P .
3: create result set R← ∅
4: create a new set S ← ∅
5: while there exist unmark objects in P do
6: S ← Pick k objects with highest intensity from P
7: for all objects oi ∈ R do
8: for all unmarked oj in S that belongs to

NEIGHBOR(oi,r) do
9: mark oj as “Don’t Select”

10: while there exist unmarked objects in S do
11: pick and remove unmarked object oj ∈ S that has the

highest intensity value
12: R = R ∪ oi
13: if size of R = k then return R
14: else
15: increase number of objects added to R by 1
16: for all oj ∈ S do
17: if oj is unmarked and oj ∈ NEIGHBOR(oi, r) then
18: mark oj as “Don’t Select”
19: while number of objects added to R < (A ∗ k) do
20: pick and remove object oi ∈ S that has highest intensity

value
21: R = R ∪ oi
22: if this is the first iteration then
23: create new set G← ∀objects ∈ S that marked as “Don’t

select”
24: remove all objects in S from P
25: decrease A by half
26: if size of R < k and ∀objects in P are marked then
27: while size of R < k do
28: select object oi ∈ G that has highest intensity value

return R

distance between oi and oj with respect to some distance func-
tion. oi and oj are dissimilar to each other iff dist(oi, oj) ≥ r.
• A, which ensures that a user’s requirement for relevancy is ful-

filled. A defines the distribution of the intensity values of ob-
jects in the final result. When A = 1, the final result set would
simply be the top k objects from the initial set, i.e., the objects
with the k highest intensity values. When A = 0, the final re-
sult contains k dissimilar objects from the initial set. When A is
between 0 and 1 and given that PrefDiv is an iterative algorithm
(Algorithm 1), the final result will have at least A ∗ k objects
from every iteration. For example, when A = 0.5 and k = 20,
the first iteration will select at least 20 ∗ 0.5 items into the final
result set, the second iteration will select at least 20∗(0.5∗0.5)
items and so on; in each iteration A will be divided by half.

3.2 PrefDiv Algorithm
PrefDiv is an iterative algorithm. It accepts as user input the above
four parameters, I, k, r and A, and utilizes the HYPRE model to
select the initial input set P which contains objects with an intensity
value >= I . In each iteration, PrefDiv considers successive subsets
S of size k from the input set P . Algorithm 1 formally describes
the PrefDiv algorithm.



In the first iteration, PrefDiv considers the top-k objects, which
form the first subset S. It selects the object with the highest inten-
sity value from S and removes from S all its similar objects using
the NEIGHBOR(o, r) function (in Algorithm 1). NEIGHBOR(o,
r) takes an object o and a parameter r as inputs and returns all ob-
jects that are neighbors of o with respect to r. Then it proceeds to
the next object with the highest intensity value in S. It again keeps
this object in S and removes all its neighbors. PrefDiv proceeds
in a similar fashion keeping in S only "representative" objects until
all objects in S have been considered and kept as representative ob-
jects. An iteration completes by moving the A ∗ k objects with the
highest intensity values from S to the final result set R. When an
iteration completes, if the size of the result set R equals to k, Pref-
Div returns R and terminates. Otherwise, it proceeds to the next
iteration after selecting the next k objects from the input set P to
form the next subset S.

PrefDiv returns a final result set R of user-specified size k, with a
user-specified degree of diversity r, and a certain amount of rele-
vancy with respect to the user’s preferences by ensuring that at least
A ∗ k objects with the highest intensity values from each iteration
are part of the final result set.

4. EXPERIMENTAL EVALUATION
We implemented PrefDiv on top of the HYPRE prototype in order
to evaluate its performance. Using real data, we compared PrefDiv
to MaxMin and MaxSum [3, 10, 16] which follow the same top-
down paradigm like PrefDiv, with respect to coverage and the pro-
vided Relevancy-Diversity trade-off.

4.1 Evaluation Metrics
In our experimental evaluation, we used the following four metrics:

DEFINITION 3. Coverage – Corresponds to the total possible
number of objects touched by this result set.

DEFINITION 4. Total intensity value – Given one lists of ob-
jects, the total intensity value represents the sum of intensity values
of the objects in that list.

DEFINITION 5. Total pairwise distance – Given one list of ob-
jects, the total pairwise distance represents the sum of the pairwise
distances of the objects in that list.

DEFINITION 6. Relevance and Diversity trade-off ratio –
Given a diversification model, the relevance and diversity trade-off
ratio represents the percentage of total pairwise distance increase
with respect to HYPRE, when sacrificing one percent of total in-
tensity value with respect to HYPRE.

The HYPRE model generates results for a user query by selecting
k objects with highest intensity value from all objects that have
intensity value greater than or equal to I . Thus, the HYPRE model
gives the upper bound of total intensity value for any model. On the
other hand, by the definition of MaxSum, the total pairwise distance
of a result set generated by MaxSum is the upper bound of the total
pairwise distance for any model. Therefore, for any result set, in
order to find out how much total intensity value and total pairwise
distance are lost, one has to compare with the corresponding upper
bound to calculate the performance loss.

The relevancy and diversity trade-off ratio for each model can be
calculated as follows:

First, find the percentage of the total intensity value decrease for
each model with respect to the upper bound of the total intensity
value:

1− Total intensity value of a model

Total intensity value of results from HY PRE
(1)

Second, find the percentage of the total pairwise distance for each
model with respect to the upper bound of the total pairwise dis-
tance:

Total pairwise distance of a model

Total pairwise distance of MaxSum
(2)

Third, find the percentage of improvement of the total pairwise
distance for each model with respect to HYPRE:

Result from (2) of this model

Result from (2) of HY PRE
− 1 (3)

Finally, utilize the results from above to find the Relevance and
Diversity trade-off ratio:

Improvement of total pairwise distance

Total intensity value decrease
(4)

4.2 Experimental Testbed
We implemented the PrefDiv prototype in Java 1.7, and used a
MySQL server to store all the intermediate results from HYPRE.
The HYPRE prototype also uses MySQL to store the data, and
it uses the Neo4j 2.0 engine to store the preference graph. The
HYPRE implements the queries for both MySQL and Neo4j in Java
1.7. The MaxMin and MaxSum algorithm used in our experiments
were implemented based on Definitions 1 and 2.

In our experiments we used the same data previously used in the
evaluation of the HYPRE prototype [9, 8]. This was extracted from
an extended version of the DBLP dataset [15], that contains both
the DBLP dataset (2011 version) and information about citations.
The relations given by the DBLP dataset are stored in four tables:
author(aid, full name), citation(pid, cid), dblp(pid, title, venue,
year, abstract) and dblp author(pid, aid). The generated prefer-
ences cover all possible types of preferences:

• Venue Preference (quantitative preference): Preference on the
venue based on the venues where an author published
• Author Preference (quantitative preference): Preference for an

author based on the co-author information
• Preference of one author over another (qualitative preference):

Author A is preferred over author B.
• Preference of one venue over another (qualitative preference):

Venue X is preferred over venue Y.
• Negative Venue Preference (quantitative preference): For each

user A, a negative preference towards the venues where she did
not publish but other authors that were cited by A did publish.

For diversity purposes, we consider the author’s full name, the
paper’s title, the paper’s venue, the paper’s publication year, and
whether there is abstract information or not, as the different impor-
tant dimensions. We have used hamming distance to measure the
pairwise distance for the data used in our experiments.

4.3 Experimental Results
Our experimental data set is retrieved through the HYPRE proto-
type (for the same user as in HYPRE experiments, i.e., uid=38437)
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Figure 1: Coverage, A = 0.53, r = 2
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Figure 2: Coverage, A = 0.55, r = 3
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Figure 3: Total Intensity,
A = 0.5, r = 3
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Figure 4: Total Pairwise Distance,
A = 0.5, r = 3
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Figure 5: Total Intensity,
A = 0.5, r = 2
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Figure 6: Total Pairwise Distance,
A = 0.5, r = 2
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Figure 7: Relevancy-Diversity Trade-off
Ratio, A = 0.5, r = 2
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Figure 8: Relevancy-Diversity Trade-off
Ratio, A = 0.5, r = 3

with intensity value > 0.1. This consists of 339 tuples with inten-
sity values ranging from 0.7556 to 0.1 and the maximum pairwise
distance between two tuples being 5 (i.e., same as the number of di-
mensions considered for diversity purposes). We evaluate the per-
formance of all models based on these 339 tuples with both r = 2
and r = 3, because 2 and 3 are the middle points of dimensionality
of our experimental data set. Also, in order to properly compare
with other alternatives, we had to set the parameter A of PrefDiv
to be a constant, and since we want to demonstrate the ability of
PrefDiv to balance the trade-off between relevancy and diversity,
for this experiment, we set A to be 0.5.

Coverage (Definition 3) We compared the average coverage of
PrefDiv, MaxMin, MaxSum and HYPRE (which is simply the top-
k objects with the highest intensity values) by initially assigning 6
to k (which is about 2% of the entire experimental data set) then

increase k by 3 (about 2%) for each step. We took 16 steps in total,
which means that we increased the size of the result set from rela-
tively 2% of the experimental data set to 15% of the experimental
data set.

In terms of average coverage, based on results shown in Figure
1, when r is 2, PrefDiv has on average 80.46% improvement over
MaxMin, 232.98% improvement compared to MaxSum, and 15.09%
improvement when compared to HYPRE. When increasing r to 3
(as shown in Figure 2), results indicate that PrefDiv has on aver-
age 19.97% improvement compared to MaxMin, 40.49% improve-
ment compared to MaxSum, and 16.77% improvement compared
to HYPRE. These results indicate that when compared to other al-
ternatives, PrefDiv is able to improve the average coverage while
retrieving a diverse but still reasonably sized subset of the results.



Table 2: Pairwise Distance k: 30, A: 0.5, r: 3

Distance One Two Three Four Five
HYPRE 1 18 98 196 122
PrefDiv 1 3 34 133 264
MaxMin 0 0 0 93 342
MaxSum 0 0 1 45 389

Total intensity value and total pairwise distance (Definitions 4
and 5) Results with a higher total intensity value indicate that the
objects within this result set are more relevant to users’ preferences.
Results with a higher total pairwise distance indicate that the ob-
jects within this result set are more dissimilar to each other. We
compared these two metrics among different models (as illustrated
in Figures 3, 4, 5, and 6). The results indicate that for the total pair-
wise distance, PrefDiv performs much closer to the upper bound
(MaxSum) than the intermediate point between dissimilarity-focused
approaches (MaxMin, MaxSum) and relevance-focused approaches
(HYPRE). In terms of total intensity, PrefDiv again performs much
closer to the upper bound (HYPRE) than the intermediate point.

Also by looking at the distribution of the total pairwise distances
for each model, the results from PrefDiv cover a larger range when
compared to MaxMin and MaxSum. This helps explain the advan-
tage of PrefDiv in average coverage (Table 2, illustrates the distri-
bution of distance with k = 30, A = 0.5, r = 3 that contains 435
pairwise distances between 30 tuples).

Relevance and Diversity trade-off ratio (Definition 6) As men-
tioned in Section 3, when measuring the quality of a result set, it
is also important to measure the trade-off between relevancy and
diversity. Hence for each percentage of total intensity value traded,
we seek the most improvement in total pairwise distance.

In our experiments, we calculated the relevance and diversity trade-
off ratio for each model (as illustrated in Figures 7 and 8), with k
ranging from 12 to 51 (which is about 4% - 15% of the experimen-
tal data set), A = 0.5, and r = 2.

We observed that on average PrefDiv is able to outperform MaxMin
by 363%, with a maximum of 834% improvement (when k = 21),
and outperform MaxSum by 461% on average, with a maximum of
1180% improvement (when k = 21). When r is increased to 3,
PrefDiv is able to outperform MaxMin by 214% on average, with a
maximum of 652% improvement (when k = 12) and outperforms
MaxSum by 264% on average, with a maximum of 667% improve-
ment (when k = 12). These results indicate that PrefDiv is sig-
nificantly more effective when dealing with the trade-off between
relevance and diversity than other alternatives.

Take-away Our experiments show that when compared to other
solutions, PrefDiv not only expanded the coverage of the result set
(hence, increased the representability of the results), but it also per-
formed significantly better when balancing the trade-off between
relevance and diversity.

5. CONCLUSIONS
In this paper we presented a new framework called Preferential Di-
versity (PrefDiv) that aims to find the best balance point between
relevance and diversity for query results. PrefDiv’s capability to
achieve this balance point was shown by implementing PrefDiv on
top of the HYPRE preference model that incorporates both qual-

itative and quantitative preferences and utilizes user-specified pa-
rameters to shape the query result. We experimentally evaluated
PrefDiv using real data extracted from DBLP. The experimental re-
sults showed that PrefDiv supports wider coverage of results than
other models. In terms of the relevance-diversity trade-off ratio,
PrefDiv can outperform other alternatives by up to 1,180%.
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