
Stream Query Processing on Emerging Memory
Architectures

Chelsea Mafrica, John Johnson, Santiago Bock, Thao N. Pham,
Bruce R. Childers, Panos K. Chrysanthis, Alexandros Labrinidis

University of Pittsburgh, Department of Computer Science
Email: {cem37, jdj20, sab104, thao, childers, panos, labrinid}@cs.pitt.edu

Abstract—Stream query processing is becoming increasingly

important as more time-oriented data is produced and analyzed

online. Stream processing is typically memory-resident for the

fastest processing of ephemeral data. With workload consolida-

tion, processing separate data streams on the same processor

may lead to harmful contention between query workloads. This

contention may become particularly problematic as new main

memory technologies are adopted, such as phase-change memory,

that have asymmetric read and write latency. This work presents

a preliminary study of performance implications of consolidation

and emerging memory on stream query processing. We show

that contention in the memory subsystem worsens with a phase-

change main memory, suggesting that new stream optimization

and hardware approaches will be required to achieve quality of

service and quality of data guarantees in future computer servers.

I. INTRODUCTION

Three important trends, spanning workload consolidation,
stream processing, and computer architecture, are materializing
that have potentially important consequences on one another.
There is increasing consolidation of workloads to run on the
same servers for increased utilization (e.g., in the cloud).
Stream processing is also becoming prevalent as more and
more ephemeral data is produced that must be analyzed online
in real time. Finally, main memory organizations are moving
toward designs incorporating alternative bit cell technologies
due to DRAM scaling obstacles.

The challenge is the way these trends interact. For consol-
idation, multiple, independent instances of stream processing
may be placed on the same system. Data management for the
stream is often memory-resident for fast processing to meet
quality of service (QoS) and quality of data (QoD) guarantees.
The data is also often short-lived, entering and exiting quickly.
By consolidating memory-resident processing workloads, ad-
verse contention can arise in the memory subsystem. For
instance, two workloads may compete for the same memory
resources, such as the row buffers that cache memory pages
internally to the DRAM, the queues that hold pending memory
operations, and the banks that support parallel access. When
contention is severe, QoS and/or QoD may be harmed, possibly
conflicting with scheduling and optimization.

At the same time that memory-resident stream process-
ing has taken hold and consolidation has become standard,
the memory subsystem itself is undergoing radical redesign.
DRAM is at the point where scaling to smaller sizes has be-
come problematic. According to the International Technology
Roadmap for Semiconductors, scaling DRAM much further
than current node sizes faces major obstacles for reliability and
power leakage. This has set off a race to find new memory that

can continue to rapidly increase capacity (i.e., memory chip
density) to keep pace with larger and larger data sets, including
those in stream processing.

While there are several potential memory techniques, such
as tiered memory and 3D stacked memory, that might help al-
leviate the challenge with DRAM, novel memory technologies
will likely play a critical role. Phase-change memory (PCM),
spin-torque transfer memory (STT) and domain-wall memory
(DWM), among other more exotic technologies, are all can-
didates for replacing the traditional charge-based (capacitor)
design used by DRAM. Although structure and operation of
these new technologies differ, the basic approach is similar—
avoid using charge to store a bit. Typically, resistance is used.

PCM is a leading candidate: Prototypes have demonstrated
exceptional scalability and read performance on par with
DRAM. However, PCM uses a heating and cooling process
to write a bit into a chalcogenide glass, leading to long
write latency, high write energy and wear out. Although many
architectural solutions have been proposed to manage writes
in PCM (e.g., wear leveling), it is likely that the asymmetric
latency of reads and writes will be exposed to software. For
memory-resident stream query processing under consolidation,
PCM’s long write latency may cause especially adverse con-
tention. To mitigate this competition, the query processing and
system layers may need to work directly and cooperatively
with the hardware to achieve QoS and QoD goals.

Given these three trends, there is a need to understand to
what degree they impact one another, and whether action needs
to be taken to mitigate the impact. For instance, if memory
contention worsens due to PCM’s long latency writes, then
the stream query scheduler may need to be memory-aware to
best schedule and optimize queries. Alternatively, the memory
architecture may need to be aware of query processing to
partition memory resources, under the control of software, for
predictable behavior and priority enforcement.

This paper describes a first preliminary look at this prob-
lem. The goal is simple: Determine whether new memory
technologies, i.e., PCM, worsen contention when multiple,
separate stream query tasks are co-located. The answer will
guide the data management, systems and computer architec-
ture communities on whether this problem is worth further
investigation, and the development of new solutions.

To answer the question, we use a state-of-the-art stream
query processing system, AQSIOS [4], and a detailed, accu-
rate memory simulator, HMMSim [2]. We examine a hybrid
memory architecture that has both DRAM and PCM. In one
case, we allocate the continuous query (CQ) data entirely to
DRAM, and in another case, to PCM. By examining these
two choices, we cover a spectrum of architectures; e.g., a

978-1-4673-6688-5/15/$31.00 c�2015 IEEE

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:27:49 UTC from IEEE Xplore. Restrictions apply.

hybrid main memory that uses some DRAM and some PCM
for the CQ data will likely have behavior that falls between
the DRAM-only and the PCM-only cases. The cases are useful
for finding evidence that memory contention will worsen, and
ultimately must be collectively managed at the system, stream
query processing, and hardware layers.

II. IN-MEMORY QUERY PROCESSING

A. Stream Processing
Today the ubiquity of sensing devices as well as mobile

and web applications continuously generate a huge amount of
data which takes the form of streams. These data streams are
typically high-volume, often high-velocity (speed) and high-
variability (bursty). In order to meet the near-real-time require-
ments of the monitoring applications and of the emerging “Big
Data” applications [7], data streams need to be continuously
processed and analyzed. Data stream management systems
(DSMSs) become the popular solutions to handle data streams
by efficiently supporting continuous queries (CQs). CQs are
stored queries that execute continuously, looking for interesting
events over data streams as data arrives, on the fly.

Most DSMS architectures, including our AQSIOS DSMS
prototype, provide a CQ processing engine, together with a
query optimizer, a scheduler, and a load manager/shedder. Each
submitted CQ is compiled and optimized into a query plan
consisting of multiple relational operators (i.e., select, project,
join, or aggregates), one or more source operators, and an
output operator. Each operator has one or more input queues
depending on its type. Tuples produced by an operator will be
placed in the input queues of the next operators downstream.
Since CQs exist in the DSMS for a long time, their plans
are optimized together, forming a query network, in which a
query can share with others some of its operators. In such a
case, the intermediate tuples produced by the shared operator
will be placed in a shared input queue for the two operators
downstream. The output of each CQ is continuously stored or
streamed to applications.

As opposed to traditional database management systems,
join and aggregate operators are defined over a window spec-
ified in terms of two intervals: range (r) and slide (s). For
example, an aggregate CQ may compute the average stock
price over the last hour (i.e., r = 1 hr) and update it every 30
minutes (i.e., s = 30 min). The range and slide intervals could
be defined either based on the number of tuples or time-based.
AQSIOS considers the more general time-based definition for
both the range and slide.

During execution, the scheduler is responsible for assigning
each operator a time slot to run. In order to reduce context
switching overhead, the schedulers allow batch processing by
letting each operator process up to a predefined number of
tuples in its input queue during each invocation. Our AQSIOS
prototype besides the standard round-robin (RR) fair schedul-
ing policy, implements the priority-based scheduler Highest
Rate (HR) [13], which optimizes average response time of CQs
and the two-level class, class-based scheduler CQC [10]. In the
event that a DMSM becomes overloaded, it sheds the excess
load, typically by dropping tuples at the source operators [11].

B. Hybrid Memory Architecture
A typical architecture for a hybrid memory is shown in

Figure 1. This architecture has one or more CPUs (a.k.a. cores)

with private instruction and data L1 caches. Requests from
CPUs are queued in the L1 queues. An L2 cache is shared
by all CPUs. A single L2 queue handles requests from all
CPUs. We assume there is enough bandwidth to serve all
request currently in the L1 and L2 queues with the same delay.
However, if more requests are issued than a queue can hold,
the previous level is stalled and does not issue requests until
a queue slot becomes free.

OOO CPU

L1 CACHE

L2 SHARED CACHE

OOO CPU

L1 CACHE

L1 QUEUES

L2 QUEUE

HYBRID MEMORY CONTROLLER

CONTROLLER CONTROLLER

PER BANK QUEUES

DRAM BANKS PCM BANKS

PCM BUS DRAM BUS

DRAM BANKS DRAM BANKS PCM BANKS PCM BANKS

Fig. 1. Hybrid main memory architecture

A hybrid-memory controller forwards L2 miss requests to
the memory (DRAM or PCM). Memory requests from the hy-
brid memory controller go to the DRAM or PCM controllers.
Each controller has several queues (one queue per bank). The
controller records the state of each bank independently, and
issues commands to the banks based on their state and pending
requests in the queues. The controller also schedules the bus
that is shared by all banks of each memory type.

The memory queues operate differently than the cache
queues in that there is no assumption that there is enough
bandwidth to serve all requests in the queue. As a result,
requests in each memory queue are serviced one at a time
based on bank and bus availability.

With PCM, the performance bottleneck is often associated
with writes due to severely limited write bandwidth [5]. For
example, Choi et al. describe a state-of-the-art prototype 20nm
8Gb PCM chip that has 800MB/s read bandwidth, but a paltry
40MB/s write bandwidth [3]. The bandwidth is limited for two
reasons. First, programming a PCM cell takes much longer
than a DRAM write because a phase-change material has to be
heated and then quenched to change between crystalline (low
resistance) and amorphous (high resistance) states. Second,
heating uses a joule heater attached to PCM. To program a
cell requires large electrical current, and consequently, only a
small number of cells can be programmed simultaneously [6].

The extent to which restricted write bandwidth harms
stream query performance is dependent, of course, on the write
patterns of the associated data stream (e.g., event rates) and
query operations. A workload that has more writes is likely to
be more harmed by limited write bandwidth. However, even
a CQ workload that is not write-intensive can be adversely
affected when run with other query workloads. There is
aggregation of writes across all workloads, and any writes
will have the potential to occupy memory banks for a long
time period, which locks up those banks (busy with writes)
from servicing other requests, including reads on which further
query processing depends. Thus, memory operations, whether
reads or writes, may sit in queues waiting for service in a

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:27:49 UTC from IEEE Xplore. Restrictions apply.

Trace&
Reader& CPU&

&
& ROB&

Memory&
Manager&

Cache&
&

&

L1&

L2&

Memory&
&

& DRAM& NVM&

Simulated*Memory*Subsystem*

Co
nfi

gu
ra
>o

n&

St
a>

s>
cs
&G
at
he

rin
g&

Config&
Results&

Discrete&
Event&

Simula>on&
Engine&

AQSIOS&
&
&
&
&
&

Stream&
DB&

Trace&
Generator&

System*under*
Evalua4on*

Workload&&

(a)*Tracing*AQSIOS* (b)*Determining*Memory*Behavior*

Simula'on*Input*(Instruc'ons)*

Trace&
Repository&

Fig. 2. Tracing and simulation flow for analyzing memory behavior.

hybrid memory. This increased wait time percolates up through
the hardware into the software stack, leading to performance
degradation and missed QoS and QoD guarantees.

III. ANALYZING MEMORY BEHAVIOR

To understand how server consolidation, stream processing
and hybrid memory architecture interact, we developed an
analysis framework that incorporates stream query processing
and a hybrid main memory simulator (Figure 2).

The analysis framework is used in two phases. First, a CQ
system is traced. Second, the trace drives a hybrid memory
simulator. We describe these phases next.

A. Tracing Query Workloads
The first phase creates, initializes and traces stream query

workloads using AQSIOS, which is the “system under evalu-
ation” shown in Figure 2(a). AQSIOS is instrumented to trace
the query system at the instruction level using a custom Pin-
tool [9]. The trace captures all instructions executed by the
application, including instruction and data memory address
references. This trace can be related to important events during
CQ processing, such as the production of tuples from one
operator to the next.

Since instruction-level tracing is inherently slow (slow-
downs during tracing may be 100⇥ or more!) and consumes
much disk storage, the trace phase is conducted only for a
small, representative snapshot of execution. In our analysis
framework, stream processing is warmed-up before the snap-
shot is taken. The framework determines the warm-up, which
includes DSMS initialization and query setup. We also allow
the first range of queries to be processed before the snapshot is
taken. In this way, all the major data structures are populated
and warmed prior to tracing.

The trace snapshot is taken over a period long enough to
process several tuples through the system. For our experiments
(described in Section IV), the snapshot is 1 billion instructions
long. The trace produced for this period is around 1 GB. Sev-
eral workloads are run through AQSIOS, each one producing
an instruction-level trace that is stored in the trace repository.
Traces in the repository are used by the second phase.
Queries We use two query networks as described below:

• QN-A: A query network that consists of three classes
of queries, whose priorities are 6, 3 and 1 with delay
targets 300ms, 400ms and 500ms, respectively. All the

three classes have the same set of 11 queries, consisting
of five aggregates, two window joins, and four selects.

• QN-B: The same as QN-A except that we triple the size
of the first class so that, when using the real input trace
for the first class, the resulting workload is heavy enough
to create some load impact in the system.

Inputs We use two streams of synthetic data, denoted
SD

constant

and SD
step pareto

, and one of real data SD
real

.
We generated the input tuples for each source beforehand
and stored them in a file. Each tuple has a timestamp, which
indicates the time the tuple arrives during execution (relative
to the experiment’s start time) and reflects the input rate.

• SD
constant

: All the input streams coming to the three
classes have a constant input rate of [800-1500] tuples/s.

• SD
step pareto

: The input rate (per control period) of
classes 2 and 3 follows a Pareto distribution in the range
of [800-1500] and [300-800], respectively, with skew equal
to 1. These input rates are expected to overload the classes
if they are limited to their originally assigned capacity
portions. For class 1, which is the class of highest priority,
we change the range for its input rate distribution after
every 50-second period in order to vary the amount of
excess capacity it can share with the other classes (except
for the input of the query segment that can be shared with
class 3, which has the same input rate as class 3, so that
we can keep the entire workload of class 3 to be at the
same level during the experiment).

• SD
real

: The same input rate patterns as in SD
p

are used
for class 2 and 3, while the input rate of class 1 is a trace of
TCP packets between the Lawrence Berkeley Laboratory
and the rest of the world1.

B. Simulating Hybrid Memory
In the second phase of the analysis framework, traces are

extracted from the repository and used to dispatch memory
operations into the hybrid memory simulator. The simulator
has five main components as shown in Figure 2(b).

The trace reader loads traces, decompresses them and
sends them to the CPUs. The trace reader can load multiple
separate traces to create a trace for multiple simulated CPUs.
During simulation, each trace is “pinned” to a core, i.e.,

1 Dataset LBL-PKT-4/lbl-pkt-n.tcp is publicly available at the
following URL: http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:27:49 UTC from IEEE Xplore. Restrictions apply.

TABLE I. WORKLOAD MIXES

Name Description
W1 const 1000 noshared+const 1220 identical
W2 const 1000 noshared+const 1300 identical
W3 const 1000 noshared+const 1500 identical
W4 const 1000 noshared+real noshared
W5 const 1000 noshared+step pareto noshared
W6 const 1000 noshared+step pareto shared
W7 const 1200 identical+const 1300 identical
W8 const 1200 identical+const 1500 identical
W9 const 1200 identical+step pareto noshared
W10 const 1220 identical+real noshared
W11 const 1300 identical+const 1500 identical
W12 const 1300 identical+step pareto noshared
W13 const 1500+const 1300 identical
W14 const 1500+real noshared
W15 const 1500+step pareto noshared
W16 real noshared+const 1500 identical
W17 real shared+step pareto noshared
W18 step pareto noshared+const 1500 identical
W19 step pareto shared+const 1500 identical

there is no process migration between cores. The trace loader
dispatches the traces independently to each core. We use two
cores, which execute separate traces, corresponding to different
stream processing system instances. The traces are created
from the query workloads described above; we run 19 pairwise
mixes of these workloads (Table I, described in Section IV).

The memory manager translates a virtual address to a
physical address used by the CPU and memory hierarchy.
Because memory mapping depends on how the operating
system allocates pages, the simulator supports different models
of allocation behavior. For instance, memory allocation models
for random, round-robin and other mappings can be used. For
our experiments, we use round-robin mapping of pages to
memory banks to interleave physical addresses of the traces.

The CPU module receives trace entries from the trace
reader and recreates the instructions executed during trace
collection. Each instruction consists of an instruction memory
access, and zero or more data memory accesses, which are
sent to the L1 I or D cache. Data accesses proceed once the
instruction returns from the memory hierarchy. The CPU tracks
in-flight instructions (reorder buffer) and retires them after all
read data has come back from the caches.

The cache module models a multi-level cache with private
L1 instruction and data caches and shared L2 cache. The
caches receive memory requests from the CPU. The caches
either send requested data to the previous level (CPU or L1),
or forward the request to the next level (L2 or memory). Each
cache has a queue, which limits the number of requests at
or below the cache level. If a queue is full, requests from
previous levels are stalled until a queue slot is freed. The
queues, however, do not constrain how many requests can be
serviced at a level. Thus, the caches have enough bandwidth
to service all incoming requests.

The memory module is a detailed model of DDR4 DRAM.
It allows modeling PCM that can be accessed through the DDR
interface. The model includes multiple banks, row buffers, per-
bank or global queues, a bus and a scheduler. Bandwidth of
memory devices is limited by the number of requests that
can be serviced by all banks and by the bus bandwidth (con-
figurable parameters). The memory module also implements
a hybrid memory controller that redirects requests to either
DRAM or PCM, based on physical address.

The simulator is highly configurable with several parame-
ters, including cache block and page size, CPU issue width,
CPU reorder buffer size, cache size, cache associativity, cache

TABLE II. ARCHITECTURAL PARAMETERS

Parameter Value

4GHz processor 4-issue wide, out-of-order core,
128-entry reorder buffer
2 cores used in experiments

L1 I/D private cache 1KB per core, 4-way, LRU,
3 cycle hit, 16-entry queue

L2 unified shared cache 1KB, 16-way, LRU
32 cycle hit, 32-entry queue

4GB DRAM memory 64 banks, 32-entry queue per bank,
@ 1000MHz tCAS -tRCD-tRP : 12-12-12 (ns)
4GB PCM memory 64 banks, 8-entry queue per bank,
@ 400MHz tCAS -tRCD-tRP : 12-55-150 (ns)
PCM/DRAM bus 64-bit single-channel

access latency, cache queue size, number of memory banks,
memory bus speed, and row buffer open, access and close
latency. The simulator collects statistics for each simulation
object, such as CPUs, caches, memory banks and queues. It
also records the time spent by requests as they go through
the memory components (queues, cache tag arrays, memory
banks, buses). These times are aggregated at the CPU module
when requests come back from the hierarchy.

IV. IMPACT OF MEMORY SUBSYSTEM

For the experiments, we traced several CQ workloads in
AQSIOS. We measured how long AQSIOS takes to start-up
and process the first window of tuples. This takes 14 billion
instructions, which are skipped prior to tracing instructions.
One billion instructions are captured in the trace, along with all
instruction and data memory addresses. The traces are mixed
by the trace reader to emulate behavior of consolidating sep-
arate CQ stream processing instances on the same computer.

We use the query workloads in Table I for HR and RR
with and without priority. The workloads have real input rate
patterns (i.e., SD

real

) and query networks of real operators
(select, window aggregate and join, etc.), which appear in
typical monitoring continuous queries, such as the Linear
Road Benchmark [1]. We use single size input tuples that
corresponds to the size of TCP packets plus timestamp fields.
Intermediate and output tuples could grow to twice the size
of the input tuples as a result of join operations. AQSIOS
supports multiple query classes with different priorities. In the
table, “shared” means the optimizer allows common subex-
pression computations to be shared across query classes. “No
shared” means sharing happens in queries only within the same
(priority) class. “Identical” means all queries are the same,
i.e., perform the same operations. The other terms refer to
the synthetic data described in Section III-A. Our future work
will examine sensitivity to workload parameters and other
workloads like TPC-H.

We consider hybrid main memory that has DRAM and
PCM that is addressable by the CPUs. We simulate CQ data
either in DRAM or PCM, i.e., the ends of the spectrum
between a conventional DRAM main memory and a PCM
main memory. A hybrid memory of both DRAM and PCM
would likely have performance between these two designs.

The major architecture parameters for the hybrid memory
system are given in Table II. We use standard DRAM and
PCM access times and energy from the literature [12], [8]. We
use a 64-byte cache block, and PCM latencies from Qureshi et
al. [12] are adjusted to account for this block size. For PCM,
t
RP

is 0 for clean row buffers (due to non-volatility) and 150ns
for each dirty block in the buffer (due to power constraints
of PCM). The simulated main memory is configured with 8

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:27:49 UTC from IEEE Xplore. Restrictions apply.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

Sl
ow

do
w

n
HR, No Priority

DRAM 1 DRAM 2 PCM 1 PCM 2

Fig. 3. Slowdown on workloads with HR, no priority.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

Sl
ow

do
w

n

HR, Priority

DRAM 1 DRAM 2 PCM 1 PCM 2

Fig. 4. Slowdown on workloads with HR, priority.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

Sl
ow

do
w

n

RR, No Priority

DRAM 1 DRAM 2 PCM 1 PCM 2

Fig. 5. Slowdown on workloads with RR, no priority.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

W
1

W
2

W
3

W
4

W
5

W
6

W
7

W
8

W
9

W
10

W
11

W
12

W
13

W
14

W
15

W
16

W
17

W
18

W
19

Sl
ow

do
w

n

RR, Priority

DRAM 1 DRAM 2 PCM 1 PCM 2

Fig. 6. Slowdown on workloads with RR, priority.

memory banks per rank, 2 ranks per DIMM, and 4 DIMMs.
In total, there are 64 banks for both PCM and DRAM, which
corresponds to a server main memory.

Because we trace only a short snapshot of total execution,
we found that the instruction traces did not sufficiently exercise
the main memory when configured with a large, deep cache
hierarchy. This situation happens because tracing drastically
slows down the execution time of AQSIOS, which influences
how many tuples are processed (since processing is time

dependent). We found that this reduction in number of tuples
caused conventional large caches to exhibit good locality, even
for data streaming (which should actually have moderate to
poor cache locality). Rather than scaling up the number of
tuples processed and the size of the instruction trace snapshot,
which would increase tracing and simulation time, we scaled
down the cache sizes (see the table) to approximate expected
behavior during actual processing. We considered eliminating
the caches altogether, but our simulator does not support this

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:27:49 UTC from IEEE Xplore. Restrictions apply.

functionality. Thus, we configured the L1 and L2 caches to be
the smallest possible that the simulator supports (1KB). For
our initial study, we believe this is sufficient to understand how
DRAM and PCM affect the performance of stream processing.

Figures 3 to 6 show slowdowns for DRAM and PCM of
the workloads under the AQSIOS configurations. The graphs
have four bars per workload (pair of traces). The first two bars
are the slowdown of each trace in a pair when the CQ data is
in DRAM. The second two bars are the slowdown of the pair
when the CQ data is placed in PCM. Slowdown is execution
time of a trace run as part of a pair (with contention) divided
by the execution time of the same trace run by itself (no
contention). Execution time is the number of cycles reported
by HMMSim. The amount of slowdown reflects severity of
contention on the fixed work captured in the traces.

The results have a few important trends. The first trend
is that stream processing can indeed suffer from memory
contention; the processing of tuples by the operators generates
a significant number of memory operations. For the traces,
typically more than 40% of the instructions reference data
memory. When two instances of the query processing system
share the same memory, they compete for access to memory
read and write queues, the row buffers, and the memory bus.

Across the four AQSIOS configurations, there is about
a 1.18 slowdown when the CQ data is located in DRAM.
It is interesting that the slowdown varies only by a small
amount for all pairs in all configurations. We believe this
consistent behavior is due to the nature of the traces, exhibiting
similar behavior. It is also a property of the memory — the
DRAM has enough bandwidth to serve requests from a pair of
traces, which does not expose differences in trace sensitivity
to contention. We also note the configuration of AQSIOS has
only a small performance influence, particularly for DRAM.
We believe this happens because the query processing is not
taxed enough by the workloads to change the way queries
are optimized and scheduled. Furthermore, RR is oblivious
to priorities. As opposed to HR, RR keeps data longer in
buffers/queues in memory with very little opportunity for an
already cached data to be used by consecutively executing
operators. In the case of HR, a tuple produced by one operator
will be used/consumed with high probability by the immedi-
ately following operator.

The second trend is competition for memory resources is
much worse in the PCM case. The graphs depict slowdowns
1.36 to 1.47 for the four configurations. The occupancy of the
memory queues is higher than in the DRAM case since mem-
ory banks are more likely to be locked-up servicing writes.
This result indicates that CQ workloads have enough writes
to put pressure on servicing critical reads (i.e., read data de-
pendencies can impede subsequent instructions). Our memory
controller applies typical memory scheduling optimizations,
such as giving priority to reads over writes. However, once
a write has been issued to a memory bank, subsequent reads
to that same bank must wait. Reads to different banks, which
are not busy with writes, are scheduled in parallel.

The final trend is that the memory competition for PCM
causes more variability in execution, even though the traces
all have similar work. The issue is even small differences in
sensitivity to memory behavior of a trace will be magnified
by much longer write latency and lower write bandwidth
of PCM. That is, the increased competition for the memory

resources exposes minor differences in sensitivity in a pair of
traces. For instance, workload W10 in HR, No Priority has this
behavior. In the DRAM case, the pair of traces have slowdown
of 1.17 and 1.16. In the PCM case, the relative slowdown
difference is much greater, with slowdowns of 1.39 and 1.47.
This observation also holds with priority.

Overall, from these preliminary results, we conclude that
asymmetric read and write latency and bandwidth of a hybrid
memory can magnify memory contention. It exposes more
sensitivity of a query workload to competition, leading to
increased execution time and variability. These results are only
initial evidence; a more thorough study under a broader range
of workloads, query processing, and memory architectures is
needed, and is planned for the future.

V. CONCLUSION

This paper examines how performance of stream query
processing is influenced by consolidation and future memory
architectures. Using several query workloads with AQSIOS
and the HMMSim hybrid memory simulator, we undertook a
preliminary study to determine how much query processing
might be affected. We found that memory contention is in
fact worse in phase-change main memory systems, dramat-
ically restricting query processing. Our results suggest that
memory-resident processing will face significant performance
challenges in the future. Our future work will improve this
preliminary study with analysis on a greater variety of query
processing systems and workloads with consolidation. We will
also consider more memory architectures, including hardware
and software-managed hybrids of DRAM and PCM.

VI. ACKNOWLEDGMENTS

This material is based upon work supported by NSF grants
CCF-1422331, CNS-1012070 and CBET-1250171.

REFERENCES
[1] A. Arasu et al. Linear Road: A Stream Data Management Benchmark.

In VLDB, 2004.
[2] S. Bock, B. R. Childers, R. Melhem, and D. Mosse. Understanding

the Limiting Factors of Page Migration in Hybrid Main Memory. In
CF’15, 2015.

[3] Y. Choi et al. A 20nm 1.8V 8Gb PRAM with 40MB/s Program
Bandwidth. In ISSCC, Feb 2012.

[4] P. K. Chrysanthis. AQSIOS - Next Generation Data Stream Manage-
ment System. CONET Newsletter, June 2010.

[5] Y. Du, M. Zhou, B. Childers, R. Melhem, and D. Mossé. Delta-
compressed Caching for Overcoming the Write Bandwidth Limitation
of Hybrid Main Memory. ACM TACO, Jan. 2013.

[6] Y. Du, M. Zhou, B. R. Childers, D. Mossé, and R. Melhem. Bit Mapping
for Balanced PCM Cell Programming. In ISCA, 2013.

[7] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M.
Patel, R. Ramakrishnan, and C. Shahabi. Big Data and its Technical
Challenges. CACM, Jul 2014.

[8] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting Phase Change
Memory As a Scalable Dram Alternative. In ISCA, 2009.

[9] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood. Pin: Building Customized
Program Analysis Tools with Dynamic Instrumentation. In PLDI, 2005.

[10] L. A. Moakar, A. Labrinidis, and P. K. Chrysanthis. Adaptive Class-
Based Scheduling of Continuous Queries. In SMDB, 2012.

[11] T. N. Pham, P. K. Chrysanthis, and A. Labrinidis. Self-managing load
shedding for data stream management systems. In SMDB, 2013.

[12] M. Qureshi, M. Franceschini, and L. Lastras-Montano. Improving read
performance of Phase Change Memories via Write Cancellation and
Write Pausing. In HPCA, 2010.

[13] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algo-
rithms and Metrics for Processing Multiple Heterogeneous Continuous
Queries. ACM TODS, Mar 2008.

Authorized licensed use limited to: University of Pittsburgh Library System. Downloaded on November 12,2025 at 17:27:49 UTC from IEEE Xplore. Restrictions apply.

